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)e classical population growth models include the Malthus population growth model and the logistic population growth model,
each of which has its advantages and disadvantages. To address the disadvantages of the two models, this paper establishes a grey
logistic population growth prediction model, based on the modeling mechanism of the grey prediction model and the char-
acteristics of the logistic model, which uses the least-squares method to estimate the maximum population capacity. In accordance
with the data characteristics of population growth, the weakening buffer operator is used to establish the weakening buffer
operator grey logistic population growth prediction model, which improves its accuracy, thus improving the classic population
prediction model. Four actual case datasets are used simultaneously, and the two classical grey prediction models are compared.
)e results of the six evaluation indicators show that the effects of the new model demonstrate obvious advantages. Finally, the
newmodel is applied to the population forecast of Chongqing, China.)e prediction results suggest that the populationmay reach
a peak in 2020 and decline in the future. )is finding is consistent with the logistic population growth model.

1. Introduction

Generally, a population that is too large or too small is not
conducive to the overall development of a country. In 1979,
British economist )omas Robert Malthus proposed two
well-known views of growth. Without hindrance, the
population will grow geometrically, while the social re-
sources on which humans depend for survival will grow
arithmetically [1]. )e Malthus population growth model is
one of two classical population growth models; the pop-
ulation growth calculated by this model is infinite, but the
balance between the population and social resources is
disturbed after a period of unlimited population growth.
Humans face various problems caused by the shortage of
social resources. DeFries’ et al. [2] studied the problem of
station failures driven by urban population growth and
agricultural trade in the first two centuries. Bloom and
Freeman [3] studied the effects of rapid population growth
on the labor supply and employment in developing coun-
tries. Abundant data indicate that a population that is too
large will have many negative effects on development.

Furthermore, with a decrease in a population, the aging of
the population is a significant problem. Currently, the aging
problem generally occurs in developed countries and some
developing countries. In the absence of response measures,
there may be a shortage in the labor force and national defense
forces. It is well known that China is a country with a large
population, but the problem of aging in China’s population is
worsening; thus, the labor force is also shrinking. Zhong [4]
studied the impact of population aging on income inequality in
developing countries using the situation in rural China as an
example, showing that the phenomenon of population aging
exerts a serious impact on income inequality.

)erefore, the population not only affects economic
development and environmental problems but also is closely
related to social stability, labor employment, and the utili-
zation of resources related to sustainable development. In
light of the various influencing factors, it is particularly
important to use scientific and accurate methods to predict
and control the population and provide a reliable scientific
basis for the government in making strategic population
decisions [5].
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In recent years, further progress in population prediction
has been achieved; for example, Winiowski et al. [6] used the
Bayesian extended Lee-Carter method to predict population
growth. Raftery et al. [7] used Bayesian probability to predict
the populations of all countries. Shang et al. [8] used the
multifunctional level data method to predict the populations
of all countries. )e population of the United Kingdom has
also been predicted. Bryant and Graham [9] used Bayesian
demographic accounts to estimate the subnational pop-
ulation. Other papers have also contributed to population
prediction [10, 11].

Currently, forecasting methods are generally divided
into Bayesian methods [6], blocking growth models [12],
and curve fitting [13]. Most methods are based on predicting
the future population based on a time series. In addition to
predicting population using a time series, the blocking
growth model provides a particular description of the
population’s development. )ere are two main classical
models: the Malthus population growth model and the lo-
gistic population growth model. Notably, the Malthus
population growth model is suitable when the population is
low and resources are abundant. In addition, in this model,
the population grows infinitely. To solve this problem, Dutch
biologist Verhulst introduced a constant, that is, Nm (rep-
resenting the maximum population that natural resources
can accommodate), and proposed a logistic population
growth model to avoid the problem of infinite population
growth in the Malthus model. However, the logistic pop-
ulation growth model only needs three types of data, which
can be used to obtain the two parameters of a binary
nonlinear equation system. Because finding the analytical
solution in a nonlinear equation system is very difficult and
the results of the numerical solution may differ when using
different methods, the prediction may be distorted. )ere-
fore, this paper combines the differential equation of the
logistic model with the modeling mechanism of the grey
model equation and obtains the logistic grey prediction
model.

Furthermore, the greymodel is simple and adaptable and
can better address mutation parameter changes because it
does not need numerous data points to update predictions.
Since its proposal, this predictionmodel [14] has been widely
used in many fields, such as industry, agriculture, trans-
portation, medicine, and military applications [15–24].
Researchers have conducted many in-depth and systematic
studies based on the grey prediction model with respect to
the initial values, background values, modeling mechanisms,
model nature, and model combinations [25–28], which have
promoted the development and perfection of its theoretical
system. )e grey model is also extended to the GM (1, N),
DGM (1, 1), NDGM (1, 1), and CM (1, 1) power models and
other new prediction model categories [29–33]. In addition,
the ability of the grey forecasting model in population
forecasting has also been studied [34].

In summary, starting with the classical logistic pop-
ulation growth model and considering the characteristics of
the model and modeling mechanism of the grey prediction
model, this paper establishes a grey prediction model based
on the logistic population growth model which can predict

the size of a population and estimate the maximum pop-
ulation capacity of a region through the least-squares
method. Furthermore, to improve the accuracy of the lo-
gistic population growth grey prediction model (LPGM), a
weak buffering operator is introduced, and a grey prediction
model based on the weakened buffer operator’s logistic
population growth model is proposed. )e empirical anal-
ysis shows that the established grey prediction model (LGM)
calculates the population maximum capacity, that is, Nm,
better than the logistic population model. )e growth model
is more realistic. )e empirical analysis of the logistic
population grey model with a weakening buffer operator
(LPGMWBO) shows that its simulation effect is better than
that of the LGM. )e simulation accuracy is approximately
4.5%.)e simulation results show that the model can predict
the expected population in the upcoming years, the trend of
the prediction results, and the logistic population growth.

