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Mobile crowdsensing (MCS) network means completing large-scale and complex sensing tasks in virtue of the mobile devices of
ordinary users. )erefore, sufficient user participation plays a basic role in MCS. On the basis of studying and analyzing the
strategy of user participation incentive mechanism, this paper proposes the user threshold-based cognition incentive strategy
against the shortcomings of existing incentive strategies, such as task processing efficiency and budget control. )e user threshold
and the budget of processing subtasks are set at the very beginning.)e platform selects the user set with the lowest threshold, and
the best user for processing tasks according to users’ budget. )e incentive cost of the corresponding users is calculated based on
the user threshold at last. In conclusion, through the experiment validation and comparison with the existing user participation
incentive mechanism, it was found that the user threshold-based incentive strategy is advantageous in improving the proportion
of task completion and reducing the platform’s budget cost.

1. Introduction

With the development of wireless communication and
sensor technology, the communication functions of smart
devices (smart phones, iPhone, Huawei, etc.), wearable
devices (Google glasses, Apple watch, etc.), and vehicle
electronic devices (GPS, OBD-II, etc.) are becoming more
powerful than ever. All these smart devices, which are
equipped with a variety of powerful built-in sensors, become
an important information interface between users and the
sensing environment andmake it possible to designMCS. As
a new cognitive method, MCS can accomplish many large-
scale and complex sensing tasks by using various mobile
terminal devices held by users through working with or-
dinary users and can be applied to many different fields
through cooperating with users.

MCS system is composed of task publishers, MCS
platform, and many users using mobile sensors. It en-
ables ubiquitous mobile devices to collect and share local
information through enhanced cognitive ability, so as to
achieve a common goal [1]. In general, as a medium
between ordinary users and task publishers, the cognitive

platform selects interested users to make paid cognition
of tasks published by task publishers. A sensing task with
reasonable budget is released to the crowdsourcing
cognitive platform by a task publisher. )en, participants
will be selected from the users who want to complete the
sensing task. Upon receiving the cognition information
provided by the recruited participants, the platform will
reward them according to the cognition quality. For
example, Chen et al. [2] used taxi and crowdsourcing
platform for transporting the goods to be returned. Some
startups have also been established and attracted millions
of investments, such as Roadie; Cheng et al. [3] studied
the application of crowdsourcing public transportation
system in package distribution and proposed the adap-
tive limited delivery (ALD) method; Chen et al. [4]
proposed to outsource the whole transportation task and
described it as an integer linear programming issue
which includes the maximum detour of drivers, capacity
restriction, and options for passing packages between
drivers, etc.

Incentive mechanism [5] aims to encourage users to
participate in cognition activities and improve data
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quality. Research on incentive mechanism of MCS net-
work is gradually launched for the purpose of obtaining
high-quality sensing data at a low cost. In view of various
factors (sensor quality, noise, etc.), however, the sensing
data quality contributed by a single user varies greatly. In
[6], the individual quality determined by the cognition
platform was included into the design of incentive
mechanism, so as to maximize the benefits of MCS. In [7],
a bid revision reverse auction (BRRA) was designed, in
which participants were informed of the winning op-
portunities related to their bids and allowed to revise their
bids repeatedly to find their most profitable bids.
Restuccia et al. [8] proposed a participant selection
method under the realistic situation that the task is ef-
fective in a limited time and the mobility of participants is
uncertain. For example, when participants are vehicles,
their movement tends to cover a specific area but they may
not feel in time due to some unexpected reasons, such as
traffic or severe weather conditions. Luo et al. [9] pro-
posed a cross validation method where the data quality
sensed by participants is evaluated by another group of
people who are called validation population and the
validation results are used for data improvement. In [10],
a new multitask assignment plan, MTasker, was proposed,
which uses the minimum cognitive quality threshold to
achieve the optimal overall utility. )e minimum per-
ceptual quality threshold of a specific task is introduced to
redefine the multitask assignment to assign each worker
an appropriate set of tasks to maximize the effectiveness of
the entire system. Liang et al. [11] studied the situation of
spatial crowdsourcing under limited task probability
coverage and budget, proposed a prediction model of
workers’ mobile behavior, and obtained the optimal so-
lution of task allocation. In [12], a mathematical model of
data quality evaluation was proposed, followed by a
participant selection method of quality perception to
improve data quality. Abououf et al. [13] assigned mul-
tiple staff to multiple tasks according to tasks and staff
preferences so as to maximize their satisfaction and
service quality and task completion confidence. Hui et al.
[14] proposed two real auction mechanisms, i.e., OT-
OFMCS and NOT-ONMCS, to select a group of optimal
low-cost bid winning plans for the offline and online
situation sensed by the mobile population, so as to
maximize social welfare. Yui et al. [15] proposed a context
cognitive C-MAB incentive mechanism to facilitate
quality-based worker selection in MCS. It is an algorithm
to evaluate the service quality and cost of employees
through context (i.e., environment) and improve
)ompson sampling worker selection (MTS-WS) to select
workers by intensifying learning. In [16], the task allo-
cation and path planning in MCS were studied with a view
to maximizing the total task quality with limited user
travel distance budget. )e paper proposed a service
computing framework for time constrained-task alloca-
tion in location-based crowdsensing systems. )e pro-
posed framework maximized the aggregated quality of
information, reduced the budget and the response time to
perform a task, and increased the average recommenders’

