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(is paper deals with the existence and multiplicity of solutions for the integral boundary value problem of fractional differential

systems:

D
α1
0+u1(t) � f1(t, u1(t), u2(t)),

D
α2
0+u2(t) � f2(t, u1(t), u2(t)),

u1(0) � 0, D
β1
0+u1(0) � 0, D

c1
0+u1(1) � 􏽒

1
0 D

c1
0+u1(η)dA1(η),

u2(0) � 0, D
β2
0+u2(0) � 0, D

c2
0+u2(1) � 􏽒

1
0 D

c2
0+u2(η)dA2(η),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

, where fi: [0, 1] × [0,∞) × [0,∞)⟶ [0,∞) is con-

tinuous and αi − 2< βi ≤ 2, αi − ci ≥ 1, 2< αi ≤ 3, ci ≥ 1(i � 1, 2).Dα
0+ is the standard Riemann–Liouville’s fractional derivative of

order α. Our result is based on an extension of the Krasnosel’skĭı’s fixed-point theorem due to Radu Precup and Jorge Rodriguez-
Lopez in 2019. (e main results are explained by the help of an example in the end of the article.

1. Introduction

With the deepening of people's understanding of mathe-
matics, the knowledge of mathematics is more and more
closely related to the way of production and life of human
beings. In recent years, fractional calculus is very active in
the field of applied mathematics. It can be applied not only
in biochemistry, mathematical physics equation, physical
science experiment, and other academic fields but also in
precision production [1–3].

In many recent papers are researched the frac-
tional differential equations with the existence of the
solutions [4–43]. For example, Zhang and Zhong [38]
used the fixed-point theorem on cones to find the ex-
istence result of at least two positive solutions which
are considered the nonlinear fractional differential
equations of nonlocal boundary value problems as
follows:

Dα
0+u(t) + f(t, u(t)) � 0, 0< t≤ 1,

D
β
0+u(1) � 􏽐

∞

i�1
ξiD

β
0+u ηi( 􏼁, u(0) � 0, D

β
0+u(0) � 0,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where 2< α≤ 3, 1≤ β≤ 2, α − β≥ 1, 0< ξi, ηi < 1 with 􏽐
∞
i�1

ξiη
α− β− 1
i < 1.

In [22], the authors obtained the uniqueness results of
positive solution by the contraction map principle and
obtained some existence results of positive solution through
the fixed-point index theory, which is as follows:

Dα
0+u(t) + f(t, u(t)) � 0, 0< t≤ 1,

βu(η) � u(1), u(0) � 0,
􏼨 (2)

where 1< α≤ 2, 0< βηα− 1 < 1, 0< η< 1, Dα
0+ is the standard

Riemann–Liouville differentiation, and the function f is
continuous on [0, 1] × [0,∞).
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However, in recent years, many scholars have begun to
use the fixed-point index to study the existence and mul-
tiplicity of operator equation and operator systems [44–51].
For example, in [46], the authors use the fixed-point index in
cones to study the existence, localization, and multiplicity of
positive solutions to operator systems of the following form:

Li ui( 􏼁 � Fi u1, u2( 􏼁,

ui ∈ D Li( 􏼁,

i � 1, 2,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where for each i, Li: D(Li) ⊂ X⟶ Y is invertible,
Fi: Y × Y⟶ Y, and X, Y ⊂ C[0, 1]. It should be noted that
each component of the fixed-point operator systems may
have the same or different behaviors.