)is paper makes the following main innovation points:

(1) In accordance with the differential equations of two
classical models of population, the Malthus pop-
ulation growth model and the logistic population
growth model, the grey prediction model is estab-
lished through the grey difference information
theory, that is, the relationship between the differ-
ential equation and the difference equation.

(2) )e new model uses the modeling mechanism of the
grey model, the least-squares method to estimate the
maximum population capacity Nm, and the weak-
ening buffer operator to optimize the accuracy of the
new model. )e population data of four regions in
China are used to illustrate the effectiveness of the
model. Finally, the paper demonstrates that the new
model can effectively predict the population of
Chongqing.

(3) On the basis of the Malthus model, the new model
not only addresses the unrealistic assumption that
the total population will continue to increase but also
solves the problem of distortion encountered by the
results of the logistic model, thereby allowing the
new model to predict the population trend
effectively.

In the following sections, we use symbols with various
meanings, the corresponding definitions of which are listed
in Table 1.

Similarly, the equations and their meanings are listed in
Table 2.

)e other sections in this paper are arranged as follows.
In Section 2, the modeling mechanism of the grey prediction
model is combined with the nature of the logistic population
growth model to establish the LPGM. )en, the LPGM is
joined with a weakening buffer operator to establish the
LPGMWBO, following which the nature of the models is
studied. Section 3 uses the population data of four provinces
and cities in China to calculate six evaluation indicators to
analyze the validity of the newmodel. Section 4 describes the
empirical analysis using the LPGM to predict the maximum
population maximum capacity, Nm, and the LPGMWBO to
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simulate and predict the urban population in Chongqing,
China. Section 5 presents the conclusion.

2. Establishment of the Grey Prediction
Model of Logistic Population Growth

)e Malthus model and the logistic model are classical
models of population growth (see Appendix A for relevant
information about the two models). )e logistic growth
model is as follows:

dN

dt
� rN 1 −

N

Nm

 . (1)

Equation (1) is a Bernoulli equation whose solution can
be obtained as follows:

N(t) �
Nm

1 + Nm/N0(  − 1( e
− r t− t0( )

, (2)

where the constant Nm is the environmental capacity. In this
section, the grey prediction model of logistic population
growth is established according to the logistic model of
population growth, and the corresponding optimization
model is established according to the weakening buffer
operator.

)is section will establish the grey prediction model of
logistic population growth based on the population growth
logistic model and will establish a corresponding optimi-
zation model based on the weakening buffer operator.

2.1. Grey Prediction Model of Logistic Population Growth.
According to equation (1), the following equation holds:

dN

dt
− rN � −

r

Nm

N
2
. (3)

Let a � − r, b � − r/Nm. )us, we can observe the
following:

dN

dt
+ aN � bN

2
. (4)

Set the number of people during the same time period as
follows:

N
(0)

� N
(0)

(1), N
(0)

(2), · · · , N
(0)

(n) . (5)

)e one-time cumulative sequence is as follows:

N
(1)

� N
(1)

(1), N
(1)

(2), · · · , N
(1)

(n) , (6)

where N(1)(k) � 
k
m�1 N(0)(m). According to formula (4),

the differential equation of the population increment N(t) at
time t is as follows:

dN
(1)

(t)

dt
+ aN

(1)
(t) � b N

(1)
(t) 

2
. (7)

If the first-order difference is replaced by the left dif-
ferential in (7), when t � k, we obtain the following:

dN(1)(t)

dt
|t�k ≈
ΔN(1)(t)

Δt
|t�k �

N
(1)

(k) − N
(1)

(k − 1)

k − (k − 1)

� N
(1)

(k) − N
(1)

(k − 1)

� N
(0)

(k).

(8)

)us, the following grey model can be defined.

Definition 1. If sequences N(0) and N(1) are represented as
formulas (5) and (6), respectively, sequence Z(1) is called the
nearest mean generating sequence of N(1).

Table 1: Symbols and their meanings.

Index symbol meanings
1 X(0) An original time sequence
2 X(1) 1-Accumulating generation operator (AGO) sequence of X(0)

3 Z(1) )e mean sequence generated by consecutive neighbors of X(1)

4 Y(0) 1-Weakening buffer operator sequence of X(0)

5 Y(1) 1-Accumulating generation operator (AGO) sequence of Y(0)

6 Z
(1) )e mean sequence generated by consecutive neighbors of Y(1)

7 Y
(0) )e simulation time sequence of Y(0)

8 ε )e error sequence Y(0)

9 Δ )e relative simulation percentage error (MAPE) of simulation sequence X(0)

Table 2: Symbols and their definitions.

Index symbol definitions
Index Equations Definition
1 dN/dt � rN )e Malthus population growth model
2 dN/dt � rN(1 − N/Nm) )e logistic population growth model
3 dN(1)(t)/dt + aN(1)(t) � b[N(1)(t)]2 )e logistic population grey model
4 N(0)(k) + az(1)(k) � b[z(1)(k)]2 )e grey Verhulst model
5 Y(0)(k) + az(1)(k) � b[z(1)(k)]2 )e logistic population grey model with a weakening buffer operator
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Z
(1)

� z
(1)

(1), z
(1)

(2), · · · , z
(1)

(n) , (9)

where z(1)(k) � (N(1)(k) + N(1)(k − 1))/2.

