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,e objective of this paper is to minimize both the makespan and the total completion time. Since parallel-machine scheduling
which contains the function constraint problem has been a new issue, this paper explored two parallel-machine scheduling
problems with function constraint, which refers to the situation that the two machines have a same function but one of the
machines has another. We pointed out that the function constraint occurs not only in the manufacturing system but also in the
service system. For the makespan problem, we demonstrated that it is NP-hard in the ordinary sense. In addition, we presented a
polynomial time heuristic for this problem and have proved its worst-case ratio is not greater than 5/4. Furthermore, we simulated
the performance of the algorithm through computational testing. ,e overall mean percent error of the heuristic is 0.0565%. ,e
results revealed that the proposed algorithm is quite efficient. For the total completion time problem, we have proved that it can be
solved in O(n4) time.

1. Introduction

,e scheduling problem studied in this paper was motivated
by the manufacturing of the metal processing industry. In
the traditional manufacturing, a lathe machine and a milling
machine have different functions. Generally speaking, the
lathe machine is a tool that rotates a workpiece about an axis
of rotation to perform various operations such as cutting,
deformation, knurling sanding, and turning. ,e milling
machine is used to cut the plane, while the shape of the
forming surface, the spiral groove, or the tooth shape of the
gear is milled with a special-shaped milling cutter. During
milling, the workpiece is mounted on a table or an indexing
head attachment, and the milling cutter performs a cutting
motion, supplemented by a table for feeding motion. And
now, a 5-axis machining center for milling and turning has
all the functions of lathe machine and milling machine. As
the company’s performance grows rapidly, companies must
purchase machines to meet customer needs. While newly
purchased machines tend to have more function than older

machines, functional alternatives occur between machines.
We named this phenomenon as function constraint (e.g.,
lathe machine versus 5-axis machining centers for milling
and turning). ,e function constraint occurs not only in the
manufacturing system but also in the service system. In the
service system, the parallel-machine is composed by the
employees. ,e senior staff, the junior employees, and the
new employees all have the ability to limit and replace.

Parallel machine in a production environment can be
divided into three categories according to the nature of the
machine: identical, uniform, and unrelated parallel ma-
chines. For decades, the parallel-machine production
scheduling problem has been extensively studied under
various classical scheduling performance measurement
criteria.,emakespan and total completion time are the two
best important performance measurement criteria. ,e
makespan is also called the maximum completion time or
the completion time of the last workpiece on the last ma-
chine. ,e makespan is usually used to measure the utili-
zation of machinery and equipment. If one shortens the
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makespan and the machine utilization and production ef-
ficiency is improved, more flexible time can be reserved to
prevent the sudden occurrence of the production line. ,e
completion time refers to the time spent in the system from
the time of the workpiece that arrives at the site to its
completion, and the total completion time is the sum of the
completion time of all the workpieces. ,erefore, the total
completion time is expected to be minimized.,at is, the in-
process inventory of the factory is expected to be minimized
to reduce the cost of inventory.

Chung et al. [1] explored a two identical parallel-ma-
chine scheduling problem with molds constraints. ,eir
objective is to minimize the makespan. For the problem is
NP-hard, they give three heuristics and analyze each
heuristic has a worst-case performance ratio of 3/2.
Computational results revealed that heuristics are efficient
even for the large-sized problem. Xu and Yang [2] studied a
two parallel-machine scheduling with a periodic avail-
ability constraint. ,eir objective is to minimize the
makespan. Because the problem is NP-hard, they present a
mathematical programming model to solve it and, next,
compare the performance of the longest processing time
first (LPT) algorithm with the list scheduling (LS) via
computational experiments. Most of the results showed
that the LPT is better than the LS. Xu et al. [3] examined a
two parallel machine scheduling problem to minimize the
makespan.,e problem is known as NP-hard.,ey applied
the branch-and-bound method to solve the small-sized
problem and presented a Tabu search algorithm for the
large-sized problem. Ji and Cheng [4] presented a fully
polynomial-time approximation scheme for parallel-ma-
chine scheduling under a grade of service provision to
minimize makespan consideration. Lee et al. [5] addressed
a makespan minimization scheduling problem on identical
parallel-machine. ,ey applied the simulated annealing
method, and several heuristic algorithms have been pro-
posed to tackle the problem. Computational results dem-
onstrated that the simulated annealing method is efficient
and better than the existing methods. Yin et al. [6] explored
parallel-machine scheduling of deteriorating jobs with
potential machine disruptions. ,e authors examined two
cases of machine disruption (i.e., performing maintenance
immediately on the disrupted machine when a disruption
occurred and not performing machine maintenance). ,e
nature of the jobs has two types: nonresumable and
resumable. ,ey determined the computational complexity
status of various cases of the total completion time min-
imization problem and provided pseudopolynomial-time
solution algorithms and fully polynomial-time approxi-
mation schemes for them.