In particular, only few papers studied the existence and
multiplicity of solutions to specific differential systems
[52–58]. (erefore, in this paper, we will apply an extension
of the Krasnosel’skiǐ’s fixed-point theorem to investigate the
existence andmultiplicity of solutions for a class of fractional
differential systems. More precisely, the following fractional
differential systems are studied:

D
α1
0+u1(t) � f1 t, u1(t), u2(t)( 􏼁,

D
α2
0+u2(t) � f2 t, u1(t), u2(t)( 􏼁,

u1(0) � 0, D
β1
0+u1(0) � 0, D

c1
0+u1(1) � 􏽚

1

0
D

c1
0+u1(η)dA1(η),

u2(0) � 0, D
β2
0+u2(0) � 0, D

c2
0+u2(1) � 􏽚

1

0
D

c2
0+u2(η)dA2(η),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where αi − 2< βi ≤ 2, αi − ci ≥ 1, 2< αi ≤ 3, ci ≥ 1, fi ∈ C

([0, 1] × [0,∞)2, [0,∞)), and Ai are nondecreasing on
[0, 1], left continuous at t � 1.

2. Preliminaries

In this part, we first give the basic definitions, lemmas, and
theorems related to fractional calculus.

Definition 1 (see [2]). Define the Riemann–Liouville frac-
tional derivative of order α> 0 for function σ as

D
α
0+σ(t) �

1
Γ(n − α)

dn

dtn
􏽚

t

0

σ(s)

(t − s)α+1− n
ds, n � [α] + 1,

(5)

where Γ(·) is the Euler gamma function.

Definition 2 (see [2]). Let σ define the Riemann–Liouville
fractional integral of order α> 0 for σ as

I
α
0+σ(t) �

1
Γ(α)

􏽚
t

0
σ(s)(t − s)

α− 1ds, (6)

where Γ(·) is the Euler gamma function.

Lemma 1 (see [2]). Let n − 1< α≤ n and u ∈ C(0, 1)∩
L1(0, 1); then,

I
α
0+D

α
0+u(t) � u(t) + c1t

α− 1
+ c2t

α− 2
+ · · · + c1t

α− n
, (7)

where ci ∈ R, i � 1, 2, . . ..

For convenience, we first consider the following linear
fractional differential equation:

D
α1
0+u1(t) + σ(t) � 0, 0< t≤ 1,

D
c1
0+u1(1) � 􏽚

1

0
D

c1
0+u1(η)dA1(η),

u1(0) � 0, D
β1
0+u1(0) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where α1 − 2< β1 ≤ 2, α1 − c1 ≥ 1, 2< α1 ≤ 3, c1 ≥ 1, and
A1(t) is nondecreasing on [0, 1], left continuous at t � 1.

Lemma 2. Let 1 − 􏽒
1
0 η

α1− c1− 1dA1(η)> 0 and σ ∈ C[0, 1];
then, boundary value problem (8) has an unique solution
u1(t) � 􏽒

1
0 G1(t, s)σ(s)ds, where

G1(t, s) �
1

Γ α1( 􏼁p1(0)

tα1− 1p1(s)(1 − s)α1− c1− 1, 0≤ t≤ s≤ 1;

tα1− 1p1(s)(1 − s)α1− c1− 1 − p1(0)(t − s)α1− 1, 0≤ s≤ t≤ 1,

⎧⎪⎨

⎪⎩

p1(s) � 1 − 􏽚
1

s

(η − s)α1− c1− 1

(1 − s)α1− c1− 1
dA1(η).

(9)
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Proof. It follows from Lemma 1 that u1(t) �

− I
α1
0+σ(t) + c1t

α1− 1 + c2t
α1− 2 + c3t

α1− 3. With consideration of
the boundary value conditions u1(0) � 0, we can get c3 � 0.
Consequently,

u1(t) � − I
α1
0+σ1(t) + c1t

α1− 1
+ c2t

α1− 2
. (10)

Notice that D
β1
0+tα− i � (Γ(α − i + 1)/Γ(α − i − β1+

1))tα− i− β1(i � 1, 2); we get

D
β1
0+u1(t) � D

β1
0+ − 􏽚

t

0

1
Γ1 α1( 􏼁

(t − s)
α1− 1σ(s)ds􏼠 􏼡

+ c1
Γ1 α1( 􏼁

Γ1 α1 − β1( 􏼁
t
α1− β1− 1

+ c2
Γ1 α1 − 1( 􏼁

Γ1 α1 − β1 − 1( 􏼁
t
α1− β1− 2

.