Definition 2. If sequences N(0), N(1), and Z(1) are as shown
in (5), (6), and (9), respectively,

N
(0)

(k) + az
(1)

(k) � b z
(1)

(k) 
2
, (10)

is called the logistic grey model and is abbreviated as LGM
(1, 1). Furthermore, the differential equation in formula (10)
is called the whitening equation of the LPGM (1, 1).

Formula (10) is consistent with the Verhulst model, and
its left end is consistent with the whitening equation of the
model in formula (4). )is equation can be regarded as a
whitening equation of a grey model. Furthermore, if the
initial time point is t� 1, the population between the time
periods [1, t] is expressed as follows:

N
(1)

(k) � 
t

j�1
N

(0)
(j). (11)

It can be observed that the forms of formula (11) and the
1-AGO sequence in formula (5) are exactly the same.)us, if
the discrete sequence N(0)(1), N(0)(2), · · · , N(0)(k)  is
regarded as the original sequence, N(1)(1), N(1)(2), · · · ,

N(1)(k)} is its 1-AGO sequence. )erefore, formula (10) is
formally the same as the whitening equation of the Verhulst
model and has the same connotation. )e differential
equation can thus be transformed into a greymodel based on
the principle of differential information to solve the pop-
ulation growth problem.

Definition 3. Let Z(1) � (z(1)(2), z(1)(3), · · · , z(1)(n)) be the
mean generation sequence of accumulative sequence N(1)

generated by population sequence N(0), and let

B �

− z
(1)

(2) z
(1)

(2) 
2

− z
(1)

(3) z
(1)

(3) 
2

⋮ ⋮

− z
(1)

(n) z
(1)

(n) 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

X �

N
(0)

(2)

N
(0)

(3)

⋮

N
(0)

(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P �
a

b
 .

(12)

)en, from formula (10), the least-squares estimate of
parameters a, b satisfies the following:

P � [a, b]
T

� B
T
B 

− 1
B

T
X.

(13)

)e time response equation is as follows:

N
(1)

(k + 1) �
ax

(1)
(1)

bx
(1)

(1) + a − bx
(1)

(1) e
ak

. (14)

)e cumulative reduction value is as follows:

N
(0)

(k) � N
(1)

(k) − N
(1)

(k − 1), k � 2, 3, · · · , n. (15)

Proof. By inputting data into formula (10), which is
N(0)(k) + az(1)(k) � b[z(1)(k)]2, we can obtain the
following:

N
(0)

(2) + az
(1)

(2) � b z
(1)

(2) 
2
,

N
(0)

(3) + az
(1)

(3) � b z
(1)

(3) 
2
,

⋮

N
(0)

(n) + az
(1)

(n) � b z
(1)

(n) 
2
.

(16)

)e matrix form of the above equation sets is as follows:

Y � BP. (17)

For a, b, by substituting N(0)(k) with
− az(1)(k)2 + b[z(1)(k)]2, k � 2, 3, · · · , n, we can obtain the
following error sequence:

ε � Y − BP. (18)

Let

s � εTε

� (Y − BP)
T
(Y − BP)

� 
n

k�2
− az

(1)
(k) + b z

(1)
(k) 

2
− N

(0)
(k) 

2

� 
n

k�2
N

(0)
(k) + az

(1)
(k) − b z

(1)
(k) 

2
 

2
.

(19)

)en, the parameter list P � [a, b]T that minimizes s

should satisfy the following:

zs

za
� 2 

n

k�2
N

(0)
(k) + az

(1)
(k) − b z

(1)
(k) 

2
 z

(1)
(k) � 0,

zs

zb
� − 2 

n

k�2
N

(0)
(k) + az

(1)
(k) − b z

(1)
(k) 

2
  z

(1)
(k) 

2
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)

)us,



n

k�2
N

(0)
(k) + az

(1)
(k) − b z

(1)
(k) 

2
 z

(1)
(k) � 0,



n

k�2
N

(0)
(k) + az

(1)
(k) − b z

(1)
(k) 

2
  z

(1)
(k) 

2
� 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

)erefore, we obtain the following:
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a �


n
k�2 z

(1)
(k) 

4


n
k�2 N

(0)
(k)z

(1)
(k) − 

n
k�2 z(1)(k) 

3
 

2


n
k�2 N

(0)
(k) z

(1)
(k) 

2


n
k�2 z

(1)
(k) 

3


n
k�2 z(1)(k) 

3
 

2
− 

n
k�2 z

(1)
(k) 

4


n
k�2 z

(1)
(k)

,

b �


n
k�2 z

(1)
(k) 

3


n
k�2 N

(0)
(k)z

(1)
(k) − 

n
k�2 z

(1)
(k)  

n
k�2 N

(0)
(k) z

(1)
(k) 

2


n
k�2 z(1)(k) 

3
 

2
− 

n
k�2 z

(1)
(k) 

4


n
k�2 z

(1)
(k)

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

)us,

P � [a, b]
T

� B
T
B 

− 1
B

T
Y.

(23)

)e following is true for the maximum capacity Nm. □

Definition 4. Maximum capacity Nm � a/b.

Proof. From formula (2), we can determine that
a � − r, b � − r/Nm, and Nm � a/b can be obtained. □

2.2. LPGM Based on a Weakening Buffer Operator. )e
LPGM is a classical grey Verhulst model. )ere may be
disturbances in the original population data that may lead to
inconsistencies between the quantitative prediction results
and the intuitive qualitative analysis conclusions. )erefore,
the data should first be preprocessed. Because the LPGM is a
classical grey Verhulst model, which is a grey power model,
the buffer operator is weakened by the following power
exponents.