reputation and their payment [17]. )e paper presented a
comprehensive framework model that fully integrated
human behavior factors for modeling task profile, worker
arrival, and work ability and then introduced a service
quality concept to indicate the expected service gain that a
requester could enjoy when she had recruited an arrival
worker by jointly taking into account work ability of
workers as well as timeliness and reward of tasks [18]. )e
paper considered such a dynamic participant recruitment
problem with heterogeneous sensing tasks which aimed to
minimize the sensing cost while maintaining certain level
of probabilistic coverage. Both offline and online algo-
rithms were proposed to solve the challenging problem.
Extensive simulations over a real-life mobile dataset
confirmed the efficiency of the proposed algorithms [19].

)e MCS network system still has some problems in
user selection, task completion ratio, and budget cost,
regardless of its broad application in many different fields.
In this paper, a user threshold-based user incentive
mechanism is proposed on the basis of system character-
istic incentive mechanism. With the mechanism, the
corresponding participation threshold and a budget for
task cognition will be generated when the user receives a
subtask and reported to the cognitive platform. )en, the
cognitive platform selects the corresponding user set from
all mobile users as participants according to a certain user
selection method and calculates the reward that should be
obtained when completing the subtask. )e user finally
decides whether to participate in the processing of the
subtask in a specific way. )e user threshold-based in-
centive mechanism can not only improve the task com-
pletion ratio but also reduce the user cost and save the total
budget [20].

)e structure of this paper is as follows: Part 1 introduces
the mobile MCS network system; Part 2 expounds the
threshold sensing model; Part 3 verifies the threshold-based
cognition model and analyzes the results; and Part 4 is the
summary of this paper.

2. MCS Network

)e MCS network refers to the collaboration, either con-
sciously or unconsciously, through the mobile Internet by
taking the mobile devices of ordinary users as the basic
cognitive units so as to distribute sensing tasks, collect
sensing data, and finally complete large-scale and complex
social sensing tasks. It mainly consists of three parts: sensing
task, cognitive platform, and mobile users. To be specific, the
sensing tasks are the total tasks held by task publishers who
hope to collect data through users’ participation and co-
operation; cognitive platform, which is composed of mul-
tiple cloud cognitive servers, is the platform and medium for
interaction between task publishers and mobile users [21];
mobile users are those who have mobile terminal devices in
the region of interest and are willing to participate in task
processing. )ey can collect data through various sensors
embedded in the mobile device and connect with the cog-
nitive platform through wireless network, so as to upload the
sensing data to the server. As shown in Figure 1, in MCS
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network system, the cognitive platform publishes tasks in the
region of interest and mobile users use various sensors in the
mobile phone to sense tasks and submit them to the server,
which pays the user remuneration.

2.1. Sensing Task. )e task holder first determines a specific
set of sensing tasks and then divides the group of tasks into
several task subsets through the cognitive platform. In this
paper, tasks are divided into task subsets of equal size and
with no overlapping, which certainly simplifies the process
of task allocation. )e sensing task subset is published to the
interested users in a certain area through the servers on the
mobile platform and the selected mobile users execute the
task subset and report to the server.