(11)

Since α1 − 2< β1 and D
β1
0+u1(0) � 0, we conclude that

c2 � 0. (erefore, (10) reduces to

u1(t) � − I
α1
0+σ1(t) + c1t

α1− 1
. (12)

Taking into account that D
c1
0+u1(1) �

􏽒
1
0 D

c1
0+u1(η)dA1(η) and D

c1
0+I

α1
0+σ1(t) � I

α1− c1
0+ σ1(t), we have

D
c1
0+u1(1) � −

1
Γ α1 − c1( 􏼁

􏽚
1

0
(1 − s)

α1− c1 − 1σ(s)ds + c1
Γ α1( 􏼁

Γ α1 − c1( 􏼁

� 􏽚
1

0
D

c1
0+u1(η)dA1(η)

� 􏽚
1

0
−

1
Γ α1 − c1( 􏼁

􏽚
η

0
(η − s)

α1− c1 − 1σ(s)ds􏼢

+ c1
Γ α1( 􏼁

Γ α1 − c1( 􏼁
ηα1− c1− 1

􏼣dA1(η)

� −
1

Γ α1 − c1( 􏼁
􏽚
1

0
􏽚
η

0
(η − s)

α1− c1− 1σ(s)dsdA1(η)

+ c1
Γ α1( 􏼁

Γ α1 − c1( 􏼁
􏽚
1

0
ηα1− c1− 1dA1(η).

(13)

(is yields

c1 �
􏽒
1
0 (1 − s)α1− c1− 1σ(s)ds − 􏽒

1
0 􏽒

η
0 (η − s)α1− c1− 1σ(s)dsdA1(η)

Γ α1( 􏼁 1 − 􏽒
1
0 η

α1− c1− 1dA1(η)􏼒 􏼓

.

(14)

Taking the above equality into (12), we have

u1(t) � − I
α1
0+σ(t) + c1t

α1− 1

� −
1
Γ α1( 􏼁

􏽚
t

0
(t − s)

α1− 1σ(s)ds +
tα1− 1

Γ α1( 􏼁p(0)

· 􏽚
1

0
(1 − s)

α1− c1− 1σ(s)ds􏼢

− 􏽚
1

0
􏽚
η

0
(η − s)

α1− c1− 1σ(s)dsdA1(η)􏼣

� −
1
Γ α1( 􏼁

􏽚
t

0
(t − s)

α1− 1σ(s)ds +
tα1− 1

Γ α1( 􏼁p(0)

· 􏽚
1

0
(1 − s)

α1− c1− 1σ(s)ds􏼢

· 􏽚
1

0
􏽚
1

s
(η − s)

α1− c1− 1dA1(η)σ(s)ds􏼣

� −
1
Γ α1( 􏼁

􏽚
t

0
(t − s)

α1− 1σ(s)ds +
tα1− 1

Γ α1( 􏼁p(0)

· 􏽚
1

0
(1 − s)

α1− c1− 1
p(s)σ(s)ds

� 􏽚
1

0
G1(t, s)σ(s)ds,

(15)

where G1(t, s) and p(s) are given in Lemma 2. □
(e following proposition of Green’s function G1(t, s)

will be used throughout the paper.

Lemma 3. 7e function p1(s)> 0, s ∈ [0, 1], and p1 is
nondecreasing on [0, 1].

Proof. After direct computation, we will get
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p1′ (s) � 􏽚
1

s

α1 − c1 − 1( 􏼁(η − s)α1− c1− 2(1 − s)α1− c1− 1

(1 − s)2 α1− c1− 1( )
dA1(η)

− 􏽚
1

s

(η − s)α1− c1− 1(1 − s)α1− c1− 2 α1 − c1 − 1( 􏼁

(1 − s)2 α1− c1− 1( )
dA1(η)

� α1 − c1 − 1( 􏼁 􏽚
1

s

(η − s)α1− c1− 2 − (η − s)α1− c1− 1(1 − s)− 1

(1 − s)α1− c1− 1 dA1(η)

� α1 − c1 − 1( 􏼁 􏽚
1

s

(η − s)α1− c1− 2(1 − (η − s/1 − s))

(1 − s)α1− c1− 1 dA1(η)

� α1 − c1 − 1( 􏼁 􏽚
1

s

(1 − η/1 − s)(η − s)α1− c1− 2

(1 − s)α1− c1− 1 dA1(η)

≥ 0, s ∈ [0, 1].

