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In this study, we construct a convergent algorithm for generating an approximate analytic solution for the fractional HIV infection of
CD4+ Tcells with Atangana–Baleanu fractional derivatives in the Caputo sense. We compute the solution by utilizing the fractional
homotopy analysis transform method (FHATM) and achieved a convergence region of the solution by employing an auxiliary
parameter.Moreover, we apply a numerical scheme proposed by Toufik andAtangana for solving this kind of problem and compared
with our results. A good agreement between the new algorithm and the numerical scheme is remarkable.)e solution via the present
algorithm can be obtained without any linearization or discretization which makes it reliable and easy to apply.

1. Introduction

Fractional calculus has played a significant role within the
field of science and engineering, and many mathematicians
and scientists have been working in this field lately. In recent
decades, fractional calculus has been used in several areas of
physics, biology, engineering, and others. Further details
about fractional calculus and its applications can be found in
the literature [1–9].

Because most nonlinear fractional differential equations
cannot be solved exactly, it is necessary to use approximate
and numerical methods. Various powerful mathematical
techniques such as the Adomian decomposition method
(ADM) [10, 11], homotopy analysis method (HAM) [12–15],
optimal homotopy asymptotic method (OHAM) [16],
homotopy perturbationmethod (HPM) [17], and variational
iterative method (VIM) [18, 19] have been used to obtain an
exact and approximate analytical solution.

)e HAM was first introduced and employed in 1992 by
Liao [20], after which many researchers successfully applied
this method to solve linear and nonlinear differential
equations. In recent years, many researchers have devoted
their attention to obtaining a solution of linear and

nonlinear differential equations using a variety of methods
based on Laplace transform such as the Laplace decom-
position method (LDM) [21] and the homotopy perturba-
tion transform method (HPTM) [22]. Khan et al. [23] and
Kumar et al. [24–26] coupled the HAM with Laplace
transform to solve a nonlinear differential equation and
Volterra integral equation. )e homotopy analysis trans-
form method (HATM) is a combination of HAM with
Laplace transformation. )e main advantage of this method
is its ability to combine two powerful methods to obtain a
rapid convergent series for fractional differential equations.
)is method provides us with a convenient way to control
the convergence of the series solution.

Recently, Toufik and Atangana [27] developed a numerical
scheme to solve a nonlinear fractional differential equation
considering the Atangana–Baleanu fractional derivative. )is
method is a combination of the fundamental fractional calculus
theorem with two-step Lagrange polynomial which is suc-
cessfully used to solve many real-world problems [28–30].

Since the early 1980s, researchers have made an enor-
mous effort to mathematically model the human immu-
nodeficiency virus (HIV), the virus responsible for causing
acquired immune deficiency syndrome (AIDS). In 1989,
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Perelson [31] considered the interaction of uninfected (T)
and infected CD4+ (I) Tcells, and free virus molecules (F) in
his model, following which Perelson et al. [32] extended the
original model [31]. Culshaw and Ruan [33] reduced the
model discussed in [32] as follows:

dT

dt
� p − μTT + kT 1 −

T + I

Tmax
􏼠 􏼡 − k1FT, (1)

dI

dt
� k1′FT − μII, (2)

dF

dt
� MμbI − k1FT − μFF, (3)

where T(t), I(t), and F(t) represent the concentration of
healthy CD4+ T cells at time t, infected CD4+ T cells, and
the free HI virus at time t, respectively. Table 1 sum-
marizes the meanings of functions and parameters.
Equation (1) describes the rate of change in the uninfected
population of CD4+ T cells. )e first term is the constant
rate at which the body produces CD4+ T cells from pre-
cursors in the bone marrow. Because the virus can infect
both thymocytes and T cells, as for all cells in the body,
these cells have a finite lifetime; thus, the second term
describes the decreasing source. )e third term describes
the logistic growth of the healthy CD4+ T cells, and the
proliferation of infected CD4+ Tcells is neglected. )e last
term models the rate at which the free virus infects a CD4+

T cell. Once a T cell has been infected, it becomes an
infected cell; therefore, k1 FT is subtracted from equations
(1) and (3) and added to equation (2). Hence, F and T

decrease concurrently.
Equation (2) describes the rate of change in the infected

population of actively infected T cells. )e first term rep-
resents the rate of infection of CD4+ Tcells by the virus. )e
second term represents the rate of disappearance of infected
cells.

