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)is article studies the minimal wave speed of traveling wave solutions in an integrodifference predator-prey system that does not
have the comparison principle. By constructing generalized upper and lower solutions and utilizing the theory of asymptotic
spreading, we show the minimal wave speed of traveling wave solutions modeling the invasion process of two species by
presenting the existence and nonexistence of nonconstant traveling wave solutions with any wave speeds.

1. Introduction

Discrete time systems are widely used to model the evolution
of species without overlapping generations, and some novel
dynamics including chaos have been presented comparing
with the corresponding continuous time models; see some
models by Beddington et al. [1], Hofbauer et al. [2], and
Weide et al. [3] and monographs by Murray [4]. One typical
discrete time model takes the form as follows [2]:

ui,n+1 � ui,ne
ri − 􏽐

K

j�1aijuj,n ,

ui,0 > 0,
(1)

in which K ∈ N is a positive constant, i ∈ 1, 2, . . . , K{ },

n ∈ N, and the other parameters are given. Although the
form of (1) seems to be simple, it may be nonmonotone in its
positive invariant region. For example, when K � 1, we see
[5]

un+1 � une
r 1− un( ),

u0 > 0
(2)

has a positive invariant interval [0, L] with

L �

1, r ∈ (0, 1],

er− 1

r
, r> 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

However, (2) is not monotone in the interval [0, L] when
r> 1, which may reflect the phenomenon of over-
compensatory growth in population dynamics (see Murray
[4], Section 2.3). In the literature, the deficiency of mono-
tonicity may lead to complex dynamics including the ex-
istence of nontrivial periodic solutions (the periodic solution
is larger than 1) and other complex dynamics even in the
scalar equations [4, 6, 7]. For coupled system (1), we may
observe the plentiful dynamics by [1–3].

)e energy transfer is one of the fundamental phe-
nomena in the real world, and many predator-prey systems
are established to model the process; we may refer to Murray
[4] and Ruan [8] for some classical models and theoretical
results. From (1), we may obtain different predator-prey
systems by selecting proper parameters. In particular, after
rescaling, one predator-prey system takes the form as
follows:
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un+1 � uner1 1− un− avn( ), u0 > 0, n � 0, 1, 2, . . . ,

vn+1 � vner2 1− vn+bun( ), v0 > 0, n � 0, 1, 2, . . . ,

⎧⎨

⎩ (4)

in which all the parameters are positive. Regarding (4) as a
model in population dynamics, then un, vn stand for the
densities of the prey and predator, respectively, r1 > 0, r2 > 0
depend on their intrinsic growth ratios, a reflects the capture
rate, while b describes the energy conversion ratio. Similar to
(2), we see that (4) may be nonmonotone since it does not
admit the comparison principle appealing to the predator-
prey system for some parameters. More precisely, we see that
(4) has a positive invariant region [0, L1] × [0, L2] defined by

L1 �

1, r1 ∈ (0, 1],

er1− 1

r1
, r1 > 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L2 �

1 + bL1, r2 1 + bL1( 􏼁 ∈ (0, 1],

er2bL1+r2− 1

r2
, r2 1 + bL1( 􏼁> 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Even if

L1 ≥ un+1 ≥ uner1 1− un− avn( ),

L2 ≥ vn+1 ≥ vner2 1− vn+bun( ),

un+1 ≤ uner1 1− un− avn( ) ≤ L1, vn+1 ≤ vner2 1− vn+bun( ) ≤L2,

L1, L2( 􏼁≥ u0, v0( 􏼁≥ u0, v0( 􏼁≥ u0, v0( 􏼁≥ (0, 0),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

for n ∈ N, we cannot obtain

un, vn( 􏼁≥ un, vn( 􏼁≥ un, vn( 􏼁, n � 1, 2, . . . , (7)

when

r1 ∈ (0, 1],

r2 1 + bL1( 􏼁< 1,
(8)

do not hold, which is similar to the possible non-
monotonicity in (2).