(16)

(en, we conclude that p1(s) is a nondecreasing func-
tion on [0, 1], which implies that p1(s)≥p1(0) �

1 − 􏽒
1
0 η

α1− c1− 1dA1(η)> 0, s ∈ [0, 1]. (is proves the content
of lemma. □

Lemma 4. 7e function G1(t, s) has the following properties:

(i) G1(t, s)> 0, (z/zt)G1(t, s)> 0, 0< t, s< 1
(ii) maxt∈[0,1]G1(t, s) � G1(1, s), 0≤ s≤ 1
(iii) G1(t, s)≥ tα1− 1G1(1, s), 0≤ t, s≤ 1

Proof. According to Lemma 2, we have learned that Green’s
function G1 is divided into two cases, and next, we will prove
three properties of G1, respectively.

(i) When 0≤ t≤ s≤ 1,

G1(t, s) �
tα1− 1

Γ α1( 􏼁p1(0)
(1 − s)

α1− c1− 1
p1(s)> 0, (17)

then by a direct calculation, it is easy to get

z

zt
G1(t, s) �

p1(s)(1 − s)α1− c1− 1

Γ α1( 􏼁p1(0)
α1 − 1( 􏼁t

α1− 2

≥ 0.

(18)

When 0≤ s≤ t≤ 1,

G1(t, s) �
1

p1(0)Γ α1( 􏼁
t
α1− 1

p1(s)(1 − s)
α1− c1− 1

− p1(0)(t − s)
α1− 1

􏽨 􏽩

≥
1

p1(0)Γ α1( 􏼁
t
α1− 1

p1(0)(1 − s)
α1− c1− 1

− p1(0)(t − s)
α1− 1

􏽨 􏽩

�
1

p1(0)Γ α1( 􏼁
t
α1− 1

p1(0)(1 − s)
α1− c1− 1

− p1(0) 1 −
s

t
􏼒 􏼓

α1− 1
􏼢 􏼣

�
tα1− 1

Γ α1( 􏼁
(1 − s)

α1− c1− 1
− 1 −

s

t
􏼒 􏼓

α1− 1
􏼢 􏼣

≥ 0,

z

zt
G1(t, s) �

1
p1(0)Γ α1( 􏼁

α1 − 1( 􏼁t
α1− 2

p1(s)(1 − s)
α1− c1− 1

− α1 − 1( 􏼁(t − s)
α1− 2

p1(0)􏽨 􏽩

�
α1 − 1

p1(0)Γ α1( 􏼁
t
α1− 2

p1(s)(1 − s)
α1− c1− 1

− p1(0)(t − s)
α1− 2

􏽨 􏽩

�
α1 − 1

p1(0)Γ α1( 􏼁
t
α1− 2

p1(s)(1 − s)
α1− c1− 1

− p1(0) 1 −
s

t
􏼒 􏼓

α1− 2
􏼢 􏼣

≥
α1 − 1
Γ α1( 􏼁

t
α1− 2

(1 − s)
α1− c1− 1

− 1 −
s

t
􏼒 􏼓

α1− 2
􏼢 􏼣

≥ 0.

(19)

4 Discrete Dynamics in Nature and Society



(ii) Based on the property (i), it follows that G1(t, s) is
increasing with respect to t. Obviously, we have

maxt∈[0,1]G1(t, s) � G1(1, s)

�
1

p1(0)Γ α1( 􏼁
p1(s)(1 − s)

α1− c1− 1
􏽨

− p1(0)(1 − s)
α1− 1

􏽩.