Zhao et al. [7] explored a two parallel-machine
scheduling problem where one machine is not available in
a specified time period.,e unavailable time period is fixed
and known in advance. ,ey proposed a fully polynomial-
time approximation scheme for the total weighted com-
pletion time minimization problem and generalized the
results to the case with m parallel machine. Kuo and Yang
[8] studied parallel-machine scheduling with time-de-
pendent processing time. For the total completion time

and the total load problems, they showed that the two
problems are polynomially solvable. Gerstl and Mosheiov
[9] proposed a general position-dependent processing
time model. ,ey considered scheduling problems which
combine the option of job rejection and the model on
parallel machine. ,eir objectives are total flow-time and
total load.,ey proved that both problems can be solved in
polynomial time in the number of jobs. Huang and Wang
[10] stressed parallel-machine scheduling problems with
deteriorating jobs. ,ey showed that the total absolute
differences in completion time and the total absolute
differences in waiting time minimization problems can be
solved in polynomial time.

Wang and Wang [11] studied a three-machine permu-
tation flow shop scheduling problem with time-dependent
processing times. ,e objective is to find a sequence that
minimizes the makespan. Several dominance properties and
a lower bound are derived to speed up the elimination
process of a branch-and-bound algorithm. Moreover, two
heuristic algorithms are proposed to overcome the ineffi-
ciency of the branch-and-bound algorithm. Computational
results show that the heuristic algorithm M-NEH performs
effectively and efficiently.

For more information, the reader may refer to the
concise surveys on this topic by Cheng and Sin [12],
Mokotoff [13], Pfund et al. [14], Kravchenko and Werner
[15], Kaabi and Harrath [16], and Wang and Li [17].

Parallel-machine scheduling combines the function
constraint problem is a new issue. ,erefore, this paper
explored two parallel-machine scheduling problems with
function constraint. ,e objectives are to minimize the
makespan and the total completion time.

,e rest of the paper is organized as follows. In Section 2,
we introduced the notation and formally formulated our
problems. In Section 3, we demonstrated the computational
complexity status and presented a heuristic algorithm,
worst-case ratio, and computational experiments for the
makespan minimization problem. In Section 4, we formu-
lated the total completion time minimization problem as an
assignment. In the last section, we concluded the paper and
suggested issues for the future research.

2. Problem Formulation

,ere are n jobs in the set N � (J1, J2, ..., Jn1
, Jn1+1, ..., Jn).

Assume set N consists of two classes of job that are the first
class jobs and the second class jobs. Let n1 and n2 denote the
number of jobs of the first class and the second class, re-
spectively. Let S1 and S2 denote the set of the jobs of the first
class and the second class, respectively. ,at is, N � S1 ∪ S2,
where S1 � (J1, J2, ..., Jn1

) and S2 � (Jn1+1, ..., Jn). Let pj

denote the processing time of Jj (j � 1, 2, ..., n). Assume
there are two parallel machines Mi (i � 1, 2), where M1 can
process the first class jobs only and M2 can process both of
the first class jobs and the second class jobs. Some common
assumptions are as follows: (1) all jobs are non-preemptive
and available for processing at time zero; (2) each machine
can handle at most one job at a time and cannot stand idle
until the last job assigned to it has finished processing; and
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(3) each job can be processed on at most one machine at a
time. ,e objectives are to minimize the makespan and the
total completion time. We used “fc” to denote the function
constraint relations between the two machines. Following
the common scheduling notation, the problems can be
described as P2|fc|Cmax and P2|fc|TC, respectively.