)e evolutionary process of many species can be
modeled by the integrodifference equations involving birth-
diffusion process, in which birth and diffusion occur in
different stages of individuals [9]. Some important examples
of integrodifference equations can be found in Bourgeois
et al. [10], Jacobsen et al. [11], Kot [12, 13], Lui [14], and a
recent book by Lutcher [15]. Since Weinberger [16], the
propagation dynamics of integrodifference equations has
been widely studied, of which the abstract results can be
applied to continuous time models [17]. In particular, Liang
and Zhao [18] and Weinberger et al. [17] studied the
propagation dynamics of monotone abstract integrodiffer-
ence systems and applied the abstract results to several
parabolic-type systems generating monotone semiflows. We
also refer to Hsu and Zhao [19], Wang and Castillo-Chave
[20], and Yi et al. [21] for some integrodifference systems
that are local nonmonotone.

When the birth-diffusion process is concerned in (4), Li
and Li [22] considered the following integrodifference
system:

un+1(x) � 􏽚
R

un(y)er1 1− un(y)− avn(y)( )k1(x − y)dy, x ∈ R, n � 0, 1, 2, . . . ,

vn+1(x) � 􏽚
R

vn(y)er2 1− vn(y)+bun(y)( )k2(x − y)dy, x ∈ R, n � 0, 1, 2, . . . ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

in which x ∈ R, k1, k2, which are called kernel functions,
reflect the random walk of individuals, and monotone
condition (8) holds. By direct calculation, when (8) is true,
then (4) or (9) admits the comparison principle appealing to
predator-prey systems and may have a coexistence steady
state. When ki is of Gaussian type, Li and Li [22] established
the existence of traveling wave solutions connecting (0, 0)

with the coexistence state if the wave speed is larger than the
threshold, which is finished by constructing upper and lower
solutions.

Although Li and Li [22] investigated the traveling wave
solutions of (9), there are some open problems for this
system. Firstly, only the large wave speed is investigated,
what is the threshold on the existence of nontrivial traveling
wave solutions? Secondly, the movement law in [22] is too
special, is it possible to consider the equation with more
kernel functions? )irdly, what will happen if (8) does not

hold? )e purpose of this paper is to further investigate the
nontrivial (nonconstant) traveling wave solutions of (9)
motivated by the above three questions. For example, we
only make the following assumption on kernel functions:

(A) ki(x), x ∈ R, is Lebesgue-measurable and integrable
such that 􏽒

R
ki(x)dx � 1, ki(x) � ki(− x), x ∈ R,

and there exists λ> 0 such that 􏽒
R

ki(y)eλydy<
∞ , i � 1, 2.

Evidently, (A) contains the Gaussian kernel as a special
case. We also remove condition (8) to study the threshold
that determines the existence or nonexistence of nontrivial
traveling wave solutions for all positive wave speeds.

In Section 2, we shall give the definition and recall some
known results. In Section 3, the existence of nonconstant
traveling wave solutions is established by constructing
generalized upper and lower solutions. Furthermore, we
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show the asymptotic behavior of traveling wave solutions
and nonexistence of traveling wave solutions, which indicate
a minimal wave speed of nontrivial traveling wave solutions.
Finally, a further discussion is presented in Section 5.

2. Preliminaries and Definitions

In this paper, we use the standard partial ordering in R2.
)at is, if

u � u1, u2( 􏼁, v � v1, v2( 􏼁 ∈ R2
, (10)

then

u≤ v, iff u1 ≤ v1, u2 ≤ v2. (11)

Moreover, C(R,R) denotes the set of uniformly con-
tinuous and bounded functions. When b> a> 0, then

C[a,b] � u ∈ C: a≤ u(x)≤ b, x ∈ R{ }, (12)

and C+ is defined by

C
+

� u ∈ C: u(x)≥ 0, x ∈ R{ }. (13)

We now recall the comparison principle and asymptotic
spreading in Hsu and Zhao [19] and consider the initial
value problem

wn+1(x) � 􏽚
R

b wn(y)( 􏼁k(x − y)dy, x ∈ R, n � 0, 1, 2, . . . ,

w0(x) � w(x), x ∈ R,

⎧⎪⎨

⎪⎩
(14)

in which w(x) ∈ C+, k satisfies (A), and b: R+⟶ R+ such
that

(B) )ere exists B> 0 such that b: [0, B]⟶ [0, B] is
continuous, and limu⟶0+ b(u)/u : � b′(0)> 1
satisfying

0< b(u)≤ b′(0)u, u ∈ (0, B]. (15)

Lemma 1. If w(x) ∈ C[0,B], then (14) admits a unique so-
lution wn(x) ∈ C[0,B], n ∈ N.