(20)

(iii) For(t, s) ∈ [0, 1] × [0, 1], we discuss two cases.

When 0≤ t≤ s≤ 1, G1(t, s) � (tα1− 1/p1(0)Γ(α1))
(1 − s)α1− c1− 1p1(s), it is easy to get that G1(t, s)≥
tα1− 1G1(1, s).

When 0≤ s≤ t≤ 1,

G1(t, s) �
1

p1(0)Γ α1( 􏼁
t
α1− 1

p1(s)(1 − s)
α1− c1− 1

􏽨

− p1(0)(t − s)
α1− 1

􏽩

�
tα1− 1

p1(0)Γ α1( 􏼁
p1(s)(1 − s)

α1− c1− 1
􏽨

− p1(0) 1 −
s

t
􏼒 􏼓

α1− 1
􏼣

≥ t
α1− 1

G1(1, s).

(21)

(is yields the desired result. □
(e main proof of this research uses the following

theorem in [46].

Theorem 1 (see [46]). Let (X, ‖ · ‖) be a Banat space,
K1, K2 ⊂ X two cones, and K � K1 × K2 the corresponding
cone of X2 � X × X. Let pi, qi > 0 with pi ≠ qi,
Upi

� u ∈ Ki: ‖u‖<pi􏼈 􏼉. Assume that N: W1 × W2⟶ K,
T � (T1, T2) is a compact map (where Wi � Upi

∪Uqi
for

i � 1, 2) and there exist φi ∈ Ki\ 0{ }, i � 1, 2, such that for each
i ∈ 1, 2{ }, the following condition is satisfied in W1 × W2:

(i) λxi ≠Tix for ‖xi‖ � pi and λ≥ 1

(ii) xi ≠Tix + μφi for ‖xi‖ � qi and μ≥ 0

7en,

(1) T has at least one fixed point in K such that
xi ∈ Upi

\Uqi
for i � 1, 2 if pi > qi for i � 1, 2

(2) T has at least two fixed points located in (Up1
\Uq1

) ×

Up2
and (Up1

\Uq1
) × (Uq2

\Up2
) if q1 <p1 and q2 >p2

(3) T has at least two fixed points located in
Up1

× (Up2
Uq2

) and (Uq1
\Up1

) × (Up2
\Uq2

) if q1 >p1
and q2 <p2

(4) T has at least four fixed points located in
Up1

× Up2
, Up1

× (Uq2
\Up2

), (Uq1
\Up1

) × Up2
, (Uq2

\

Up1
) × (Uq2

\Up2
) if pi < qi for i � 1, 2

3. Main Results

Let X � C[0, 1], ‖x‖∞ � maxt∈[0,1]|x(t)|, K � x ∈{

C[0, 1]: x(t)≥ 0}, and
Pi � x ∈ C[0, 1]: x(t)≥ tαi − 1‖x‖∞􏼈 􏼉(i � 1, 2). (en, X be-
comes a real Banach space with the norm ‖ · ‖∞ and
K, andPi are cones on X. Also the product space X × X is a
Banach space endowed with norm
‖(x, y)‖ � max ‖x‖∞, ‖y‖∞􏼈 􏼉 and P1 × P2 is a cone in X × X.

For convenience, we present some basic conditions as
follows which we will be used later:

(H1) fi ∈ C([0, 1] × [0, +∞) × [0, +∞), [0, +∞))

(i � 1, 2).
(H2) (ere exist ri, βi ∈ (0, +∞) and
δi ∈ (0, 1)(i � 1, 2) such that

f1(t, u1, u2)>N1r1 for (t, u1, u2) ∈ [δ1, 1] × [h1r1,

r1] × [0, R2]

f1(t, u1, u2)<M1β1 for (t, u1, u2) ∈ [0, 1] × [0, β1]
× [0, R2]

f2(t, u1, u2)>N2r2 for (t, u1, u2) ∈ [δ2, 1] × [0, R1]

