
Research Article
A Spatiotemporal Prey-Predator Discrete Model and Optimal
Controls for Environmental Sustainability in the Multifishing
Areas of Morocco

Amine El Bhih ,1 Youssef Benfatah,1 Soukaina Ben Rhila ,1 Mostafa Rachik ,1

and Adil El Alami Laaroussi 1,2

1Laboratory of Analysis Modeling and Simulation, Department of Mathematics and Computer Science,
Faculty of Sciences Ben M’Sik, Hassan II University Casablanca, BP 7955, Sidi Othman, Casablanca, Morocco
2Laboratory of Applied Sciences and Didactics, Higher Normal School Tetouan, Abdelmalek Essaadi University,
Tetouan, Morocco

Correspondence should be addressed to Amine El Bhih; elbhihamine@gmail.com

Received 10 February 2020; Accepted 16 March 2020; Published 23 April 2020

Academic Editor: Ewa Pawluszewicz

Copyright © 2020 Amine El Bhih et al.'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we propose a multifishing area prey-predator discrete-time model which describes the interaction between the prey
and middle and top predators in various areas, which are connected by their movements to their neighbors, to provide realistic
description prey effects of two predators. A grid of colored cells is presented to illustrate the entire domain; each cell may represent
a subdomain or area. Next, we propose two harvesting control strategies that focus on maximizing the biomass of prey, in the
targeted area, and minimizing the biomass of middle and top predators coming from the neighborhood of this targeted area to
ensure sustainability andmaintain a differential chain system.'eoretically, we have proved the existence of optimal controls, and
we have given a characterization of controls in terms of states and adjoint functions based on a discrete version of Pontryagin’s
maximum principle. To illustrate the theoretical results obtained, we propose numerical simulations for several scenarios applying
the forward-backward sweep method (FBSM) to solve our optimality system in an iterative process.

1. Introduction

'e interactions between prey and predator are considered to be
one of the fundamental problems of the complex food chain and
trophic network; they are also one of the relationships between
the basic species in biology and the environment. To the best of
our knowledge, mathematical ecology was born with the works
of Lotka [1] and Volterra [2]. 'ey independently and almost
simultaneously proposed the first mathematical model to at-
tempt to describe the interaction between a prey population and
a predator population.'is model is defined by a system of two
differential equations. Since the work of Volterra [2], a large part
of the ecological literature has been devoted.

Manyworks have been done on the subject of the dynamics
of fish populations where the last ones are assumed in com-
petition [3–9]. In [3], the authors have proposed to define a
bioeconomic model of two fish species. 'ey have considered

that the evolution of these fish species is described by a density-
dependent model taking into account the competition between
species which competewith each other for space or food. In this
model, they have assumed that there exist “n” fishermen who
catch these two fish species. In [7], the authors have presented a
bioeconomicmodel for several fish populations.'ey have also
assumed that these fish populations compete with each other
for space or food.'e techniques and issues associated with the
bioeconomicmodeling for the exploitation ofmarine resources
have been discussed in detail in [10–14].

Concerning the prey-predator model, one can refer, for
example, to [15, 16]. In [15], the authors have considered the
combined harvesting of a prey-predator system in which both
the prey and the predator species obey the law of logistic
growth, and some preys avoid predation by hiding. In [16],
the authors have proposed to define a bioeconomic model
that merges a model of competition and a model of prey-
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predator of three fish populations. About the fishery man-
agementmodel on several fishing areas, the reader can refer to
the works of Mchich et al. [17–20]. In [20], Mchich et al.
studied the optimal spatial distribution of the fishing effort in
a multifishing zone, and they have given some efficient
managementmeasures by setting an appropriate system of tax
and/or subsidies. Moreover, they have controlled the dis-
placement of the fleets between the fishing zones in order to
enlarge the complete activity. In [21], Mchich et al. studied the
effects of predator-dependent migration rates of prey on the
dynamics and the stability of the global system. Auger et al.
[22] have proposed a predator-prey model in which predators
can become infected by a disease. 'ey have also considered
two time scales, a fast one for the disease and a comparatively
slow one for predator-prey interactions and for predator
mortality. In [23], the authors have looked for existence of a
desirable situation such as a sustainable fishery in the sense
that the resource can be exploited in a durable way but
without any risk of extinction of the fish stock. Mchich et al.
[19] have introduced a time-dependent control function in
equations describing the fishing effort variation. 'is control
is regarded as an investment proportion of the fishing income
for each fleet.

In the aquatic ecosystem, all aquatic meal chains are
primarily based on plankton, which are composed of phy-
toplankton and zooplankton. However, nutrients play a big
role in the growth of plankton. As far as we know, the
nutrient-plankton systems have been considered by a
number of scholars [24–31].