3. Minimization of the Makespan

In this section, we confirmed the complexity and pre-
sented the worst-case bound for P2|fc|Cmax. First, we
excluded the case of the sum of processing time in the
second class jobs is larger than the sum of processing time
in the first class jobs because the first class jobs processed
on M1 and the second class jobs processed on M2 are
optimal for the abovementioned case. Second, we analyze
the complexity of the problem P2|fc|Cmax. ,ird, we
presented a heuristic approach and analyze the worst-case
bound of the algorithm. Finally, a computational exper-
iment was conducted to evaluate the performance of the
proposed algorithm.

3.1.(eHeuristic andWorst-Case Bound. ,e special case of
all the jobs belongs to the first class, n1 � n, and then the
problem P2|fc|Cmax becomes the classical problem
P2‖Cmax. It is known in advance that P2‖Cmax is NP-hard in
the ordinary sense [18]. ,erefore, the following theorem
holds.

Theorem 1. Scheduling problem P2|fc|Cmax is NP-hard in
the ordinary sense.

A simple heuristic approach is described in Algorithm 1.
A simple sort can be done in O(n log n) (e.g., heap

sorting). Hence, the complexity of Step 1 is O(n log n). ,e
complexity of Step 2 is O(n). Overall, the complexity of the
algorithm is O(n log n).

A straightforward result is given as follows.

Lemma 1. For the problem P2|fc|Cmax, the following holds:

(1) C∗max ≥ 
n
j�n1+1 pj, where C∗max denotes the makespan

of the optimal schedule
(2) C∗max ≥ (

n1
j�1 pj + 

n
j�n1+1 pj)/2 � LB, where LB de-

notes the lower bound of the problem

Theorem 2. For the problem P2|fc|Cmax, Cmax(LPT) ≤
5C∗max/4.

Proof. Assume Jk is the last processed job based on the LPT
approach. If Jk ∈ S2, then Cmax(LPT) � C∗max. ,erefore, the
following proof processes are under the assumption of
Jk ∈ S1.

If k � 1, then Cmax(LPT) � C∗max.
For the case of k≥ 2, assume sk denotes the starting time

of Jk. Since there is no idle time on the machines prior to the
time sk,

sk ≤


k−1
j�1pj + 

n
j�n1+1 pj 

2

�


k
j�1 pj + 

n
j�n1+1 pj  − pk 

2

≤


n1
j�1 pj + 

n
j�n1+1 pj − pk 

2

≤C
∗
max −

pk

2
.

(1)

Consider the following two cases: pk ≤C∗max/2 and
pk >C∗max/2.

When pk ≤C∗max/2, we have

Cmax(LPT) � sk + pk

≤C
∗
max −

pk

2
+ pk

� C
∗
max +

pk

2

≤C
∗
max +

C∗max
4

� 5
C∗max
4

.

(2)

When pk >C∗max/2, based on optimal consideration, we
have 

n
j�n1+1 pj ≤C∗max/2 and each machine cannot arrange

two jobs that belong to S1 and whose job’s index is less or
equal to k. ,erefore, Jk is the only job that belongs to S1 and
being processed on M2. ,at is, Cmax(LPT) � pk + 

n
j�n1

pj.
Within the optimal sequence, Jk is the only job that belongs
to S1 and can be processed on M2. We have C∗max ≥Cmax
(LPT). Hence, C∗max � Cmax(LPT). □

3.2. (e Computational Experiments. Although the worst
case above seems quite good from the theoretical aspects,
25% errors cannot be accepted from the application di-
mensions. ,erefore, some computational experiments were
conducted to evaluate the performance of the LPTapproach.
,e LPT approach was coded in Visual BASIC 6.0 and
implemented on a personal computer with Intel core i7 16G
CPU. Some test problems for each environment were
randomly generated, the details of which are as follows:

(1) n is equal to 50, 100, 150, 200, 250, 300, 500, and 1000
(2) n1 is uniformly distributed over [1, n]. n2 � n − n1

(3) pi is uniformly distributed over [1, 50], [1, 100], [1,
200], [1, 500], and [1, 1000]

A ratio of ((Cmax(LPT) − LB) × 100)/LB is used as an
index to evaluate the performance of the LPTapproach, where
Cmax(LPT) is the solution found by the LPTapproach and LB
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is the solution found by lower bound.,e ratio is computed
for 300 test problems in each problem size; hence, 12000
(300 × 8× 5) test problems are generated for the proposed
problem P2|fc|Cmax. ,e computational results are shown
in Table 1. ,e results revealed that the mean percentage
errors of the LPT approach are 0.0214, 0.0397, 0.0560,
0.0741, and 0.0905 with five different processing time
distribution periods, respectively. From Table 1, we found
that the larger the problem the smaller the error per-
centages and the wider the processing time range the larger
the error percentages.,e overall mean percent error of the
LPT approach is 0.0565%.

4. Minimization of the Total Completion Time

In this section, we showed that the problem P2|fc|TC can be
solved in O(n4) time. Let (k1, k2) denotes the vector of the
number of jobs allocated toM1 andM2, where 1≤ k1 ≤ n1 and
n2 ≤ k2 ≤ n − 1. We excluded the case of (k1, k2) � (0, n)

because it becomes a single machine scheduling problem and
the SPT (shortest processing time first) is optimal. Let J[ij] and
p[ij] denote a job scheduled in the jth position on a machine i
and its processing time, respectively. For the convenience, we
rename the job sequences processing on M1 and M2 as
J[11], J[12], ..., J[1k1] and J[21], J[22], ..., J[2k2], respectively.,en,
the total completion time can be calculated as follows:

TC �  Cj � 

k1

j�1
k1 − j + 1( p[1j] + 

k2

j�1
k2 − j + 1( p[2j].

(3)

We rewrite equation (3) as

TC �  Cj � 
n

j�1
wjp[j], (4)

where

wj �
k1 − j + 1, 1≤ j≤ k1,

n − j + 1, k1 + 1≤ j≤ n,


p[j] �
p[1j], 1≤ j≤ k1,

p 2j−k1[ ], k1 + 1≤ j≤ n.

⎧⎨

⎩

(5)

Assume the position of job that is processing onM1 and
M2 is 1, . . . , k1 and k1 + 1, k1 + 2, k1, k2(n), respectively.
Obviously, the second class of jobs cannot be scheduled at
the previous position of k1. ,en, we gave the elements of
assignment vector as follows:

aij �

wjpi, 1≤ i≤ n1, 1≤ j≤ n,

∞, n1 + 1≤ i≤ n, 1≤ j≤ k1,

wjpi, n1 + 1≤ i≤ n, k1 + 1≤ j≤ n,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where

wj �
k1 − j + 1, 1≤ j≤ k1

n − j + 1, k1 + 1≤ j≤ n.
 (7)

Constraint of the second line at aij ensures that the
second class jobs are not scheduled before the position of k1
under minimization consideration. For a given vector
(k1, k2), P2|fc|TC can be formulated as the following as-
signment problem:

minimize 
n

i�1


n

j�1
aijxij,



n

i�1
xij � 1, j � 1, ..., n



n

j�1
xij � 1, i � 1, ..., n

xij �
1, if job i is scheduled in position j,

0.


(8)

It is well-known that an assignment problem can be
solved in O(n3) time. For a given vector of (k1, k2),
1≤ k1 ≤ n1, and n2 ≤ k2 ≤ n − 1, problem P2|fc|TC can be
solved in O(n3) time. ,ere are n1 possible vectors of
(k1, k2), that is, (1, n − 1), ..., (n1, n − n1). Hence, problem
P2|fc|TC can be solved in O(n1n

3) time, since n1 ≤ n. ,is
implies that the following theorem holds.