× [h2r2, r2]

f2(t, u1, u2)<M2β2 for (t, u1, u2) ∈ [0, 1] × [0, R1]

× [0, β2]
where

Ri � max ri, βi􏼈 􏼉,

hi � δαi− 1
i ,

Ni � 1/hi 􏽚
1

δi

Gi(1, s)ds􏼠 􏼡,

Mi � 1/􏽚
1

0
Gi(1, s)ds􏼠 􏼡,

Gi(t, s) �
1

pi(0)Γ αi( 􏼁

tαi − 1(1 − s)αi− ci− 1pi(s), 0≤ t≤ s≤ 1,

tαi − 1pi(s)(1 − s)αi− ci− 1 − pi(0)(t − s)αi− 1, 0≤ s≤ t≤ 1,

⎧⎪⎨

⎪⎩

pi(s) � 1 − 􏽚
1

s

(η − s)αi − ci − 1

(1 − s)αi− ci− 1
dAi(η).

(22)
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(H3) 1 − 􏽒
1
0 η

αi− ci − 1dAi(η)> 0, i � 1, 2.

Employing Lemma 2 and the condition of (H1), system
(4) has the following integral representation:

u1(t) � 􏽚
1

0
G1(t, s)f1 s, u1(s), u2(s)( 􏼁ds, t ∈ [0, 1],

u2(t) � 􏽚
1

0
G2(t, s)f2 s, u1(s), u2(s)( 􏼁ds, t ∈ [0, 1].

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

Let us define two operators Ti: K × K⟶ X(i � 1, 2) as
follows:

T1 u1, u2( 􏼁(t) � 􏽚
1

0
G1(t, s)f1 s, u1(s), u2(s)( 􏼁ds, t ∈ [0, 1],

T2 u1, u2( 􏼁(t) �� 􏽚
1

0
G2(t, s)f2 s, u1(s), u2(s)( 􏼁ds, t ∈ [0, 1].

(24)

(en, we can define an operator T: K × K⟶ X × X as
follows:

T u1, u2( 􏼁 � T1 u1, u2( 􏼁, T2 u1, u2( 􏼁( 􏼁, u1, u2( 􏼁 ∈ K × K.

(25)

Lemma 5. Assume that (H1), (H2), and (H3) hold. 7en,
T: K × K⟶ P1 × P2 is completely continuous.

Proof. Firstly, we prove that T: K × K⟶ P1 × P2. In fact,
for (u1, u2) ∈ K × K, by (H1), it is obvious that
Ti(u1, u2)(t)≥ 0 for i � 1, 2 and t ∈ [0, 1]. In addition, if
(u1, u2) ∈ K × K, then

Ti u1, u2( 􏼁(t) � 􏽚
1

0
Gi(t, s)f1 s, u1(s), u2(s)( 􏼁ds

≤ 􏽚
1

0
Gi(1, s)f1 s, u1(s), u2(s)( 􏼁ds,

t ∈ [0, 1].

(26)

So,

Ti u1, u2( 􏼁
����

����∞≤ 􏽚
1

0
Gi(1, s)f1 s, u1(s), u2(s)( 􏼁ds. (27)

On the other hand, for any (u1, u2) ∈ K × K and any
t ∈ [0, 1], it follows from Lemma 4 that

Ti u1, u2( 􏼁(t) � 􏽚
1

0
G1(t, s)f1 s, u1(s), u2(s)( 􏼁ds

≥ t
αi − 1

􏽚
1

0
G1(1, s)f1 s, u1(s), u2(s)( 􏼁ds

≥ t
αi − 1

T1 u1, u2( 􏼁
����

����∞.