)e three terms in equation (3) refer to the rate of
production and destruction of the free infection virus. An
actively infected CD4+ T cell produces M virus particles;
thus, the rate at which the virus is produced is set equal toM
times the lytic death rate for the infected cell. A free virus is
lost as a result of binding to an uninfected CD4+ T cell at k1
FT. )e third term accounts for the loss of viral infectivity,
viral death, and/or clearance from the body.

In this study, our approach to solving the fractional HIV
model is to determine the order in which the fractional
derivative changes by extending the classical HIV model
(1)–(3) to the following set of fractional ordinary differential
equations of the order α, β, and c:

ABC
a D

α
t T(t) � p − μTT + kT 1 −

T + I

Tmax
􏼠 􏼡 − k1FT, 0< α< 1,

(4)

ABC
a D

β
t F(t) � k1′FT − μII, 0< β< 1, (5)

F(t) � MμbI − k1FT − μFF, 0< c< 1, (6)

with initial conditions

T(0) � T0(0),

I(0) � I0(0),

F(0) � F0(0),

(7)

where ABC
a Dα

t , ABCa D
β
t , and ABC

a D
c
t are the Atangana–Baleanu

fractional derivative in the Caputo sense (ABC). To the best
of our knowledge, this is the first work that solves fractional
HIV infection of the CD4+ T cells model in ABC sense
analytically and numerically. To indicate the strength of our
proposed method, we compare our findings with the al-
gorithm of Toufik and Atangana [27].

2. Preliminaries and Notations

)e Atangana–Baleanu fractional derivative in the Caputo
sense (ABC) is defined as [6, 34]

ABC
a D

α
t f(t) �

M(α)

1 − α
􏽚

t

a

d
dt

f(s)Eα
− α
1 − α

(t − s)
α

􏼒 􏼓ds,

n − 1< α≤ n,

(8)

where α ∈ R, M(α)> 0 is a normalization function satisfying

M(α) � (1 − α) +
α
Γ(α)

, (9)

with M(0) � M(1) � 1, Eα(·) denotes the Mittag-Leffler
function, defined by

Table 1: List of parameters and functions.

Parameters and
functions Description Values

T(t)
Concentration of uninfected

CD4+ T cells T(0) � 1000

I(t)
Concentration of infected CD4+

T cells I(0) � 0

F(t) Concentration of HIV RNA F(0) � 0.001

μT

Natural death rate of
CD4+T cells (concentration) 0.02

μI

Blanket death rate of infected
CD4+ T cells 0.26

μb Lytic death rate of infected cells 0.24
μF Death rate of free virus 2.4

k1
Rate at which CD4+ T cells

become infected with the virus 2.4 × 10− 5

k1′
Rate at which infected cells

become active 2 × 10− 5

k
Growth rate of concentration of

CD4+ T cells 0.03

M
Number of virion produced by

infected CD4+ T cells 500

Tmax
Maximal concentration of

CD4+ T cells 1500

p
Source term for uninfected

CD4+ T cells 10
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Eα(z) � 􏽘
∞

k�0

zk

Γ(αk + 1)
, (10)

and Γ(·) denotes Euler’s gamma function defined as

Γ(z) � 􏽚
∞

0
t
z− 1

e
− tdt, R(z). (11)

)e fractional integral for the ABC, which is newly
defined with a nonlocal kernel and does not have singu-
larities at t � s, is defined as follows [6]:

ABC
a I

α
t f(t) �

1 − α
M(α)

f(t) +
α

M(α)Γ(α)
􏽚

t

a
f(s)(t − s)

α− 1ds.

(12)

Here, when α equals zero, the initial function is recovered,
and when α equals unity, the classical ordinary integral is
obtained.