Definition 5 (see [16]). Let X � (x(1), x(2), · · · , x(n)) be a
nonnegative sequence of the system behavior data, and let
X D � (x(1)d, x(2)d, · · · , x(n)d). Here,

x(k)d �
(x(k))β +(x(k + 1))β + · · · +(x(n))β

n − k + 1
 

1/β

�
1

n − k + 1


n

i�k

(x(i))
β⎛⎝ ⎞⎠

1/β

,

(24)

where k � 1, 2, · · · , n, β≠ 0. )en, when X is a monotonic
growth sequence, a monotonic attenuation sequence or a
concussion sequence, that is, D, is a weakening buffer op-
erator; D is called the power average weakening buffer
operator and is denoted as PAWBO.

Parameter β has the function of adjusting the effect of the
weakening buffer operator. In a monotonic growth se-
quence, the effect of PAWBO varies in the same direction as
β. If PAWBO is slowly weakened, a smaller β can be used. In
a monotonic attenuation sequence, the action of the
weakening operator shrinks the data, and the attenuation of
the weakening buffer sequence is slower than that of the
original data sequence. )e effect of PAWBO on monotonic

attenuation sequences varies in the opposite direction of β. If
PAWBO is slowly weakened, a larger β can be used.

)e LPGMWBO using the LPGM sequence buffer op-
erator is as follows. Set the population sizes during equal
periods as follows:

N
(0)

� N
(0)

(1), N
(0)

(2), · · · , N
(0)

(n) . (25)

Set the sequences with the effect of the buffer operator
PAWBO as follows:

N
(0)

(D) � Y
(0)

� N
(0)

(1)d, N
(0)

(2)d, · · · , N
(0)

(n)d ,

(26)

and here, N(0)(k)d � (((N(0)(k))β + (N(0)(k + 1)) β + · · · +

(N(0)(n))β)/(n − k + 1))1/β.
)erefore,

Y
(0)

�

y
(0)

(1) 
β

y
(0)

(2) 
β

⋮

y
(0)

(n) 
β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
n

1
n

1
n

· · ·
1
n

0
1

n − 1
1

n − 1
· · ·

1
n − 1

0 0
1

n − 2
· · ·

1
n − 2

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N
(0)

(1) 
β

N
(0)

(2) 
β

⋮

N
(0)

(n) 
β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� YAN,

(27)

and the cumulative sequence of Y(0) is as follows:

Y
(1)

� Y
(1)

(1), Y
(1)

(2), · · · , Y
(1)

(n) , (28)

where Y(1)(k) � 
k
m�1 Y(0)(m), generating the sequence of

the means.

Z
(1)

� z
(1)

(1), z
(1)

(2), · · · , z
(1)

(n) , (29)

where z(1)(k) � (Y(1)(k) + Y(1)(k − 1))/2.
)en, the LGM under the buffer operator is as follows:

Y
(0)

(k) + az
(1)

(k) � b z
(1)

(k) 
2
. (30)

Due to Definition 3.1, we let

Discrete Dynamics in Nature and Society 5



C �

− z
(1)

(2) z
(1)

(2) 
2

− z
(1)

(3) z
(1)

(3) 
2

⋮ ⋮

− z
(1)

(n) z
(1)

(n) 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �

y
(0)

(2)

y
(0)

(3)

⋮

y
(0)

(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P �
a

b
 .

(31)

)en, the least-squares estimation of the parameters in
(3.8) a, b satisfies the following:

P � [a, b]
T

� C
T
C 

− 1
C

T
Y.

(32)

)e time response equation is as follows:

y
(1)

(k + 1) �
ay

(1)
(1)

by
(1)

(1) + a − by
(1)

(1) e
ak. (33)

)e cumulative reduction value is as follows:

y
(0)

(k) � y
(1)

(k) − y
(1)

(k − 1), k � 2, 3, · · · , n. (34)

)rough defining the LPGMWBO and using )eorems
3.1 and 3.3, the flowchart of the LPGMWBO can be ob-
tained, as shown in Figure 1.

3. Validation of the LPGMWBO

3.1. Numerical Simulation Experiments. To illustrate the
effectiveness of the model, this section uses the population
data of four provinces in China as reference data. )e data
come from http://data.stats.gov.cn/easy query.htm?
Cn�E0103, including the total population of the four regions
of Beijing, Shanghai, Guangdong, and Sichuan. )e com-
parison models are the classic Verhulst model and the NGM
(1, 1) model. In addition to the MAPE value commonly used
in the grey model, evaluation indexes such as RMSPE, IA, U1,
U2, and R are also introduced. )e specific meanings and
calculation formulas are shown in Table 3. )e smaller the
values of MAPE, RMSPE, U1, and U2 are, the higher the
accuracy of the model is, and vice versa. )e values of IA and
R are the opposite, such that the higher the value is, the higher
the accuracy of the model is. )e population data for Beijing
and Shanghai are selected for the comparison of the fitting
effect. )e data are given in Table 4. )e population data of
Guangdong and Sichuan province are compared with the
prediction effect. )ese data are given in Table 5. An effect
diagram is used to compare the effects of each model.