As pointed out in [32], phytoplankton in particular have
great contribution for our earth; for example, they furnish
food for marine existence and oxygen for human life, and
they additionally take in greater than half of carbon dioxide
which may be contributing to global warming. Over recent
years, many authors have studied phytoplankton-zoo-
plankton models [24, 30, 33–39]. In addition, many other
prey-predator models have been developed, and the authors
obtained the existence of global Hopf bifurcation in the
predator-prey system with delay [40–43].

'e absence of plankton has serious consequences for
the survival of marine fishery resources.

'ere is an increasing interest in the study and appli-
cation of spatial spread [17, 19, 20]. Most of the models
studied have been partly continuous because of their
mathematical tractability.

In our work, we devise a discrete-time prey-predator
model that describes the evolution of different fish pop-
ulations which migrate between M areas.

In this work, we are more interested in devising a
mathematical model, based on multiarea interaction, to
describe the spatial diffusion of fish growth evolution that
appears in a global area of interestΩ represented uniform in
size, through the way of a grid of colored cells (see Figure 1).
'ese cells contain our different fish populations and rep-
resent subdomains of Ω, indicating that only one of these
cells is targeted by our control strategy.

In epidemiology system, Zakary et al. [44], considered a
spatial spread of an epidemic within a domain Ω, which is
divided into different cells of uniform size and denoted by Cpq.

We assume that the development of the fish-population
chain is carried out by the interaction of fish from the
studied area Cpq to its neighbor areas. In fact, by measures,
Cpq can represent a small lake, dam, or maritime area. 'is
means that these present cellular representations which can
be useful for studying the evolution of various fish species.

In our case, we will assume that Cpq refers to some
important maritime areas of Morocco.

Figure 2 illustrates an example of discrete fishing areas of
Morocco. Births are included in our model. One reason of
considering the discrete-time prey-predator model is that
the discrete model has advantages in describing the evo-
lution of fish-population biomass since the ecological data
are usually collected in discrete time units, which would
make it more convenient to use the discrete-timemodel [45].

'ere is increasing interest in studying dynamics be-
havior of discrete-time predator-prey systems [46–49].
Many models were developed in continuous space and time
via reaction-diffusion-based predator-prey models [50, 51].
For underlying the spatiotemporal dynamic of predator-
prey models, many researchers focused on two-dimensional
maps [48, 52, 53]. In [48], the authors considered a predator-
prey system that is discrete both in space and time and is
described by a coupled map lattice. In their work, they have
assumed that the prey affected by a weak Allee effect and the
predator dynamics includes intraspecific competition.

'is paper is situated in this general context. 'e aim of
this work is to consider a multifishing area discrete-time
prey-predator model for three species (prey, middle pred-
ator, and top predator) using an optimal control problem
applicable to any type of species. We give a more general
multiobjective optimization approach in which we consider
two harvesting controls.

'e aim of these two optimal harvesting control strat-
egies is to make fishing efforts by the fishing fleets during
fishing in the studied area Cpq while increasing one har-
vesting function to harvest the middle and top predators that
threaten the prey over time to ensure environmental sus-
tainability and maintain a differential chain system. 'ese
two harvesting controls are designed in theory to address the
impact of predators over time on prey growth in the Cpq

area. So, these controls play a key role in the ecological
balance and thus in the preservation of aquatic food webs.

'erefore, the purpose of these two harvesting control
strategies is to maximize the total number of prey and to
minimize the number of middle and top predators in the Cpq

area by maximizing the two harvesting functions and using
the minimum possible cost of applying these controls. We
prove the existence of optimal control, and some techniques
are used to characterize the optimal control pair in terms of
states and adjoint functions. 'e optimality system is based
on a discrete iterative scheme that converges following an
appropriate test related to the forward-backward sweep
method (FBSM) [54]. 'e numerical simulations of our
strategies of control show that the control effect is effective if
the strategies are used simultaneously. Other models from
population dynamics and optimal control problems can be
found in [55–67]. Basic notions and results concerning
optimal control problems can be found in the books [68, 69].
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'e paper is structured as follows: in Section 2, we present
the multifishing area discrete prey-predator model without the
control. In Section 3, we present the optimal control problem
for the proposedmodel where we give some results concerning
the existence of the optimal controls, and we characterize these
optimal controls using Pontryagin’s maximum principle in
discrete time. As an application, the numerical results asso-
ciated with our control problem are given in Section 4. Finally,
we conclude the paper in Section 5.