(28)

(us, from the above discussion, we conclude that
T: K × K⟶ P1 × P2, and then, it obviously shows that T
is well defined. (e complete continuity of operator T can
be given by a standard argument with the help of the
Arzela–Arscoli (eorem. We omit the details. □

Theorem 2. Assume that (H1), (H2), and (H3) hold. 7en,
we have

(i) If r1 < β1 and r2 < β2, then (23) has at least a positive
solution located in (Uβ1\Ur1

) × (Uβ2\Ur2
), where

Uri
� u ∈ Pi: ‖u‖∞ < ri􏼈 􏼉

(ii) If r1 < β1 and r2 > β2, then (23) has at least two
positive solutions located in (Uβ1\Ur1

) × Uβ2 and
(Uβ1\Ur1

) × (Ur2
\Uβ2)

(iii) If r1 > β1 and r2 < β2, then (23) has at least two
positive solutions located in Uβ1 × (Uβ2\Ur2

) and
(Ur1

\Uβ1) × (Uβ2\Ur2
)

(iv) If r1 > β1 and r2 > β2, then (23) has at least three
positive solutions located in Uβ1 × Uβ2, Uβ1×

(Ur2
\Uβ2), (Ur1

\Uβ1) × Uβ2, (Ur2
Uβ1) × (Ur2

\ Uβ2)

Proof. It follows from Lemma 5 that the existence of a
positive solution of problem (23) is equivalent to the exis-
tence of a nontrivial fixed point of T in P1 × P2. Let
Wi � u ∈ Pi: ||u||∞ <Ri􏼈 􏼉.

First, note that if u � (u1, u2) ∈W1 × W2 with
‖u1‖∞ � r1, then ‖u2‖∞≤R2 and by the definition of P1,

r1t
α1− 1 ≤ u1(t)≤ r1, 0≤ u2(t)≤R2, t ∈ [0, 1]. (29)

In the following, we conclude that for i ∈ 1, 2{ }, the
following properties hold:

λui ≠Tiu, for ui

����
����∞ � βi, λ≥ 1;

ui ≠Tiu + μt
αi − 1

, for ui

����
����∞ � ri , μ≥ 0,

(30)

guaranteeing the validity of (eorem 1.
In fact, if ‖u1‖∞ � β1 and λu1 � T1u for a λ1 ≥ 1, then by

(H2),

u1(t)≤ λu1(t) � T1u1( 􏼁(t)≤ 􏽚
1

0
G1(1, s)f1 s, u1(s), u2(s)( 􏼁ds

<M1β1 􏽚
1

0
G1(1, s)ds � β1,

t ∈ [0, 1],

(31)

whence, in particular, we conclude β1 < β1, a contradiction.
Now, if u1 � T1u + μ1tα1− 1 for ‖u1‖∞ � r1 and μ1 ≥ 0, then by
(H2), we obtain

u1(t) � T1u( 􏼁(t) + μ1t
α1− 1 ≥ 􏽚

1

δ1
G1(t, s)f1 s, u1(s), u2(s)( 􏼁ds

≥ δα1− 1
1 􏽚

1

δ1
G1(1, s)f1 s, u1(s), u2(s)( 􏼁ds

> δα1− 1
1 􏽚

1

δ1
G1(1, s)N1r1ds � r1,

(32)

for all t ∈ [0, 1]. (is yields the contradiction r1 < r1. Hence,
(30) holds for i � 1. Similarly, (30) is true for i � 2. □

Example 1. Consider the following integral boundary value
problem of fractional differential systems:
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D11/4
0+ u1(t) �

�����
u1(t)

􏽰
arctan u1(t) + 1( 􏼁

1
u2(t) + 1( 􏼁

2 + 100⎛⎝ ⎞⎠,

D5/2
0+ u2(t) �

1
2
sint +

1
2
cosu1(t)u2(t) + u2(t) + 3,

u1(0) � 0, D3/4
0+ u1(0) � 0, D5/4

0+ u1(1) � 􏽚
1

0
D

5/4
0+ u1(τ)dτ,

u2(0) � 0, D1/2
0+ u2(0) � 0, D3/2

0+ u2(1) �
1
2
D

3/2
0+ u2

1
2

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

(en, (33) has at least two positive solutions
(u1, v1) and (u2, v2) with (u1, v1) ∈ (U100\U0.72) × U5 and
(u2, v2) ∈ (U100\U0.72) × (U7100\U5).