2.2. Cognitive Platform. )e cognitive platform is composed
of a group of servers located in the cloud. As a medium for
task publishers and mobile users, it should, on the one hand,
divide a certain sensing task into multiple sensing task
subsets of equal size and with no overlapping and publish
them to mobile users. On the other hand, it should take
effective incentive mechanism to attract the participation of
more users.)e cognitive platform also needs to process and
analyze the sensing data uploaded by mobile users and pays
the corresponding rewards to cognitive users according to
the incentive mechanism.

2.3. Mobile Users. Mobile users refer to a collection of users
who hold mobile terminal devices in a region of interest and
use various kinds of sensors embedded in themobile devices,
such as accelerometer, compass, gyroscope, GPS, micro-
phone, and camera, to carry out the corresponding data
sensing and connects server through various wireless net-
works, such as using mobile cellular network and short-
range wireless communication, so as to upload the sensing
data to the mobile platform and get paid.

3. Threshold Cognitive Model

MCS network mainly consists of three parts: user set U, task
set T, and platform S. Task set T includes several subtasks,
each of which is processed in turn (that is, before each
subtask is processed, platform S will issue the subtask

processing request to the user). Each user will decide
whether to accept the request to process the task and get the
reward. )is process is repeated until all tasks are processed
or budget B is used up. Table 1 describes the symbols in the
threshold cognitive model.

4. Task Type Classification

For any tasks to be processed, platform S first divides the task
set T into several subtasks k: k ⊂ 1, 2, 3, . . . , K{ } and pub-
lishes these subtasks in a certain region. At the same time,
the platform sets a utility value represented by uk for each
subtask in order to facilitate subtask evaluation. According
to different task types, utility value uk is divided into three
different types; that is, utility is directly proportional to
subtask size、the utility is directly proportional to the task
completion ratio and the utility is inversely proportional to
the task completion ratio.

4.1. (e Utility is Directly Proportional to Subtask Size.
)e utility obtained by task publishers is directly propor-
tional to the subtasks size to be executed. )is task type only
considers the subtask size, which means the larger the
subtasks are, the higher the weight of the corresponding total
sensing tasks is and the higher the utility value will be. )e
formula is shown as follows:

uk �
λk

λ
. (1)

For example, in the application of environmental
monitoring, when the cognitive platform needs to monitor
the environmental background noise in a region, the subtask
size corresponds to the length of time when the mobile user
provides noise monitoring. )e longer the time, the larger
the corresponding subtask size and themore the background
noise information the server collects. In this paper, we only
consider the case of equal size and with no overlapping so
the utility value of each subtask is fixed. Considering that the
subtask λk in this paper is equal in size and with no over-
lapping, it is a fixed value. )e total task λ is fixed, so is the
utility UK of subtask.

4.2.(eUtility is Directly Proportional to the Task Completion
Ratio. )e utility obtained by the task publisher is directly
proportional to the overall sensing task progress, that is, the
utility value of the subtask is directly proportional to the task
progress. For this task type, consideration should be taken
for the completion ratio of the total task at this stage. With
the increase of the completion ratio of the total task, the
utility value of the corresponding subtask will increase, as
follows:

uk �
λ(t) + λk( 

δ

λ
, (2)

where δ is a random variable in the range of (0, 1). For
example, in a video rendering application, if a subtask is not
completed, the whole sensing task will fail. )at is to say,
with the execution of the task, the utility value of the

Mobile users

Platform

Area of interest

Figure 1: MCS network system.
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remaining subtasks will gradually increase for the task
publisher, which means the utility is directly proportional to
the task progress.