)e Laplace transform of the fractional definitions with
ABC is given as follows [6]:

L
ABC
a D

α
t f(t)􏽮 􏽯(s) �

M(α)

1 − α
sαL f(t)􏼈 􏼉(s) − sα− 1f(a)

sα +(α/1 − α)
􏼠 􏼡.

(13)

3. Homotopy and Laplace
Transform for FHATM

Applying the Laplace transform to equations (4)–(6) and
using the formula for the Laplace transform of the ABC and
then simplifying these equations, we find that

L T(t; q)􏼈 􏼉 �
T(0)

s
+

p

s

sα(1 − α) + α
sαM(α)

+
sα(1 − α) + α

sαM(α)

· L k − μT( 􏼁T(t) −
k

Tmax
(T(t))

2
−

k

Tmax
T􏼠

· t)I(t) − k1F(t)T(t)( 􏼁,

L I(t; q)􏼈 􏼉 �
I(0)

s
+

sβ(1 − β) + β
sβM(β)

L k1′F(t)T(t) − μII(t)􏼈 􏼉,

L F(t; q)􏼈 􏼉 �
F(0)

s
+

sc(1 − c) + c

scM(c)
L MμbT(t) − k1F(t)T(t)􏼈

− μFF(t)}.

(14)

Next, defining the nonlinear operators as

NT φ1(t; q),φ2(t; q),φ3(t; q)􏼂 􏼃 � L φ1(t; q)􏼂 􏼃 −
T(0)

s
−

p

s

sα(1 − α) − α
sαM(α)

−
sα(1 − α) + α

sαM(α)
L

· k − μT( 􏼁φ1(t; q); −
k

Tmax
φ1(t; q)( 􏼁

2
−

k

Tmax
φ1(t; q)φ2(t; q) − k1φ3(t; q)φ1(t; q)􏼠 􏼡􏼨 􏼩,

NI φ1(t; q),φ2(t; q),φ3(t; q)􏼂 􏼃 � L φ2(t; q)􏼂 􏼃 −
I(0)

s
−

sβ(1 − β) + β
sβM(β)

L k1′φ3(t; q)φ1(t; q) − μIφ2(t; q)􏼈 􏼉,

NF φ1(t; q),φ2(t; q),φ3(t; q)􏼂 􏼃 � L φ3(t; q)􏼂 􏼃 −
F(0)

s
−

sc(1 − c) + c

scM(c)
L Mμbφ1(t; q) − k1φ3(t; q)φ1(t; q) − μFφ3(t; q)􏼈 􏼉,

(15)

whereNT,NI, andNF are the nonlinear operators. Let Z be a
nonzero auxiliary parameter. Using the embedding pa-
rameter q ∈ [0, 1], we construct the so-called zeroth-order
deformation equation:

(1 − q)L φ1(t; q) − T0(t)􏼂 􏼃 � qZN1 φ1(t; q), φ2(t; q), φ3(t; q)􏼂 􏼃,

(16)

(1 − q)L φ2(t; q) − I0(t)􏼂 􏼃 � qZN2 φ1(t; q),φ2(t; q),φ3(t; q)􏼂 􏼃,

(17)

(1 − q)L φ3(t; q) − F0(t)􏼂 􏼃 � qZN3 φ1(t; q),φ2(t; q),φ3(t; q)􏼂 􏼃,

(18)

where L is the Laplace operator, subject to the initial
conditions

φ1(0; q) � T0(0),

φ2(0; q) � I0(0),

φ3(0; q) � F0(0).