)e LPGMWBO uses the first row of data in Table 4 to
perform calculations through MATLAB in accordance with

the steps in the forecast flowchart. )e results are calculated
to four decimal places. )e calculation of other models is
also completed through this software. )e specific steps are
as follows:

(i) Data processing

N
(0)

� N
(0)

(1), N
(0)

(2), · · · , N
(0)

(5) 

� (1825, 1858, 1877, 1880, 1878).
(35)

According to Definition 3,

N
(0)

(D) � Y
(0)

� y
(0)

(1), y
(0)

(2), · · · , y
(0)

(5) 

� 16560.524, 12296.758, 8344.233,{

4814.226, 1878},

(36)

where β � 0.42. )e 1-AGO sequences Y(1)(k) �


k
m�1 Y(0)(m),

Start

Original sequence N(0) = {N(0) (1), N(0) (2), …, N(0) (n)}

�e weakening sequence Y(0) = {Y(0) (1), Y(0) (2), …, Y(0) (n)}

Model parameter estimation a, b

LPGMWBO model of y(0) (k) = y(1) (k) – y(1) (k–1)

Meeting the accuracy 
requirement of the system

Forecasting the future values

Stop

N
O

Yes

Accumulating generation operator(AGO)

Inverse accumulating generation operator

Mean absolute simulative percentage error

Weakening buffer operator

Error is inspection MAPE = 1/(n–1)
n

k = 1
(y(0) (k) – y(0) (k)/y(0) (k))

Figure 1: Flowchart of the LPGMWBO.
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Y
(1)

� y
(1)

(1), y
(1)

(2), · · · , y
(1)

(5) 

� 16560.524, 28857.282, 37201.516,{

42015.732, 43893.732}.

(37)

)e mean sequence generated by consecutive
neighbors Z(1) of N(1) is given by

Z
(1)

� z
(1)

(2), z
(1)

(3), · · · , y
(1)

(5) 

� 22708.903, 33029.399, 39608.624,{

42954.732}.

(38)

(ii) Parameter estimation
According to )eorem 3.1, the matrices B and Y are
given by

C �

− z
(1)

(2) z
(1)

(2) 
2

− z
(1)

(3) z
(1)

(3) 
2

⋮ ⋮

− z
(1)

(n) z
(1)

(n) 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �

y
(0)

(2)

y
(0)

(3)

⋮

y
(0)

(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P �
a

b
 .

(39)

)e parameters list P � [a, b]T is given by

P � [a, b]
T

� C
T
C 

− 1
C

T
Y

� − 1.05926, − 2.37492 × 10− 5
 .

(40)

(iii) Calculate the simulation value.
By substituting parameter values according to
Step 2,

y
(1)

(k + 1) �
ay

(1)
(1)

by
(1)

(1) + a − by
(1)

(1) e
ak. (41)

(iv) Calculate the simulation values and errors. )e
results are given in Table 6.

Table 6 shows that the six evaluation indicators of the
LPGMWBO all offer the best results. To show the differences
of various models more intuitively, the trend graph and
effect comparison graph of the model simulation results in
Table 6 and the original data are given in Figure 2. )e APE
values of the four points in the LPGMWBO are all low in
Figure 2, so MAPE is the lowest.

)e comparison models are the Verhulst model and the
NGM (1, 1) model. )e evaluation indexes are still MAPE,
RMSPE, IA, and U1, the Shanghai data from 2013 to 2017 are
used as fitting data, the population data of Guangzhou and
Sichuan from 2012 to 2016 are used as fitting data, and the
data from 2017 are used as forecast data. )e specific results
are given in Tables 7–9.

)e six comparison indicators of the fitting effect in
Table 7 show that the LPGMWBO is the best among the
three models; Table 8 shows that the MAPE values of the
LPGMWBO are the lowest, and the other five indicators of
the LPGMWBO are also the best. In Table 9, the best fitting-
effect model is the NGM (1, 1), and the best prediction-effect
model is the LPGMWBO. )e results for the other five
comparison indexes of the LPGMWBO are slightly worse
than those of the NGM (1, 1), but the effect of the
LPGMWBO is good. According to Tables 7–9, error com-
parison charts are drawn, as shown in Figures 3–5. )e
LPGMWBO in Figure 3 has a one-year APE that is slightly
larger, while the other three years are the smallest. Figure 4
shows that the APE values of the LPGMWBO in 2014 and

Table 3: Metrics for evaluating effectiveness of the models [34].

Name Abbreviation Formulation

Absolute percentage error APE X(0)(k) − X
(0)

(k)/X(0)(k) × 100%
Mean absolute percentage error MAPE 1/(n − 1) 

n
k�1 |(X(0)(k) − X

(0)
(k))/X(0)(k)| × 100%

Root mean squares percentage error RMSPE
��������������������������������

1/n 
n
i�1 ((X(0)(k) − X

(0)
(k))/X(0)(k))2



× 100%
Index of agreement IA 1 − (

n
k�1 (X(0)(k) − X

(0)
(k))2)/(

n
k�1 (| X

(0)
(k) − x| + |X(0)(k) − x|)2)

)eil U statistic 1 U1 (

������������������������

1/n 
n
i�1 (X(0)(k) − X

(0)
(k))2



)/
����������������

1/n 
n
i�1 [X(0)(k)]2



+

����������������

1/n 
n
i�1 [ X

(0)
(k)]2



)eil U statistic 2 U2 ([
n
i�1 (X(0)(k) − X

(0)
(k))2]1/2)/([

n
i�1 [X(0)(k)]2]1/2)

Correlation coefficient R Cov( X
(0)

, X(0))/
�����������������

Var( X
(0)

)Var(X(0))



Table 4: Population of Beijing and Shanghai from 2013 to 2017
(unit: ten thousand).

Year 2013 2014 2015 2016 2017
Beijing 1825 1858 1877 1880 1878
Shanghai 2164 2173 2116 2127 2121

Table 5: Population of Guangdong and Sichuan from 2013 to 2017
(unit: ten thousand).

Year 2012 2013 2014 2015 2016 2017
Guangdong 7140 7212 7292 7454 7611 7802
Sichuan 3516 3640 3769 3912 4066 4217
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2016 were slightly higher, while the APE values in other years
were relatively small. Figure 5 shows that the LPGMWBO
has higher APE values in 2013, 2014, and 2016, resulting in
the simulated MAPE value not being the lowest, but the
predicted value in 2017 is close to the true value, indicating
that the new model is also effective.