(1) Assume that b: [0, B]⟶ [0, B] is nondecreasing. If
ωn(x) ∈ C[0,B], n ∈ N, such that

ωn+1(x)≥ (≤)􏽚
R

b ωn(y)( 􏼁k(x − y)dy,

ω0(x)≥ (≤)w(x),

⎧⎪⎨

⎪⎩
(16)

then ωn(x)≥ (≤ )wn(x), n ∈ N, x ∈ R.
(2) Define

c0 � inf
λ>0

ln b′(0)􏽒
R

eλyk(y)dy􏼐 􏼑

λ
. (17)

(a) If w(x) ∈ C[0,B] admits nonempty compact support,
then

lim sup
n⟶∞

sup
|x|>cn

un(x) � 0, c> c0. (18)

(b) If w(x) ∈ C[0,B] admits nonempty support, then

lim sup
n⟶∞

inf
|x|>cn

un(x)> 0, c ∈ 0, c0( 􏼁. (19)

Remark 1. Due to the monotone condition, ωn(x) is called
an upper solution if we take ≥ in the first item of Lemma 1,
and we obtain a lower solution by taking ≤.

To study the traveling wave solutions, we first give the
following definition. Here, a traveling wave solution of (9) is
a special entire solution defined by

un(x) � u(x + cn),

vn(x) � v(x + cn),

x ∈ R,

n ∈ Z,

(20)

in which u, v ∈ C are the wave profile functions, while c> 0 is
the wave speed. Let t � x + cn; then, u, v, and c must satisfy

u(t + c) � 􏽚
R

u(y)er1(1− u(y)− av(y))k1(t − y)dy, t ∈ R,

v(t + c) � 􏽚
R

v(y)er2(1− v(y)+bu(y))k2(t − y)dy, t ∈ R.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

Similar to that in Li and Li [22], the purpose of this paper
is to model that two species invade the same potential
habitat, so ϕ,ψ satisfy

lim
t⟶ − ∞

u(t) � lim
t⟶ − ∞

v(t) � 0,

lim
t⟶ − ∞

inf u(t)> δ,

lim
t⟶ − ∞

inf v(t) > δ,

(22)

for some δ > 0, of which the biological backgrounds are
evident due to c> 0 and t � x + cn. )us, we need to in-
vestigate the existence of an integral system satisfying as-
ymptotic boundary conditions.

In [23], Lin investigated the existence and asymptotic
behavior of traveling wave solutions of integrodifference
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systems without monotone conditions. By Lin [23], )eo-
rem 3.5, we present the following existence conclusion of
(21).

Lemma 2. Assume that u(t), u(t), v(t), v(t) ∈ C+ such that

u(t), u(t), v(t), v(t), t ∈ R. (23)

If

u(t + c)≥􏽚
R

u(y)e
r1(1− u(y)− av(y))

k1(t − y)dy≥ u(t + c),

v(t + c)≥􏽚
R

v(y)e
r2(1− v(y)+bu(y))

k2(t − y)dy≥ v(t + c),

(24)

for all t ∈ R and any u, v ∈ C+ with

u(t)≥ u(t)≥ u(t),

v(t)≥ v(t) ≥ v(t),

t ∈ R,

(25)

then (21) has a solution u∗(t), v∗(t) ∈ C such that

u(t)≥ u
∗
(t)≥ u(t),

v(t)≥ v
∗
(t)≥ v(t),

t ∈ R.

(26)

Remark 2. In Lemma 2, (u(t), v(t))(u(t), v(t)) are a pair of
generalized upper and lower solutions of (21) without
further monotone assumption. )at is, the existence of (21)
may be confirmed by the existence of generalized upper and
lower solutions.

3. Existence of Nonconstant Traveling
Wave Solutions

In this section, we shall show the existence of (21) by Lemma
2. Firstly, we define c∗ � max c∗1 , c∗2􏼈 􏼉 by

c
∗
i � inf

λ>0

ri + ln 􏽒
R

eλyki(y)dy􏼐 􏼑

λ
. (27)

)en, these constants satisfy the following lemma.