(19)

Clearly if q � 0 and q � 1 we obtain

φ1(t; 0) � T0(t),

φ1(t; 1) � T(t),

φ2(t; 0) � I0(t),

φ2(t; 1) � I(t),

φ3(t; 0) � F0(t),

φ3(t; 1) � F(t),

(20)

when q varies from zero to unity, the solution of the model
(4)–(6) will vary from the initial guesses T0(t), I0(t), and
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F0(t) to the exact solution T(t), I(t), and F(t) of the model
(4)–(6). Expanding φi(t; q), i � 1, 2, 3 by the Taylor series
with respect to the embedding parameter q yields

φ1(t; q) � T0(t) + 􏽘
∞

m�1
Tm(t)q

m
, (21)

φ2(t; q) � I0(t) + 􏽘
∞

m�1
Im(t)q

m
, (22)

φ3(t; q) � F0(t) + 􏽘
∞

m�1
Fm(t)q

m
, (23)

where

Tm(t) �
1

m!

zmφ1(t; q)

zqm
∣ q�0,

Im(t) �
1

m!

zmφ2(t; q)

zqm
∣ q�0,

Fm(t) �
1

m!

zmφ3(t; q)

zqm
∣ q�0.

(24)

)e convergence of equations (21)–(23) depends on the
nonzero auxiliary parameters Z [20]. Moreover, if the initial
values guessed for T0(t), I0(t), and F0(t) and the auxiliary
parameter Z are appropriately selected, then at q � 1, series
(21)–(23) converges

φ1(t; 1) � T0(t) + 􏽘
∞

m�1
Tm(t) i.e T(t) � T0(t) + 􏽘

∞

m�1
Tm(t),

(25)

φ2(t; 1) � I0(t) + 􏽘
∞

m�1
Im(t) i.e I(t) � I0(t) + 􏽘

∞

m�1
Im(t),

(26)

φ3(t; 1) � F0(t) + 􏽘
∞

m�1
Fm(t) i.e F(t) � F0(t) + 􏽘

∞

m�1
Fm(t),

(27)

which must be one of the solution of model (4)–(6), as
proved by [20]. )e equations governing the unknown
functions can be deduced from the zeroth-deformation
equations (16)–(18). Define the vectors

T
→

m(t) � T0(t), T1(t), . . . , Tm(t)􏼈 􏼉, m � 1, 2, . . . , n,

I
→

m(t) � I0(t), I1(t), . . . , Im(t)􏼈 􏼉, m � 1, 2, . . . , n,

F
→

m(t) � F0(t), F1(t), . . . , Fm(t)􏼈 􏼉, m � 1, 2, . . . , n.

(28)

Differentiating the zeroth-deformation equations
(16)–(18) m-times with respect to the embedding parameter
q, then setting q � 0, and finally dividing them by m!, enables
the mth-order deformation equations to be obtained:

L Tm(t) − χmTm− 1(t)􏼂 􏼃 � ZRm,T T
→

m− 1, I
→

m− 1, F
→

m− 1􏼒 􏼓,

m � 1, 2, . . . , n,

(29)

L Im(t) − χmIm− 1(t)􏼂 􏼃 � ZRm,I T
→

m− 1, I
→

m− 1, F
→

m− 1􏼒 􏼓,

m � 1, 2, . . . , n,

(30)

L Fm(t) − χmFm− 1(t)􏼂 􏼃 � ZRm,F T
→

m− 1, I
→

m− 1, F
→

m− 1􏼒 􏼓,

m � 1, 2, . . . , n,

(31)

with initial conditions

Tm(0) � 0,

Im(0) � 0,

Fm(0) � 0.

(32)

It should be emphasized that the mth-order deformation
equations (29)–(31) are linear; hence, they can be solved by
Mathematica orMATLAB. For simplicity, we can specify the
auxiliary functions to be equal to unity. Applying the inverse
Laplace transform to equations (29)–(31), we obtain

Tm(t) � χmTm− 1(t) + ZL
− 1

Rm,T T
→

m− 1, I
→

m− 1, F
→

m− 1􏼒 􏼓􏼒 􏼓, m � 1, 2, . . . , n,

Im(t) � χmIm− 1(t) + ZL
− 1

Rm,I T
→

m− 1, I
→

m− 1, F
→

m− 1􏼒 􏼓􏼒 􏼓, m � 1, 2, . . . , n,

Fm(t) � χmFm− 1(t) + ZL
− 1

Rm,F T
→

m− 1, I
→

m− 1, F
→

m− 1􏼒 􏼓􏼒 􏼓, m � 1, 2, . . . , n,

(33)
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where

Rm,T(t) � L Tm− 1(t)􏼂 􏼃 − 1 − χm( 􏼁 T0 +
sαtα

M(α)Γ(α + 1)
+

s(1 − α)