2. The Multifishing Area Prey-Predator
Discrete-Time Model

2.1. /e Basic Mathematical Model

2.1.1. /e Model and Simulation without Controls. In this
section, we consider a multifishing area prey-predator dis-
crete-time model which describes the spatial-temporal
evolution of fish populations within a global domain of
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Figure 1: [44] Cell grid of (a), the colored contour of Cpq is its neighborhood Vpq and (b), an example of a patch of 4 cells.
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Figure 2: 'e Atlantic coasts of Morocco are characterized by their richness and biological diversity. Morocco’s exclusive area is
characterized by great diversity of fishery resources. 'ere are four fishing areas in Morocco whose relative importance in terms of activity
has undergone a great change over time. 'e first, area 1 is the Mediterranean area between Saadia and Cap Spartel, the second, area 2 is the
northern area between Cap Spartel and Cap Cantin, the third, area 3 is the center area between Cap Cantin and Cap Boujdour, and latest one,
area 4 is the area between Cap Boujdour and Cap Blanc.
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interest Ω, split to M × M areas or cells, uniform in size.
'erefore, our domain Ω can be represented as follows:

Ω � ∪
M

p,q�1
Cpq, with Cpq 

p,q�1,...,M
, a spatial area. (1)

'is model classifies the population into three com-
partments in the area Cpq. Let x

Cpq

i , y
Cpq

i , and z
Cpq

i denote
the population densities of the prey, middle predator, and
top predator, respectively. Let n

Cpq

i be the number of biomass
of Cpq at time i (the biomass of fish population living in Cpq).

We propose the following assumptions to formulate our
model which describe the evolution of the biomass of our
three fish populations.

Assumption 1. 'e population of prey x
Cpq

i grows according
to a logistic equation with carrying capacity k1 and birth rate
constant that of apq, and these species are favorite foods for
middle predators y

Cpq

i (hence, the population density
of middle predators y

Cpq

i will increase).

Assumption 2. 'e population of middle predators y
Cpq

i

grows according to a logistic equation with carrying capacity
k2 and birth rate constant that of bpq.

Assumption 3. 'e population of middle predators is the best
food for the populations of top predators (hence, the population
density of top predators z

Cpq

i will increase); this later population
also grows according to a logistic equationwith carrying capacity
k3 and birth rate constant that of Cpq.

We consider that there are interactions among those
three prey-predator compartments for time unit i to time
i + 1.

'e unit of time i can correspond to days, months, or
years; it depends on the frequency of data collection and
statistics.

'e relation between the areas Cpq and Crs is defined as
follows.

We define the vicinity set of Cpq, the neighborhood of a
cell Cpq, by

Vpq �
Crs ∈ Ω

r � p + k
, s � q + k′, k, k′(  ∈ −1, 0, 1{ }

2
 . (2)

We assume that all these areas contain fish populations
of prey and middle and top predators. We also assume that
the interaction is faster than the growth of these species and
no natural mortality. We present the following scenario: the
fish populations of the prey and middle and top predators
can move to different studied areas.

We also assume that all possible interactions between
fish population R

Cpq

i , located in Cpq, and fish population S
Crs

i ,
predators coming from Vpq, can be expressed mathemati-
cally as follows:


Crs∈Vpq

ξrsR
Cpq

i S
Crs

i , (3)

with R
Cpq

i which can be expressed by x
Cpq

i or y
Cpq

i . And S
Crs

i

can also be expressed by y
Crs

i or z
Crs

i .
ξrs is the transmission coefficient between R

Cpq

i and S
Crs

i .
'e evolution of biomass of different fish populations

with the presence of a harvesting activity is modeled by the
three following equations of the dynamics within a domain
Ω:

x
Cpq

i+1 � apqx
Cpq

i 1 −
x

Cpq

i

k
Cpq

1

⎛⎝ ⎞⎠ + 
Crs∈Vpq

cpqx
Crs

i − 
Crs∈Vpq

αrsx
Cpq

i y
Crs

i − 
Crs∈Vpq

βrsx
Cpq

i z
Crs

i − 
Crs∈Vpq

crsx
Cpq

i ,

y
Cpq

i+1 � bpqy
Cpq

i 1 −
y

Cpq

i

k
Cpq

2

⎛⎝ ⎞⎠ + 
Crs∈Vpq

c
Cpq

1 y
Crs

i − 
Crs∈Vpq

α1rsy
Cpq

i z
Crs

i + 
Crs∈Vpq

αrsx
Cpq

i y
Crs

i − 
Crs∈Vpq

c
Crs

1 y
Cpq

i ,

z
Cpq

i+1 � cpqz
Cpq

i 1 −
z

Cpq

i

k
Cpq

3

⎛⎝ ⎞⎠ + 
Crs∈Vpq

c
Cpq

2 z
Crs

i + 
Crs∈Vpq

βrsx
Cpq

i z
Crs

i + 
Crs∈Vpq

α1rsy
Cpq

i z
Crs

i − 
Crs∈Vpq

c
Crs

2 z
Cpq

i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

with i � 0, . . . , N − 1 and x
Cpq

0 ≥ 0, y
Cpq

0 ≥ 0, and z
Cpq

0 ≥ 0.
Figure 3 illustrates an instance of discrete geographical

domains of four major fishing areas in Morocco.