Lemma 3. c∗1 > 0, c∗2 > 0. Let

Λi(λ, c) � e
ri 􏽚

R
e
λy− λc

ki(y)dy, i � 1, 2. (28)

;en, they satisfy the following facts for i � 1, 2:

(c1) If c> c∗i , then Λi(λ, c) � 1 has two positive roots
0< λc

i1 < λ
c
i2 <∞ such that Λi(λ, c)< 1 with any

λ ∈ (λc
i1, λ

c
i2).

(c2) If c ∈ (0, c∗i ), then Λi(λ, c)> 1, λ> 0.
(c3) If c � c∗i , then Λi(λ, c)≥ 1, λ> 0. Moreover,
Λi(λ, c) � 1 has a unique solution λc

i such that

􏽚
R

(y − c)e
λc

i (y− c)
ki(y)dy � 0. (29)

By these positive constants, we show the following
conclusion.

Theorem 1. For any fixed c> c∗, (21) has a positive solution
(u(t), v(t)) such that

lim
t⟶− ∞

u(t)e
− λc

11t
,

lim
t⟶− ∞

v(t)e
− λc

21t
,

(30)

are positive.

Proof. We now show (21) has a pair of generalized upper
and lower solutions. Let ϵ> 0 and η> 1 such that

ϵ <min λc
11, λ

c
21􏼈 􏼉,

Λi λc
i1 + ϵ, c( 􏼁< 1, i � 1, 2,

ηλc
i1 <min λc

i2, λ
c
i1 + ϵ􏼈 􏼉, i � 1, 2,

Λ2 ηλc
21 + ϵ, c( 􏼁<∞.

(31)

Define continuous functions

u(t) � min L1e
λc
11t

, L1􏽮 􏽯,

v(t) � min L2e
λc
21t

+ qe
ηλc

21t
, L2􏽮 􏽯,

u(t) � max L1e
λc
11t

− pe
ηλc

11t
, 0􏽮 􏽯,

v(t) � max L2e
λc
21t

− pe
ηλc

21t
, 0􏽮 􏽯,

(32)

for t ∈ R, where p> L1 + L2 and q> 1 are positive con-
stants clarified later. Evidently, if p and q are large, then
we have

u(t), v(t)( 􏼁≤ (u(t), v(t)), t ∈ R. (33)

Moreover, it is clear that

u(t)≤ L1e
ϵt

,

v(t)≤ L2e
ϵt

+ qe
ϵt

,

t ∈ R.

(34)

For any fixed u(t), v(t) ∈ C with

u(t), v(t)( 􏼁≤ (u(t), v(t))≤ (u(t), v(t)), t ∈ R, (35)

we first verify that

u(t + c)≥􏽚
R

u(y)e
r1(1− u(y)− av(y))

k1(t − y)dy, t ∈ R,

(36)

which is clear if u(t + c) � L1. Otherwise, we have
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􏽚
R

u(y)e
r1(1− u(y)− av(y))

k1(t − y)dy≤ e
r1􏽚

R
u(y)k1(t − y)dy

≤ L1e
r1􏽚

R
e
λc
11y

k1(t − y)dy

� L1e
λc
11(t+c)

� u(t + c).

(37)

If v(t + c) � L2, then it is clear that

v(t + c)≥􏽚
R

v(y)e
r2(1− v(y)+bu(y))

k2(t − y)dy. (38)

Otherwise, t< − c, and we have u(y)≤ L1e
ϵy, y ∈ R, and

there exists some constant L> 0 such that

e
bu

− 1≤Lu, u ∈ 0, L1􏼂 􏼃,

􏽚
R

v(y)e
r2(1− v(y)+bu(y))

k2(t − y)dy≤􏽚
R

v(y)e
r2(1+bu(y))

k2(t − y)dy

≤ e
r2􏽚

R
v(y)k2(t − y)dy + Le

r2􏽚
R

u(y)v(y)k2(t − y)dy

≤ e
r2􏽚

R
v(y)k2(t − y)dy + Le

r2􏽚
R

u(y)v(y)k2(t − y)dy

≤ e
r2􏽚

R
L2e

λc
21y

+ qe
ηλc

21y
􏽨 􏽩k2(t − y)dy

+ LL1e
r2􏽚

R
e
εy

L2e
λc
21y

+ qe
ηλc

21y
􏽨 􏽩k2(t − y)dy

� L2e
λc
21(t+c)

+ qe
ηλc

21(t+c)Λ2 ηλc
21, c( 􏼁

+ LL1e
λc
21+ε( )(t+c)Λ2 ε + λc

21, c( 􏼁 + LL1qe
ηλc

21+ε( )(t+c)Λ2 ε + ηλc
21, c( 􏼁.