To see this, we will apply (eorem 2 with

α1 �
11
4

,

c1 �
5
4
,

α2 �
5
2
,

c2 �
3
2
,

f1 t, u1, u2( 􏼁 �
��
u1

√
arctan u1 + 1( 􏼁

1
u2 + 1( 􏼁

2 + 100⎛⎝ ⎞⎠,

f2 t, u1, u2( 􏼁 �
1
2
sin t +

1
2
cos u1u2 +

u2
2

10

A1(t) � t,

A2(t) �

1
2
, t≤

1
2
,

1,
1
2
< t≤ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(34)

Clearly,

1 − 􏽚
1

0
t
α1− c1− 1dA1(t) � 1 − 􏽚

1

0
t
1/2dt �

1
3
> 0,

1 − 􏽚
1

0
t
α2− c2− 1dA2(t) � 1 −

1
2

�
1
2
> 0.

(35)

(us, (H3) holds.
Take

G1(t, s) �
1
Γ(11/4)

t7/4(1 − s)1/2(1 + 2s), 0≤ t≤ s≤ 1,

t7/4(1 − s)1/2(1 + 2s) − (t − s)7/4, 0≤ s≤ t≤ 1,

⎧⎨

⎩

G2(t, s) �
1
Γ(5/2)

2t3/2p2(s), 0≤ t≤ s≤ 1,

2t3/2p2(s) − (t − s)3/2, 0≤ s≤ t≤ 1,

⎧⎨

⎩

p1(s) �
1 + 2s

3
,

p2(s) �

1
2
, s≤

1
2
,

1,
1
2
< s≤ 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(36)

Let δ1 � δ2 � (1/4). By simple computation, we have

h1 ≈ 0.0884,

h2 � 0.125,

M1 ≈ 1.9231,

M2 ≈ 1.2085,

N1 ≈ 24.4377,

N2 ≈ 10.0794.

(37)

We choose r1 � 0.72, β1 � 100, r2 � 7100, and β2 � 5.
(en, R1 � 100, R2 � 7100,

f1 t, u1, u2( 􏼁> 25π
����

h1r1

􏽱

>N1r1,

t, u1, u2( 􏼁 ∈ δ1, 1􏼂 􏼃 × h1r1, r1􏼂 􏼃 × 0, R2􏼂 􏼃,

f1 t, u1, u2( 􏼁<
101π
2

��

β1
􏽱

<M1β1,

t, u1, u2( 􏼁 ∈ [0, 1] × 0, β1􏼂 􏼃 × 0, R2􏼂 􏼃,

f2 t, u1, u2( 􏼁>
3
2

+
h2
2r

2
2

10
>N2r2,

t, u1, u2( 􏼁 ∈ δ2, 1􏼂 􏼃 × 0, R1􏼂 􏼃 × h2r2, r2􏼂 􏼃,

f2 t, u1, u2( 􏼁< 3 +
β22
10
<M2β2,

t, u1, u2( 􏼁 ∈ [0, 1] × 0, R1􏼂 􏼃 × 0, β2􏼂 􏼃.

(38)
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Consequently, (H2) holds with r1 < β1 and r2 > β2, and
our conclusion follows from (eorem 2.

4. Conclusions

In this paper, we investigate the existence and multiplicity of
positive solutions for the integral boundary value problem of
higher-order fractional differential systems. (is result is
based on an extension of the Krasnosel’skiǐ’s fixed-point
theorem due to Radu Precup and Jorge Rodriguez-Lopez in
[46]. We rewrite the original fractional differential systems
as equivalent fractional integral systems. With the help of
properties of Green’s function, we obtain some sufficient
conditions of existence andmultiplicity of positive solutions.
Finally, an example is presented to illustrate the effectiveness
of the main result. (e interesting point is that the integral
boundary condition is dependent on the lower-order frac-
tional derivative.
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