M(α)
􏼠 􏼡 −

sα(1 − α) + α
sαM(α)

L

· μT − k( 􏼁Tm− 1(t) +
k

Tmax
􏽘

m− 1

i�0
Ti(t)Tm− 1− i(t), +

k

Tmax
􏽘

m− 1

i�0
Ti(t)Im− 1− i(t) + k1 􏽘

m− 1

i�0
Ti(t)Fm− 1− i(t)

⎧⎨

⎩

⎫⎬

⎭,

Rm,I(t) � L Im− 1(t)􏼂 􏼃 − 1 − χm( 􏼁I0 −
sβ(1 − β) + β

sβM(β)
L k1′ 􏽘

m− 1

i�0
Fi(t)Tm− 1− i(t) − μIIm− 1(t)i

⎛⎝ ⎞⎠,

Rm,F(t) � L Fm− 1(t)􏼂 􏼃 − 1 − χm( 􏼁F0 −
sc(1 − c) + c

scM(c)
L k1 􏽘

m− 1

i�0
Fi(t)Tm− 1− i(t) + μFFm− 1(t) − MμbIm− 1(t)

⎧⎨

⎩

⎫⎬

⎭,

χm �

0, m≤ 1,

1, m> 1.

⎧⎪⎨

⎪⎩

(34)

Next, the solution of the mth-order deformation
equations (29)–(31) is given as

Tm(t) � χm + Z( 􏼁Tm− 1(t) − Z 1 − χm( 􏼁 T0 +
sαtα

M(α)Γ(α + 1)
+

s(1 − α)

M(α)
􏼠 􏼡 − ZL

− 1s
α(1 − α) + α

sαM(α)
L

· μT − k( 􏼁Tm− 1(t) +
k

Tmax
􏽘

m− 1

i�0
Ti(t)Tm− 1− i(t)⎡⎣ +

k

Tmax
􏽘

m− 1

i�0
Ti(t)Im− 1− i(t) + k1 􏽘

m− 1

i�0
Ti(t)Fm− 1− i(t)⎤⎦

⎧⎨

⎩

⎫⎬

⎭,

(35)

Im(t) � χm + Z( 􏼁Im− 1(t) − Z 1 − χm( 􏼁I0 − ZL
− 1 sβ(1 − β) + β

sβM(β)
L k1′ 􏽘

m− 1

i�0
Fi(t)Tm− 1− i(t) − μIIm− 1(t)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭, (36)

Fm(t) � χm + Z( 􏼁Fm− 1(t) − Z 1 − χm( 􏼁F0 − ZL
− 1 sc(1 − c) + c

scM(c)
L k1 􏽘

m− 1

i�0
Fi(t)Tm− 1− i(t) + μFFm− 1(t) − MμbIm− 1(t)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(37)

Taking initial conditions and equations (35)–(37), we
obtain

T1 � −
Z

M(α)
p + k − μT( 􏼁T0 + kT0 1 −

T0 + I0

Tmax
􏼠 􏼡 − k1T0F0􏼠 􏼡 1 − α +

αtα

Γ(1 + α)
􏼠 􏼡,

I1 � −
Z k1′T0F0 − μII0( 􏼁

M(β)
1 − β +

βtβ

Γ(1 + β)
􏼠 􏼡,

F1 � −
Z MμbI0 − k1T0F0 − μFF0( 􏼁

M(c)
1 − c +

ctc

Γ(1 + c)
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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T2 � (1 + Z)T1