(39)

)us, it is sufficient to verify that there exists q> 1 large
enough (such that − t> 0 is large enough) such that

LL1e
λc
21+ϵ( )(t+c)Λ2 ϵ + λc

21, c( 􏼁 + LL1qe
ηλc

21+ϵ( )(t+c)Λ2 ϵ + ηλc
21, c( 􏼁

≤ qe
ηλc

21(t+c) 1 − Λ2 ηλc
21, c( 􏼁( 􏼁,

(40)

which is true provided that

2LL1e
λc
21+ϵ( )(t+c)Λ2 ϵ + λc

21, c( 􏼁≤ qe
ηλc

21(t+c) 1 − Λ2 ηλc
21, c( 􏼁( 􏼁,

2LL1qe
ηλc

21+ϵ( )(t+c)Λ2 ϵ + ηλc
21, c( 􏼁≤ qe

ηλc
21(t+c) 1 − Λ2 ηλc

21, c( 􏼁( 􏼁,

(41)

when qeηλ
c
21(t+c) <L2. )ese inequalities are evident for q> 1

large enough. After this, we may fix q> 1 that is independent
on p.

When u(t + c) � 0, it is clear that

􏽚
R

u(y)e
r1(1− u(y)− av(y))

k1(t − y)dy≥ u(t + c). (42)

If u(t + c) � L1e
λc
11(t+c) − peηλ

c
11(t+c) > 0, then t + c< 0 by

q> 1, and there exists K> 0 such that

e
r1(1− u− av)

− e
r1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤K(u + v),

u ∈ 0, L1􏼂 􏼃,

v ∈ 0, L2􏼂 􏼃,

􏽚
R

u(y)e
r2(1− v(y)+bu(y))

k2(t − y)dy≥􏽚
R

v(y)e
r2(1− v(y))

k2(t − y)dy

≥􏽚
R

v(y)e
r2(1− v(y))

k2(t − y)dy

≥ e
r2􏽚

R
v(y)k2(t − y)dy − Ae

r2􏽚
R

v(y)v(y)k2(t − y)dy

≥ e
r2􏽚

R
v(y)k2(t − y)dy − AL2(1 + q)e

r2􏽚
R

v(y)e
εy

k2(t − y)dy

� L2e
λc
21(t+c)

− pΛ2 ηλc
21, c( 􏼁e

ηλc
21(t+c)

− AL2(1 + q)Λ2 ηλc
21 + ε, c( 􏼁e

λc
21+ε( )(t+c)

≥ L2e
λc
21(t+c)

− pe
ηλc

21(t+c)

(43)
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if

p 1 − Λ1 ηλc
11, c( 􏼁( 􏼁e

ηλc
11(t+c)

≥K L1 + L2 + q( 􏼁Λ1 ηλc
11 + ϵ, c( 􏼁e

ηλc
11(t+c)

,
(44)

which is clear if p>L1 is large.

When v(t + c) � 0, it is clear that

􏽚
R

v(y)e
r2(1− v(y)+bu(y))

k2(t − y)dy≥ v(t + c). (45)

When v(t + c) � L2e
λc
21(t+c) − peηλ

c
21(t+c) > 0, then t + c<

0, and there exists A> 0 such that

0≤ e
r2 − e

r2(1− v) ≤Av, v ∈ 0, L2􏼂 􏼃,

􏽚
R

v(y)e
r2(1− v(y)+bu(y))

k2(t − y)dy≥􏽚
R

v(y)e
r2(1− v(y))

k2(t − y)dy

≥􏽚
R

v(y)e
r2(1− v(y))

k2(t − y)dy

≥ e
r2􏽚

R
v(y)k2(t − y)dy − Ae

r2􏽚
R

v(y)v(y)k2(t − y)dy

≥ e
r2􏽚

R
v(y)k2(t − y)dy − AL2(1 + q)e

r2􏽚
R

v(y)e
ϵy

k2(t − y)dy

≥ e
r2􏽚

R
L2e

λc
21y

− pe
ηλc

21y
􏽨 􏽩k2(t − y)dy − AL2(1 + q)e

r2􏽚
R

e
λc
21+ϵ( )y

k2(t − y)dy

� L2e
λc
21(t+c)