3.2. Analysis of Results. MATLAB software is used to cal-
culate the entire simulation process for four actual cases,
combined with the six evaluation index results of the three

models. In the first and second cases, the fitting effect of the
LPGMWBO is the best of the three grey prediction models.
)e value of the fitting MAPE is lower than 5%, which is an
effective fitting. In Case 3, the fitting and prediction effect of
the LPGMWBO is the best among the three models, and the
six evaluation indicators are also the best. In Case 4, al-
though the results of several indicators of the LPGMWBO
are slightly worse than those of NGM (1, 1), they do not
affect the effectiveness of the model. )erefore, the
LPGMWBO is an effective grey prediction model that can be
applied to population forecasting.

Table 6: Fitting metrics of models for validation of Beijing data.

Year Raw data NGM (1, 1) APE (%) Verhulst APE (%) LPGMWBO APE (%)
2013 1825 1825.00 0.0000 1825.00 0.0000 16560.52 0.0000
2014 1858 1089.93 41.3386 1400.44 24.6266 11542.75 − 6.13179
2015 1877 1736.99 − 7.4591 1918.76 2.2251 8955.60 7.326847
2016 1880 1853.46 − 1.4117 2092.57 11.3071 4603.04 − 4.38653
2017 1878 1874.42 − 0.1905 1783.56 − 5.0287 1874.89 − 0.16543
MAPE 12.6000 10.7971 4.5026
RMSPE 18.7965 12.3657 4.7021
IA − 0.2883 0.0582 0.9982
U1 0.0980 0.0625 0.0218
U2 0.1875 0.1236 0.0435
R 0.1329 0.3120 0.9966
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NGM (1,1)
Verhulst
LPGMWBO

Figure 2: APE values of the three model validations of Beijing data.

Table 7: Fitting metrics of models for validation of Shanghai data.

Year Raw data NGM APE (%) Verhulst APE (%) LPGMWBO APE (%)
2013 2164 2164.00 0.0000 2164.00 0.0000 19506.81 0.0000
2014 2173 1174.22 − 45.9630 1626.21 − 25.1628 13445.81 − 6.0980
2015 2116 2059.15 − 2.6868 2199.68 3.9544 10307.35 7.5003
2016 2127 2119.36 − 0.3592 2371.28 11.4846 5244.43 − 4.6757
2017 2121 2123.46 0.1158 2005.50 − 5.4454 2121.51 0.02410
MAPE 12.2812 11.5118 4.5745
RMSPE 20.5911 12.7307 4.8021
IA − 0.2538 − 0.0230 0.9982
U1 0.1090 0.0651 0.0218
U2 0.2090 0.1286 0.0435
R − 0.6412 − 0.6135 0.9966
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4. Applications

4.1. Data Description. )e website http://data.stats.gov.cn/
easyquery.htm?Cn�E0103, which was used in this study,
provides the population data for Chongqing’s urban pop-
ulation from 2013 to 2017, as shown in Table 10.

4.2. Data Description. First, according to the data shown in
Table 10, the parameters of the model are estimated through
the LPGM and the least-squares method. )en, we calculate
the maximum population size Nm, which is compared to the
maximum population size Nm as calculated by the logistic
population growth model, and the corresponding results are
obtained. Second, the LPGM and LPGMWBO are calculated

Table 8: Fitting metrics of models for validation of Guangdong data.

Year Raw data NGM APE (%) Verhulst APE (%) LPGMWBO APE (%)
2012 7140 7140.00 0.0000 7140.00 0.0000 106568.00 0.0000
2013 7212 8245.93 14.3362 5390.04 − 25.2628 74313.97 − 9.2282
2014 7292 8662.91 18.8001 7435.44 1.9671 65607.91 10.7046
2015 7454 9206.39 23.5095 8263.98 10.8664 39608.65 1.4071
2016 7611 9914.81 30.2693 7243.32 − 4.8309 18694.31 − 13.4804
MAPE 21.7287 10.7318 8.7051
2017 7802 10838.16 38.9151 5140.91 − 34.1078 7796.16 − 0.0748
MAPE 38.9151 34.1078 0.7484
RMSPE 24.2977 18.013 7.9943
IA − 0.7220 − 0.0784 0.9962
U1 0.11214 0.0957 0.0337
U2 0.2493 0.1842 0.0670
R 0.9763 − 0.2451 0.9925

Table 9: Fitting metrics of models for validation of Sichuan data.

Year Raw data NGM APE (%) Verhulst APE (%) LPGMWBO APE (%)
2012 3516 3516.00 0.0000 3516.00 0.0000 57200.41 0.0000
2013 3640 3740.85 2.7706 2694.63 − 25.9717 40138.75 − 9.2721
2014 3769 3879.89 2.9421 3788.95 0.5293 35605.46 10.6183
2015 3912 4031.68 3.0592 4318.81 10.3991 21571.71 1.4600
2016 4066 4197.39 3.2313 3887.62 − 4.3871 10200.79 − 13.2837
MAPE 3.0007 10.3217 8.6585
2017 4217 4378.29 3.8248 2822.88 − 33.0595 4257.574 0.9621
MAPE 3.8248 33.0595 0.9621
RMSPE 2.908642 17.77229 7.939729
IA 0.951637 0.136366 0.996091
U1 0.014756 0.09594 0.033772
U2 0.02992 0.184214 0.06721
R 0.996085 0.031431 0.992387
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Figure 3: )e APE of the three models for validation of Shanghai
data.
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Figure 4:)eAPE of the three models for validation of Guangzhou
data.
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by using the data shown in Table 1. )en, the results are
compared.