4.3.(eUtility is InverselyProportional to theTaskCompletion
Ratio. )e utility obtained by the task publisher is inversely
proportional to the overall sensing task progress; that is, the
utility value of the subtask is inversely proportional to the
task progress. For this task type, consideration shall be taken
for the completion ratio of the total task at this stage. With
the increase of the completion ratio of the total task, the
utility value of the corresponding subtask will gradually
decrease, as follows:

uk �
λk

λ(t) + d
, (3)

where d is a normal quantity in it. For example, in a target
tracking application, the accuracy of target tracking will
increase rapidly with the participation of the first mobile
user A1, so the utility of the first subtask is the highest for
task publishers. With the involvement of more users, the
accuracy of target tracking will no longer increase, which
means, with the execution of the task, the utility value of
cognitive information provided by participating users de-
creases for task publishers; that is, the utility value is in-
versely proportional to task progress.

5. Users Effort and Incentive Strategy

After receiving the subtask, users in the task publishing area
will generate the corresponding threshold thresi and a
predicted effort C for sensing the task, which will be reported
to the cognitive platform. )e platform selects a user set U
which then is divided intoUi: i ⊂ {1, 2, . . .,N}, and threshold
thresi of each subuser is confidential to other users. In this
paper, where a subtask k is given, Ci is used to express the
cost function; that is to say, the user’s effort is affected by the
size of the allocated subtask and is directly proportional to
the subtask size, as shown in the following:

Ci � αiλ
βi

k , (4)

where α and β are two divisors in it.

According to the threshold cognitive incentive mecha-
nism, the cognitive platform designs a threshold-based in-
centive mechanism in virtue of the residual B(t) of the total
budget, the utility valueUk of the subtask to be executed, and
the threshold thresi of the selected user. )e formula used is
shown as follows:

Ik �
k

thresi

ukB(t). (5)

By selecting the appropriate parameter k, the incentive
cost Ik of the server can be reduced and the budget reser-
vation ratio can be increased.

6. User Participation Strategy

User Ai can decide whether to accept the processing request
of the subtask finally according to the cost Ci required for
processing subtask k and the reward Ik paid by platform S for
k. In this paper, it is represented by the function Pi and the
formula is shown as follows:

Pi �

1, if
Ik
ci

⊳thresi,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

As shown in Algorithm 1, select the user with the lowest
threshold in Line 4, apply formulas (1)–(3) to calculate the
utility value of subtasks according to different task types in
Line 5, and apply formulas (4) and (5) to calculate the user’s
effort and reward after processing subtasks in Lines 6–8.
User accepts subtask requests according to the relationship
of cost, reward, and threshold. )is not only improves the
user’s participation rate and reduces effort but also speeds up
subtask processing and reduces the total budget, as shown in
Lines 9–12. Upon accepting the subtask, the user will
compete for the next subtask, as shown in Lines 16–17.

7. Experimental Results and Analysis

7.1. Simulation Experiment Environment. In this paper, we
set the total number of users N� 100 and then divide the
users into three groups according to their thresholds, i.e.,
high-threshold users, low-threshold users, and intermedi-
ate-threshold users. We also set the participation threshold
thresi for each user and the number of subtasksK� 1,000 and
the initial budget to B� 1,000. )e experiment is simulated
in MATLAB R2014a.

7.2. Task Completion Proportion. )e platform divides the
task set into several subtasks and ensures that each subtask
can be processed smoothly in turn. )e goal of this paper is
to finish the subtasks as soon as possible, which means,
under the given budget limit, a higher task completion ratio
can be achieved within a shorter time. Figure 2 shows the
comparison chart between the two incentive mechanisms
under the task type where the utility is directly proportional
to subtask size. )e x coordinate represents time while the y
coordinate represents task completion ratio. In the simple

Table 1: Main symbols.
Ai )e ith participant
N Total number of participants
N(t) )e percentage of participants at time t
Mi Number of subtasks completed by the ith user
thresi Participation threshold for user i
Ci Forecast effort for the ith user
B Budget for the ith user
B(t) Percentage of budget reserve at time t
Ui )e utility of the kth subtask
Ik )e bid calculated by server for subtask k
λ Total task size
λk Size of each subtask
T General tasks
K Number of subtasks
λ(t) Proportion of tasks completed at time t
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participation mode, the threshold cognitive incentive
mechanism (TVP) can complete the task faster and the
completion speed of the participation cognition incentive
mechanism (PIP) is relatively average at the beginning of
task publishing. In this task type, both of the incentive
mechanisms can better complete the tasks published by the
server. By contrast, the threshold cognitive incentive
mechanism (TVP) has a higher task completion ratio.