− pΛ2 ηλc
21, c( 􏼁e

ηλc
21(t+c)

− AL2(1 + q)Λ2 ηλc
21 + ϵ, c( 􏼁e

λc
21+ϵ( )(t+c)

≥L2e
λc
21(t+c)

− pe
ηλc

21(t+c)
.

(46)

if p> 1 is large. )e proof is complete. □

Theorem 2. Assume that k1(y), k2(y) have nonempty
compact supports, respectively.

(1) If c � c∗1 > c∗2 , then (21) has a positive solution
(u(t), v(t)) such that

lim
t⟶− ∞

u(t)e− λc
1t

(− t)
, lim

t⟶− ∞
v(t)e

− λc
21t

. (47)

are positive.
(2) If c � c∗2 > c∗1 , then (21) has a positive solution

(u(t), v(t)) such that

lim
t⟶− ∞

u(t)e
− λc

11t
,

lim
t⟶− ∞

v(y)e− λc
2t

− t
,

(48)

are positive.
(3) If c � c∗1 � c∗2 , then (21) has a positive solution

(u(t), v(t)) such that

lim
t⟶− ∞

u(t)e− λc
1t

− t
,

lim
t⟶− ∞

v(t)e− λc
2t

− t
,

(49)

are positive.

Proof. We now prove the result by constructing generalized
upper and lower solutions, which is similar to that in
[24, 25]. By the assumption, there exists S> 0 such that

ki(y) � 0,

|y|> S + 2c.
(50)

We first prove (1). Let L> 0 such that (− t + L)eλ
c
1t, t< 0,

is strictly increasing and

− t1 + L( 􏼁e
λc
1t1 � L1,

t1 < − (S + 2c).
(51)

Define continuous functions

u(t) �
(− t + L)eλ

c
1t, t< t1,

L1, t≥ t1,

⎧⎨

⎩

u(t) �
(− t − p

��
− t

√
)eλ

c
1t, t< − p2,

0, t≥ − p2,

⎧⎨

⎩

v(t) � min L2e
λc
21t

+ qe
ηλc

21t
, L2􏽮 􏽯,

v(t) � max L2e
λc
21t

− pe
ηλc

21t
, 0􏽮 􏽯,

(52)

for some p> 0, q>L2, η> 1. Evidently, we have

u(t), v(t)( 􏼁≤ (u(t), v(t)), t ∈ R, (53)

if p and q are large. We now confirm that they are gener-
alized upper and lower solutions of (21) if p and q are large,
and the desirable inequalities are clear if they are constants.
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For any fixed u(t), v(t) ∈ C with

u(t), v(t)( 􏼁≤ (u(t), v(t))≤ (u(t), v(t)), t ∈ R, (54)

we first verify that

u(t + c)≥􏽚
R

u(y)e
r1(1− u(y)− av(y))

k1(t − y)dy, t ∈ R.

(55)

By the definition of L> 0, we see that u(t + c)< L1
implies − t1 > S + 2c, and

􏽚
R

u(y)e
r1(1− u(y)− av(y))

k1(t − y)dy

≤ e
r1􏽚

R
u(y)k1(t − y)dy

≤ L1e
r1􏽚

R
(− y + L)e

λc
1y

k1(t − y)dy

� L1(− (t + c) + L)e
λc
1(t+c)

� u(t + c).