+
Z2m1

M(α))2
k − μT −

k

Tmax
2T0 + I0( 􏼁 − k1F0􏼠 􏼡 p + k − μT( 􏼁T0 + kT0 1 −

T0 + I0

Tmax
􏼠 􏼡 − k1T0F0􏼠 􏼡

−
Z2kT0m2

M(α)M(β)

k1′T0F0 − μII0( 􏼁

Tmax

−
Z2k1T0m3

M(α)M(c)
MμbI0 − k1T0F0 − μFF0( 􏼁,

I2 � (1 + Z)I1

−
Z2μIm4

(M(β))2
k1′T0F0 − μII0( 􏼁

+
Z2k1′F0m2

M(α)M(β)
p + k − μT( 􏼁T0 + kT0 1 −

T0 + I0

Tmax
􏼠 􏼡 − k1T0F0􏼠 􏼡

+
Z2k1′T0m5

M(c)M(β)
MμbI0 − k1T0F0 − μFF0( 􏼁,

F2 � (1 + Z)F1

−
Z2 k1T0 + μF( 􏼁m6

(M(c))2
MμbI0 − k1T0F0 − μFF0( 􏼁

−
Z2k1F0m3

M(α)M(c)
p + k − μT( 􏼁T0 + kT0 1 −

T0 + I0

Tmax
􏼠 􏼡 − k1T0F0􏼠 􏼡

+
Z2Mμbm5

M(c)M(β)
k1′T0F0 − μII0( 􏼁,

(38)

where mi, i � 1, 2, . . . , 6, are given by

m1 � (1 − α)2 +
2(1 − α)αtα

Γ(1 + α)
+

αtα( )2

Γ(2α + 1)
,

m4 � (1 − β)2 +
2(1 − β)βtβ

Γ(1 + β)
+

βtβ( 􏼁
2

Γ(2β + 1)
,

m6 � (1 − c)2 +
2(1 − c)ctc

Γ(1 + c)
+

ctc( 􏼁
2

Γ(2c + 1)
,

m2 � (1 − α)(1 − β) +
(1 − α)βtβ

Γ(1 + β)
+

(1 − β)αtα

Γ(1 + α)
+

αβtα+β

Γ(α + β + 1)
,

m3 � (1 − α)(1 − c) +
(1 − α)ctc

Γ(1 + c)
+

(1 − c)αtα

Γ(1 + α)
+

αctα+c

Γ(α + c + 1)
,

m5 � (1 − β)(1 − c) +
(1 − β)ctc

Γ(1 + c)
+

(1 − c)βtβ

Γ(1 + β)
+

βctα+c

Γ(β + c + 1)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)
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In a similar way, Tm, Im, and Fm, for m≥ 3 can be
obtained. Finally, the solution of model (2) is given by

T(t) � 􏽘
n− 1

m�0
Tm(t), (40)

I(t) � 􏽘
n− 1

m�0
Im(t), (41)

F(t) � 􏽘
n− 1

m�0
Fm(t), (42)

and by choosing a suitable value for Z for the convergence of
the series according to [20]. )e analysis of the convergence
of the HATM can found in the literature [35].

4. Numerical Illustration

According to [36], it should be noted that the solution of
the series contain the auxiliary parameter Z, which offers
an easy way to control the convergence of the solution of
the series. Because it is essential to assure that the series
equations (25)–(27) is convergent, we plotted the Z curve
of 6 terms of the FHATM solution for the fractional-time
ABC equations in Figures 1–3. Using these Z curves, we
note that the straight line that parallels the Z axis provides
the region of convergence. )ese valid regions are listed in
Table 2.

Furthermore, if Z is appropriately chosen, equations
(25)–(27) may converge fast. To this end, we have to
compute the optimal values of the convergence control
parameters from the minimum of the averaged residual
errors.

Niu and Chun [37] introduced several methods to obtain
the optimal value of Z. )e optimal value of the convergence
control parameter is defined by using the concept of the
square residual error. An error analysis is presented to
determine the optimal values of Z. We substitute equations
(47)–(49) into equations (4)–(6) and obtain the residual
functions as follows:

Em,T t; Z1( 􏼁 �
ABC
a D

α
t ψT t; Z1( 􏼁 − p + μTψT t; Z1( 􏼁 − kψT t; Z1( 􏼁

· 1 −
ψT t; Z1( 􏼁 + ψI t; Z1( 􏼁

Tmax
􏼠 􏼡

+ k1ψF t; Z1( 􏼁ψT t; Z1( 􏼁,

(43)