Theorem 3. Problem P2|fc|TC can be solved in O(n4) time.

Example 1. Assume N � S1 ∪ S2, S1 � J1, J2, J3 ,
S2 � J4, J5, J6, J7, J8, J9, J10 , n � 10, n1 � 3, and n2 � 7, and
their processing time is listed in Table 2.

Step 1. Arrange the first class jobs in nonincreasing order, without loss of generality, and assume the LPT sequence remains
J1, J2, ..., Jn1

.
Step 2. Assign Jn1+1, Jn1+2, ..., Jn to the M2. After that, whenever a machine is freed, the longest job among those not yet processed in
the first class is put on the machine.

ALGORITHM 1: ,e longest processing time first (LPT) approach.

Table 1: Computational results of the LPT approach with five
different processing time distribution periods.

n

p(i)

U
(1, 50)

U
(1, 100)

U
(1, 200)

U
(1, 500)

U
(1, 1000) Average

50 0.0971 0.1884 0.2817 0.3714 0.4576 0.2792
100 0.0270 0.0492 0.0715 0.0939 0.1167 0.0716
150 0.0156 0.0264 0.0372 0.0483 0.0580 0.0371
200 0.0105 0.0174 0.0236 0.0295 0.0350 0.0232
250 0.0081 0.0132 0.0175 0.0211 0.0247 0.0169
300 0.0066 0.0107 0.0137 0.0163 0.0189 0.0132
500 0.0040 0.0059 0.0071 0.0080 0.0089 0.0068
1000 0.0022 0.0033 0.0038 0.0041 0.0043 0.0035
Average 0.0214 0.0397 0.0570 0.0741 0.0905 0.0565
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,e following solution reports were obtained from Lingo
14.0 package. If (k1, k2) � (1, 9), then TC � 290. If
(k1, k2) � (2, 8), then TC � 262. ,erefore, the optimal
solution is 262.

,e optimal sequences those scheduling on M1 and M2
are J3⟶ J2 and J10⟶ J9⟶ J8⟶ J7⟶ J6⟶ J5
⟶ J4⟶ J1, respectively.

,e Lingo programming code under (k1, k2) � (2, 8) is
listed as follows:

Model:

Sets:

Jindex/1..10/;

Assign (jindex,jindex):w, x;

Endsets

Data:

35000 35000 56 49 42 35 28 21 14 7

30000 30000 48 42 36 30 24 18 12 6

25000 25000 40 35 30 25 20 15 10 5

20000 20000 32 28 24 20 16 12 8 4

15000 15000 24 21 18 15 12 9 6 3

10000 10000 16 14 12 10 8 6 4 2

5000 5000 8 7 6 5 4 3 2 1;

Enddata

Min = @sum (assign:w*x);

@for (jindex(i):

@sum (jindex (j): x (I,j)) = 1;

@sum (jindex (j): x (j,i)) = 1;

);

End

100 50 400 350 300 250 200 150 100 50

80 40 320 280 240 200 160 120 80 40

60 30 240 210 180 150 120 90 60 30

w = 

5. Conclusions

,is paper explored two parallel-machine scheduling problems
with function constraint. We pointed out that the function
constraint occurs not only in the manufacturing system but
also in the service system. ,erefore, this work is meaningful.

In this research, two important and famous classical
objectives, themakespan and the total completion time, were
studied. For the makespan problem, we demonstrated that it
is NP-hard in the ordinary sense.We presented a polynomial
time heuristic for this problem and have proved its worst-
case ratio is not greater than 5/4. Computational testing of
the heuristic was conducted, and the results revealed that the
overall mean percent error of the proposed algorithm is
0.0565%. For the total completion time problem, we have
proved that it can be solved in O(n4) time.

Future research may examine other topics such as the
total load, total tardiness, and number of tardy jobs or
extending the model to the uniform parallel-machine setting
or other settings.
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