(56)

In the similar way, we may verify other inequalities.
In case (2), we define continuous functions

v(t) �
(− t + L

��
− t

√
)eλ

c
2t, t< t2,

L2, t≥ t2,

⎧⎨

⎩

v(t) �
(− t − p

��
− t

√
)eλ

c
2t, t< − p2,

0, t≥ − p2,

⎧⎨

⎩

u(t) � min L1e
λc
11t

, L1􏽮 􏽯,

u(t) � max L1e
λc
11t

− pe
ηλ11t

, 0􏽮 􏽯,

(57)

by similar parameters in case (1). For case (3), we define

u(t) �
(− t + L)eλ

c
1t, t< t1,

L1, t≥ t1,

⎧⎨

⎩

u(t) �
(− t − p

��
− t

√
)eλ

c
1t, t< − p2,

0, t≥ − p2,

⎧⎨

⎩

v(t) �
(− t + L

��
− t

√
)eλ

c
2t, t< t2,

L2, t≥ t2,

⎧⎨

⎩

v(t) �
(− t − p

��
− t

√
)eλ

c
2t, t< − p2,

0, t≥ − p2

⎧⎨

⎩

(58)

by similar parameters in cases (1) and (2). By selecting large
L, p, q, we may obtain the desirable inequalities. )e proof is
complete. □

4. Minimal Wave Speed

In this part, we shall prove that c∗ is the minimal wave speed
if

aL2 < 1, (59)

which will be true throughout this section.

Theorem 3. If c> (<)c∗, then (21) and (22) have a strictly
positive solution

u ∈ C 0,r1[ ],

v ∈ C 0,r2[ ].
(60)

If k1, k2 admit the compact supports, then c≥ c∗ if and
only if (21) and (22) have a strictly positive solution
u ∈ C[0,r1], v ∈ C[0,r2].

In the following, we prove )eorem 3 by three lemmas.

Lemma 4. If (21) has a solution u(t), v(t) ∈ C+ such that

u t1( 􏼁> 0,

v t2( 􏼁> 0, for some t1, t2 ∈ R,
(61)

then

L1 ≥ u(t)> 0,

L2 ≥ v(t)> 0,

t ∈ R.

(62)

)e lemma is evident by (A) and the definition of
traveling wave solutions, and we omit the proof. Clearly, this
lemma implies a positive solution of (21) which is strictly
positive. Furthermore, Lemma 4 implies the existence of
nonconstant traveling wave solutions u, v of (21) if c≥ c∗,
which satisfy

lim
t⟶− ∞

u(t) � lim
t⟶− ∞

v(t) � 0,

0< u(t)≤L1,

0< v(t)≤ L2,

t ∈ R.

(63)

)erefore, we need to show the asymptotic behavior of
traveling wave solutions when t⟶∞ and the nonexis-
tence of traveling wave solutions when c< c∗. On the limit
behavior, we have the following conclusion.

Lemma 5. If (u(t), v(t)) is a positive solution of (21), then
there exists δ > 0 such that

lim inf
t⟶− ∞

u(t)> δ,

lim inf
t⟶− ∞

v(t) > δ.
(64)

Proof. By the definition, we see that u(t) � un(x) satisfies

un+1(x)≥􏽚
R

un(y)er1 1− aL2− un(y)( )k1(x − y)dy, x ∈ R, n � 0, 1, 2, . . . ,

u0(x) � u(x) > 0, x ∈ R.

⎧⎪⎨

⎪⎩
(65)
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Let

b(u) � inf
v∈ u,L1[ ]

ve
r1 1− aL2− v( ). (66)

)en,

un+1(x)≥􏽚
R

b un(y)( 􏼁k1(x − y)dy , x ∈ R, n � 0, 1, 2, . . . ,

u0(x) � u(x)> 0, x ∈ R,

⎧⎪⎨

⎪⎩

(67)

and b(u) is satisfied.

(C) b: [0, L1]⟶ [0, L1] is nondecreasing and contin-
uous such that

lim
u⟶0+

b(u)

u
� e

r1 1− aL2( ) > 1, (68)

and there exists u∗ ∈ (0, L1] such that

b(u)> u, u ∈ 0, u∗( 􏼁, b u∗( 􏼁 � u∗. (69)

Due to Lemma 1, we have

lim inf
n⟶∞,|x|<2c

un(x)≥ u∗. (70)

Since

∪
∞

n�0
(− 2c + cn, 2c + cn)[0,∞), (71)

we see that

lim inf
t⟶∞

u(t)≥ u∗. (72)

Similarly, we have

lim inf
t⟶∞

v(t) > δ, (73)

for some δ > 0. )e proof is complete. □

Lemma 6. If c< c∗, then (21) does not have a positive so-
lution satisfying (22).