Em,I t; Z2( 􏼁 �
ABC
a D

β
t ψI t; Z2( 􏼁 − k1′ψF t; Z2( 􏼁ψT t; Z2( 􏼁

+ μIψI t; Z2( 􏼁,
(44)

Em,F t; Z3( 􏼁 �
ABC
a D

c
tψF t; Z3( 􏼁 − MμbψI t; Z3( 􏼁

+ k1ψF t; Z3( 􏼁ψT t; Z3( 􏼁 + μFψF t; Z3( 􏼁.
(45)

)en, the square residual error for the sixth-order ap-
proximation is defined as

SEm,T Z1( 􏼁 �
1

(N + 1)
􏽘

N

l�0
Em,T 􏽘

m

z�1
T(lΔt)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

SEm,I Z2( 􏼁 �
1

(N + 1)
􏽘

N

l�0
Em,I 􏽘

m

z�1
I(lΔt)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

SEm,F Z3( 􏼁 �
1

(N + 1)
􏽘

N

l�0
Em,F 􏽘

m

z�1
F(lΔt)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(46)

)e use of the first derivative test enables us to determine the
values of the auxiliary parameters Z1, Z2, and Z3 for which
SEm,T(Z1), SEm,I(Z2), and SEm,F(Z3) are minimized. It
should be emphasized that the approximation procedures
that are used to select the optimal value of Z in FHATM are
similar to those of HAM [38].

In Table 3, the minimum values of the square residual
error are given for the optimal values of Z1, Z2, and Z3 when
α � β � c � 0.99.

)e absolute residual errors that were calculated for
various t ∈ (0, 1) are listed in Table 2. )ese results show
that the FHATM obtains an accurate approximate solu-
tion for the fractional HIV model (4)–(6). )e residual
errors are plotted in Figure 4 for t ∈ (0, 1) and various
values of Z. )e square residual errors are plotted in
Figure 5, and Figure 6 shows the absolute residual
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ħ
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Figure 1: Z curves obtained by the (a) 6th-order and (b) 5th-order
approximation of the FHATM.
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functions for the optimal Z. As these figures show, the
solution obtained by using FHATM provides us with a
sufficiently accurate analytical solution that only requires

a few iterative steps. Mathematica software was used to
calculate the six-term approximations for T, I, and F,
respectively.
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Figure 2: Z curves obtained by the (a) 6th-order and (b) 5th-order approximation of the FHATM.
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Figure 3: Z curves obtained by the (a) 6th-order and (b) 5th-order approximation of the FHATM.

Table 2: Regions of convergence, optimal values of Z, and minimum values when t � 0.0001.

Z Z∗ Minimum values
− 1.32≤ Z≤ − 0.62 − 0.804051 1.84022 × 10− 11

− 1.35≤ Z≤ − 0.65 − 0.805328 1.77401 × 10− 11

− 1.35≤ Z≤ − 0.65 − 0.808061 5.58464 × 10− 7

Table 3: Residual errors Em,T, Em,I, and Em,F for the optimal Z.

t Em,T(t; Z∗1 ) Em,I(t; Z∗2 ) Em,F(t; Z∗3 )

0 0.0000234312 0.0000194777 0.00234336
0.2 1.47222 × 10− 8 1.17419 × 10− 8 1.24526 × 10− 6

0.4 1.21518 × 10− 8 8.98671 × 10− 9 6.94956 × 10− 7

0.6 1.72222 × 10− 8 1.12419 × 10− 8 2.78878 × 10− 7

0.8 2.67042 × 10− 8 3.1236 × 10− 8 6.87927 × 10− 6

1 1.09289 × 10− 8 1.12475 × 10− 8 2.43936 × 10− 6
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ΥT(t; Z) � 􏽘
6

m�0
Tm(t) � 1000 + 1.44837 × 10− 6

Z + 3.70969 × 10− 6
Z
2

+ 5.06867 × 10− 6
Z
3

+ 3.89645 × 10− 6
Z
4

+ 1.59786 × 10− 6
Z
5

+ 2.73079 × 10− 7
Z
6

+ 0.000143992Zt
0.99

+ 0.000377629Z
2
t
0.99

+ 0.000528248Z
3
t
0.99

+ 0.000415689Z
4
t
0.99

+ 0.000174472Z
5
t
0.99

+ 0.0000305132Z
6
t
0.99

+ · · · ,

(47)