According to the logistic population growth model (4)
and the population data from 2013, 2014, and 2015, the
following equations can be obtained:

1783 �
Nm

1 + Nm/1733(  − 1( e
− r,

1838 �
Nm

1 + Nm/1733(  − 1( e
− 2r

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(42)

)e maximum capacity Nm of the numerical solution of
the nonlinear equation can be calculated using MATLAB as
follows: Nm � 987.6634.

We use population data from 2013, 2015, and 2016 to
calculate the population capacity Nm as follows:
Nm � 1451.4002. Similarly, the populations in 2013, 2016,
and 2017 can be used to determine that the numerical so-
lution is not a real root.

According to the maximum capacity Nm in the logistic
population growth model, the calculated maximum ca-
pacities in the three cases are not consistent with the actual
situation.

Subsequently, a, b is calculated according to the least-
squares estimation of the LPGM; then, the maximum
population Nm is calculated, and the parameter list P �

[a, b]T is as follows:

P � [a, b]
T

� B
T
B 

− 1
B

T
X

� − 0.70462, − 5.838 × 10− 5
 .

(43)

)erefore, we obtain the following:

a � − 0.70462,

b � − 5.838 × 10− 5
.

(44)

Definition 1 leads to a maximum capacity of
Nm � b/a � 12068.7070, and the results agree with the actual
situation. )e same data are used to calculate the maximum
capacity Nm of the logistic population growth model and the
LPGM, which shows that the LPGM has better adaptability.

)e following is an empirical analysis of the applicability
of the LPGMWBO based on the data shown in Table 10. )e
calculation is based on the specific steps of the LPGMWBO
shown in Figure 1. To illustrate the validity of the
LPGMWBO, the MAPE values of the model are obtained
according to the above steps and then compared with the
experimental results of the LPGM, as shown in Table 11.

As shown in Table 11, the effect of buffering the original
data is better than that of the original data.)us, the effect of
the LPGMWBO is substantially better than that of the
LPGMWBO.

Using the data shown in Table 10, we illustrate the
simulation results of the above two models in Figures 6(a)
and 6(b).

As shown in Figure 6, the simulation effect of the
LPGMWBO is better than that of the LPGM.

As shown in Table 11, the MAPE of the LPGM is ap-
proximately 4.5%. )e grey model [29] is derived from the
reference table. )e LPGMWBO simulates the size of the
urban population in Chongqing, and the accuracy in China
is approximately 12%. )erefore, the population can be
predicted using the LPGMWBO. )e prediction results are
shown in Table 12.

Table 12 shows that the projected population in all years
does not exceed the maximum capacity, but the maximum
population may be reached by 2020. When the maximum
capacity is reached, the populations in 2021 and 2022 will
decline, which is also consistent with the parameters of the
logistic population growth model. More importantly, in the
logistic population growth model (2), when 0<N<Nm, we
can obtain the following by deriving t through the two
extremes of formula (1):

d2N
dt

2 � r 1 −
2N

Nm

  ·
dN

dt
. (45)

As shown in formula (42), when N<Nm/2 and
d2N/dt2 > 0, it can be determined that dN/dt is an additive
function. When N>Nm/2 and d2N/dt2 < 0, it can be de-
termined that dN/dt is a subtractive function. According to
the extreme value discriminant, dN/dt reaches the maxi-
mum value when N � Nm/2. )erefore, when the pop-
ulation reaches N � Nm/2, the population growth rate is the
fastest. To further illustrate the growth rate observed in
Table 12, we provide Figure 7.

Based on the population trend chart shown in Figure 7,
when the population reaches 7195.16 in 2019, the growth rate
is observed to be the fastest from 2018 to 2020, which is
consistent with the growth trend of the logistic population
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Figure 5: )e APE of the three models for validation of Sichuan
data.

Table 10: Urban population in Chongqing, China, 2013–2017
(unit: ten thousand).

Year 2013 2014 2015 2016 2017
Population of Chongqing 1733 1783 1838 1908 1971
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growth model. In addition, this result shows that the
maximum capacity of the LPGM based on the logistic
population growth model and the predicted population by
the LPGMWBO based on the buffer operator are consistent
with the ideal effect of the logistic population growth model.
)erefore, the new LPGM and LPGMWBO are effective.

5. Conclusion

)is paper starts with the logistic population growth model
and combines the modeling mechanism of the grey pre-
diction model to establish the LPGM. To further improve the
accuracy of the model, a weakening buffer operator suitable
for the power index is introduced to obtain the LPGMWBO;
the maximum population capacity is estimated through the
least-squares method, and the properties of the model are
studied. )e effectiveness of the LPGMWBO is

Table 11: Simulated and MAPE values for the two models of urban population size in Chongqing, China.

Actual value
N(0)(k)

Logistic population grey
model (LPGM) Weakening buffer

operator Y(0)(k)

Logistic population grey model with a
weakening buffer operator (LPGMWBO)

Simulation
value N(0)(k)

Simulation
error Δk(%)

Simulation value
Y(0)(k)

Simulation error
Δk(%)

1733 1733 0.0000 17035.30 17035.30 0.0000
1783 1323 0.25749 12712.68 11929.15 0.06163
1838 1854 0.00907 8686.13 9322.28 0.07323
1908 2103 0.10269 5050.85 4824.62 0.04479
1971 1884 0.04390 1971 1975.51 0.00229

10.329 4.549
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Figure 6: Simulated and forecasted data of the two models. (a) Simulated data of the LPGM (1, 1). (b) Simulated data of the LPGMWBO.

Table 12: Predicted urban population data for Chongqing, China, from 2018 to 2022 (unit: ten thousand).