Proof. If the result is false for some c< c∗2 , then vn(x) �

v(x + cn) � v(t) satisfies

vn+1(x)≥􏽚
R

vn(y)er2 1− vn(y)( )k2(x − y)dy, x ∈ R, n � 0, 1, 2, . . . ,

vn(x) � v(x)> 0, x ∈ R,

lim
t⟶− ∞

v(t) � 0,

lim inf
t⟶∞

v(t) > δ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)

for some δ > 0. Let − 2x(n) � (c + c∗2 )n; then, x(n) + cn⟶
− ∞ if n⟶∞.

Define

b(u) � inf
v∈ u,L2[ ]

ve
r2(1− v)

, u ∈ 0, L2􏼂 􏼃. (75)

)en, b(u) is satisfied.

(D) b: [0, L2]⟶ [0, L2] is nondecreasing and contin-
uous such that

lim
u⟶0+

b(u)

u
� e

r2 > 1, (76)

and there exists v∗ ∈ (0, L2] such that

b(u)> u,

u ∈ 0, v∗( 􏼁,

b v∗( 􏼁 � v∗.

(77)

From Lemma 1, we have

lim inf
n⟶∞

vn

− c + c∗2( 􏼁n

2
􏼠 􏼡≥ v∗. (78)

)erefore, we obtain

lim inf
t⟶− ∞

v(t)≥ v∗ > 0, (79)

by t � x + cn. A contradiction occurs.
Similarly, we may prove that c< c∗1 is impossible. )e

proof is complete. □

Remark 3. If (8) and (59) hold, then we can obtain
limt⟶∞u(t), limt⟶∞v(t) by the simple fluctuation tech-
nique. In fact, let

lim inf
t⟶∞

u(t) � u,

lim inf
t⟶∞

v(t) � v,

lim sup
t⟶∞

u(t) � u,

lim sup
t⟶∞

v(t) � v.

(80)

)en, they are positive constants by Lemma 5, and the
monotonicity and Fatou lemma further imply that

1 − u − av≥ 0,

1 − u − av≤ 0,

1 − v + bu≥ 0,

1 − v + bu≤ 0,

(81)
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and so u � u, v � v.

5. Discussion

Minimal wave speed of traveling wave solutions of evolu-
tionary systems is very important in modeling the spatial
expansion of individuals under consideration [26, 27].
However, there are many open problems on the minimal
wave speed of traveling wave solutions of different nonco-
operative systems. In this paper, we obtain the threshold for
a predator-prey system without further monotone as-
sumptions, which completes/improves the known results.
We shall further utilize the techniques in this paper to more
nonmonotone models including predator-prey systems and
epidemic systems. For example, Lutscher ([15], Chapter 14)
and Murray ([4], Sections 3.9 and 3.10) introduced some
discrete time models; we will try to investigate the spatio-
temporal modes of these models by developing the method
in this paper.

In the literature, the minimal wave speed of traveling
wave solutions may be the spreading speed of some systems
[14, 16–21]. Here, the spreading speed is an important
threshold of the corresponding initial value problems with
some special initial conditions [28]. For some monotone
semiflows, it has been proved the equivalence of these
thresholds, see Liang and Zhao [18]. However, for non-
monotone systems, very likely the above conclusion fails,
and we may refer to two papers [29, 30] that studied a
reaction-diffusion system of the predator-prey type. When
the interspecific action between the predator and the prey is
concerned, one typical problem is that the predator invades
the habitat of the prey [31–34]. Due to the deficiency of the
comparison principle, to further present the invasion
threshold in such a nonmonotone system (9) is a challenging
problem.
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tem,” Journal de Mathématiques Pures et Appliquées, vol. 100,
no. 1, pp. 1–15, 2013.

[32] W. F. Fagan and J. G. Bishop, “Trophic interactions during
primary succession: herbivores slow a plant reinvasion at
Mount St. Helens,” ;e American Naturalist, vol. 155, no. 2,
pp. 238–251, 2000.

[33] M. Owen and M. A. Lewis, “How predation can slow, stop or
reverse a prey invasion,” Bulletin of Mathematical Biology,
vol. 63, no. 4, pp. 655–684, 2001.

[34] S. Pan, “Invasion speed of a predator-prey system,” Applied
Mathematics Letters, vol. 74, pp. 46–51, 2017.

10 Discrete Dynamics in Nature and Society