ΥI(t; Z) � 􏽘
6

m�0
Im(t) � − 1.20698 × 10− 6

Z − 3.0988 × 10− 6
Z
2

− 4.24412 × 10− 6
Z
3

− 3.27012 × 10− 6
Z
4

− 1.34403 × 10− 6
Z
5

− 2.30202 × 10− 7
Z
6

− 0.000119993Zt
0.99

− 0.000316179Z
2
t
0.99

− 0.000444257Z
3
t
0.99

− 0.000351059Z
4
t
0.99

− 0.000147925Z
5
t
0.99

− 0.0000259663Z
6
t
0.99

− · · · ,

(48)

ΥF(t; Z) � 􏽘
6

m�0
Fm(t) � 0.001 + 0.000146285Z + 0.000378272Z

2
+ 0.000521647Z

3
+ 0.000404615Z

4

+ 0.000167371Z
5

+ 0.0000288456Z
6

+ 0.0145431Zt
0.99

+ 0.0388549Z
2
t
0.99

;

+ 0.0552967Z
3
t
0.99

+ 0.0442161Z
4
t
0.99

+ 0.0188364Z
5
t
0.99

+ 0.00334019Z
6
t
0.99

+ · · · .

(49)
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Figure 4: Errors of residual functions equations (39)–(41) using the sixth order of the approximation solution for various values of Z. (a)
Comparison errors of residual function ET for various Z, (b) comparison errors of residual function EI for various Z, and (c) comparison
errors of residual function EF for various Z.
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Figure 5: Square residual function equations (42)–(44) using the sixth order of the approximation solution for Z ∈ (− 0.9, − 0.5). (a) Square
residual errors of T versus Z, (b) square residual errors of I versus Z, and (c) square residual errors of F versus Z.
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Figure 6: Absolute residual function equations (39)–(41) using the sixth order of the approximation solution for Z∗. (a) Absolute residual
error functions for Tand the optimal Z, (b) absolute residual error functions for I and the optimal Z, and (c) absolute residual error functions
for F and the optimal Z.
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Figure 7: Numerical simulation of the concentrations of uninfected CD4+ T cells T (t), infected CD4+ T cells I (t), and HIV RNA F (t) for
different values of α, β, and c and the optimal values of Z∗. (a) Approximate solut[[parms resize(1),pos(50,50),size(200,200),bgcol(156)]],
and (c) approximate solutions of F (t).
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Figure 8: Continued.
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Note that, if we set α � β � c � 1, then the FHATM
solution is the same as that obtained with the HAM in [13].
)e numerical results are plotted in Figure 7.

5. Numerical Scheme

In this section, we solve fractional a HIV model numerically
using the numerical scheme introduced by Toufik and
Atangana [27]. )e numerical solution and FHATM solu-
tion are compared in Figure 8.

6. Conclusion and Further Work

In this study, we successfully solved the fractional HIV
infection by using the CD4+ T cells model numerically and
analytically, which includes an operator of the type of the
Atangana–Baleanu fractional derivative in the Caputo sense
(ABC). Analytically approximate solution was obtained for
this derivative by incorporating the FHATM in the model of
the fractional HIV infection of CD4+ T cells. )e solution
includes the auxiliary parameter Z, which provides an easy
way to control the convergence region of the resulting
infinite series. )e results we obtained show that the
FHATM is a successful technique for obtaining an ap-
proximate solution of the fractional HIV infection of CD4+

T cells. Moreover, our result agrees strongly with the
computation of Toufik and Atangana [27]. Studying the
dynamics and stability of the system based on the ABC
fractional definition and the FHATM algorithm is an in-
teresting idea for the researchers.
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