Year 2018 2019 2020 2021 2022
Urban population of Chongqing 3277.63 7195.16 11333.84 11020.25 6685.68

�e predicted value of LPGMWBO model
Maximum population capacity

12200

8000

3000

D
at
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Figure 7: Population forecast trends for the urban population in
Chongqing, China, 2018–2022.
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demonstrated through six evaluation indexes of the three
models in four practical cases.

)e LPGMWBO not only solves the impractical situ-
ation in which the total population continuously increases,
as in the Malthus model, but also solves problems such as
the difficulty of obtaining a logistic solution and the pos-
sible distortion of the solution. Based on the empirical
analysis, the MAPE of the LPGMWBO is approximately
4.5%, and the accuracy level is between one and two.
Furthermore, the trend of the prediction result curve meets
the ideal effect of the logistic population growth model.
Finally, the urban population of Chongqing is predicted to
peak in 2020 and may decline in the following several years,
which could help Chongqing formulate social strategies.
)us, this paper makes the following two contributions:
this paper improves the classical population prediction
model and effectively predicts the actual regional
population.

However, changes in the population size are affected by
many factors, such as society, economy, and the population
itself, and the population situation changes over time. In
this paper, the population can be effectively predicted only
from the perspective of population change without con-
sidering the impact of other factors. )erefore, the changes
in economic, social, environmental, and other factors and
the relationship between these factors and population
changes could be used to build a more accurate multivariate
population prediction model that could not only address
the deficiency of our current work but also enhance the
prospects of our future work. )is study could help the
country forecast and control the population with scientific
and accurate methods and provides a reliable scientific
basis for the government in making strategic population
decisions.

Appendix

In this appendix, we provide information on the Malthus
population growthmodel and the logistic population growth
model.

A. Malthus Population Growth Model

As early as the end of the 18th century, )omas Malthus, a
British demographer, studied more than a hundred years of
demographic data and concluded that, in the process of
natural population growth, the relative increase is a constant;
the relative increase is the ratio of the population increase
per unit of time to the total population at that time.

Let the total population be N(t) at time t and let the
population growth rate (birth rate minus death rate) be r.
According to Malthus’s theory, in the process of natural
population growth, r is the increase in the population per
unit of time and is directly proportional to the total pop-
ulation. Since the population growth continuously increases,
it can be regarded as a differentiable continuous function.
)erefore, the first model of the population increase is
established as follows:

dN

dt
� rN,

N t0(  � N0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(A.1)

By separating the variables from the differential equation
in (A.1), we can obtain the following:

N(t) � N0e
r t− t0( ). (A.2)

In this model, when r> 0, the total population increases
exponentially. In practice, population changes are examined
annually. )is model can also show whether the human
living environment in a certain area is good, whether the
human density is large, and, in the short term, whether the
predicted and actual population statistics are mild; however,
this approach is not suitable for predicting the actual
population. Since r> 0 and t⟶ +∞, this problem is
infinite. )us, the total population grows indefinitely, which
is inconsistent with the actual population situation.

In fact, a key problem with the Malthus model, which is
not consistent with reality, is the assumption that the natural
growth rate of a population is a constant. On the contrary,
this law is established only when the population is scarce and
resources are abundant. When the growth reaches a certain
degree and the total population reaches a certain base,
negative factors hinder human development. For example,
air pollution may occur with development. Other issues
include environmental deterioration, the emergence of
diseases that affect human lifespans, and adverse agricultural
impacts that may lead to events such as food shortages and
wars. )erefore, the Malthus model must be modified, and
the following logistic population growth model is
established.

B. Logistic Population Growth Model

In fact, there is a maximum population capacity, that is,
Nm, in a region or an environment; thus, the growth rate in
the Malthus model can be slightly altered. When r> 0 and
t⟶ +∞, the solution tends to a fixed constant, that is,
Nm, which is called the environmental capacity. In addi-
tion, (1 − N/Nm) is the relative growth rate. It can be
observed that the relative growth rate decreases as pop-
ulation N increases. Assuming that r is a quantity that is
not affected by the environment and is only related to itself,
it is called the intrinsic growth rate and is also known as the
coefficient of life. When N(t)⟶ Nm, the relative growth
rate is 0, and the total population tends to the limit value
Nm. )erefore, the logistic growth model can be obtained
as follows:

dN

dt
� rN 1 −

N

Nm

 ,

N t0(  � N0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(B.1)

Formula (B.1) is a Bernoulli equation and can be solved
as follows:
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N(t) �
Nm

1 + Nm/N0 − 1( e
− r t− t0( )

. (B.2)

Based on formula (B.2), if N0 and the total populations
during two periods N1, N2 are known, we can obtain the
following two equations:

N1 �
Nm

1 + Nm/N0 − 1( e
− r t− t0( )

,

N2 �
Nm

1 + Nm/N0 − 1( e
− r t− t0( )

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(B.3)

)e maximum population Nm and the intrinsic growth
rate r can be obtained from the equations in formula (B.3) to
predict the total population with the same spacing. )is
method uses only three types of data, which do not fully
follow the law of population growth. Furthermore, this
equation group is a nonlinear equation group, and analyt-
ically solving this group is difficult. )ere are many nu-
merical solutions, and the results may be distorted. )e
growth model needs to be improved. )e grey prediction
model is simple and adaptable.)ismodel can better address
sudden changes in the parameters. )rough data accumu-
lation processing, the relationships in the data increase, the
exponential relationship of a sequence increases, and the
randomness of the data decreases. )en, the logistic pa-
rameters are estimated using the least-squares method.
Consequently, a grey prediction model based on the logistic
population growth model is established.
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