Figure 3 shows the comparison chart of the two incentive
mechanisms under the task type where the utility is inversely
proportional to task progress. )e x coordinate represents
time while y coordinate represents task completion ratio.

)e threshold cognitive incentive mechanism (TVP) can
complete tasks faster and the completion speed of partici-
pating in the cognitive incentive mechanism (PIP) is rela-
tively average at the beginning of task publishing. In this task
type, both of the two incentive mechanisms can better
complete the tasks published by the server. By contrast, the
threshold perception incentive mechanism (TVP) has a
higher task completion ratio.

Figure 4 shows the comparison chart of the two incentive
mechanisms in the task type where utility is directly pro-
portional to task progress. )e threshold cognitive incentive
mechanism (TVP) can complete the task faster at the

Input: Tasks number K, set of users N, budget B
Output: remaining budget B(t), task percentage completed T(t)

(1) initial the tasks and users, set credit values thres
(2) while !k||B
(3) for k� 1 :1:K
(4) Min thresi⟵ find the user of the max credit value
(5) Uk⟵ calculate the utility of segment k
(6) Ci⟵ calculate the cost of segment k
(7) Pk⟵ calculate incentives for user
(8) According to Ci, Pk, thres to determine whether accept segment or not
(9) if accept segment
(10) N(t)⟵ calculate proportion of user participation
(11) B(t)⟵B- Pk
(12) else
(13) constant values
(14) end if
(15) end for
(16) calculate T(t)
(17) Next loop
(18) end while
(19) return B(t), T(t)

ALGORITHM 1: )reshold cognition model.
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Figure 2: Task type where utility is directly proportional to subtask size.
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beginning of task publishing but both incentive mechanisms
can complete the task published by the server in this task
type well.

7.3. Budget Surplus Ratio. )e platform pays the user
according to the subtasks processed by them. One of the
goals of this paper is to minimize the budget on the basis of
ensuring smooth subtask treatment. Selecting users with
high reputation to process subtasks can reduce the cost of
processing subtasks Ci. Figure 5 shows the comparison chart
of the two incentive mechanisms under the task type where
utility is directly proportional to subtask size. )e x coor-
dinate represents time while the y coordinate represents
budget reservation proportion. )e chart represents the
budget reserve ratio along with time. For the task type where
utility is directly proportional to subtask size, both incentive

mechanisms perform well in the budget reservation pro-
portion of the server, which can save the task publisher’s
budget dramatically.

Figure 6 shows the budget chart of the two incentive
mechanisms under the task type where utility is inversely
proportional to task progress. )e x coordinate represents
time while the y coordinate represents budget reservation
proportion. )is chart represents the budget reservation
proportion along with time. )e two incentive mechanisms
spend budget at a faster speed at the beginning and then tend
to be stable. By contrast, the budget reserve ratio of threshold
cognitive incentive mechanism (TVP) is higher.

Figure 7 shows the budget comparison chart of the two
incentive mechanisms under the task type with where utility
is directly proportional to task progress. )e x coordinate
represents time while the y coordinate represents budget
reservation proportion. )is chart represents the budget
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Figure 4: Task type where utility is directly proportional to task progress.
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reservation proportion along with time. In this type, both
incentive mechanisms spend budget at a faster speed and the
budget expenses are high because the server will allocate
budget as much as possible to complete the reserved subtasks
in order to finish all tasks.

8. Conclusion

)is paper proposes the settings of the threshold of user
participation based on the incentive mechanism of user
participation cognition and selects the users with low
threshold each time to process subtask set in turn. )e utility
value of subtask is affected by threshold, which further in-
fluences the platform’s payment mechanism for users. A new
selection function is introduced to determine whether users

finally accept the processing request of subtask. Compared
with the incentive mechanism of user participation aware-
ness, this mechanism model is much advantageous in im-
proving task completion speed and reducing budget.

General incentive mechanism methods, such as unequal
division of subtasks and overlapping of processing time, will
be taken into consideration in the future work on the basis of
further improving the model. Other models can also be
introduced at the same time to optimize model performance
further.
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