In order to show the effectiveness of the proposed model
and the effect on the prey in the targeted area andmiddle and
top predators from neighboring areas, we will present nu-
merical simulation over a period of t � 200 days with
Figures 4–6 to ensure that the model adapt to the reality ; all
simulations are performed using the parameter values in
Table 1 taken from [70]. In Section 3, we present numerical

values and methods. Figures 4–6 present the numerical
results of biomass of the prey, middle predators, and top
predators. We find that there is no significant effect until
t � 50 days after the interaction of the prey and middle and
top predators.'e biomass of the prey sharply decreases that
may lead to their absence, while there is a significant increase
of biomass of middle predators until t � 150 days and just
after we observe a remarkable decrease until t � 200 of these
species. However, we observe that there is a big increase of
top predators during these 200 days. 'e remarks observed
doing these simulations lead us to think about the definition
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of appropriate control strategies taking into account these
remarks. 'e chosen strategy is to consider two harvesting
functions in order to make fishing effort controls by the
fishing fleets during fishing in the studied area Cpq.

2.2. /e Model with Controls. In this section, we also in-
troduce two harvesting controls H(yi) and H(zi) as

functions of time. 'e aim is to make fishing effort controls
by the fishing fleets during fishing in the studied area Cpq

while adding one harvesting function to harvest the middle
and top predators y

Cpq

i and z
Cpq

i which threaten the prey x
Cpq

i

over time to ensure environmental sustainability and
maintain a differential chain system.

'en, for a given area Cpq, the model is given as follows:
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Figure 3: Our numerical simulation based on four major fishing areas in Morocco: (area 1): the Mediterranean area between Saadia and
Cape Spartel; (area 2): the northern area between Cape Spartel and Cape Cantin; (area 3): the center area between Cape Cantin and Cape
Boujdour; (area 4): the southern area between Cape Boujdor and White Cape.
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Figure 4: 'e biomass of prey behavior within Ω without the control. (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.
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Figure 5: 'e biomass of middle predator behavior within Ω without the control. (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.
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x
Cpq

i+1 � apqx
Cpq

i 1 −
x

Cpq

i

k
Cpq

1

⎛⎝ ⎞⎠ + 
Crs∈Vpq

cpqx
Crs

i − 
Crs∈Vpq

αrsx
Cpq

i y
Crs

i − 
Crs∈Vpq

βrsx
Cpq

i (i)z
Crs

i − 
Crs∈Vpq

crsx
Cpq

i ,

y
Cpq

i+1 � bpqy
Cpq

i 1 −
y

Cpq

i

k
Cpq

2

⎛⎝ ⎞⎠ + 
Crs∈Vpq

c
Cpq

1 y
Crs

i − 
Crs∈Vpq

α1rsy
Cpq

i z
Crs

i + 
Crs∈Vpq

αrsx
Cpq

i y
Crs

i − 
Crs∈Vpq

c
Crs

1 y
Cpq

i − H y
Cpq

i ,

z
Cpq

i+1 � cpqz
Cpq

i 1 −
z

Cpq

i

k
Cpq

3

⎛⎝ ⎞⎠ + 
Crs∈Vpq

c
Cpq

2 z
Crs

i + 
Crs∈Vpq

βrsx
Cpq

i z
Crs

i + 
Crs∈Vpq

α1rsy
Cpq

i z
Crs

i − 
Crs∈Vpq

c
Crs

2 z
Cpq

i − H z
Cpq

i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

with i � 0, . . . , N − 1 and x
Cpq

0 ≥ 0, y
Cpq

0 ≥ 0, and z
Cpq

0 ≥ 0.
H(y

Cpq

i ) and H(z
Cpq

i ), i � 0, . . . , N − 1, are given by

H y
Cpq

i  � 
Crs∈Vpq

ξrsu
Crs

i y
Cpq

i ,

H z
Cpq

i  � 
Crs∈Vpq

δrsv
Crs

i z
Cpq

i .

(6)

H(yi) and H(zi) represent the harvesting functions
associated to middle and top predators, respectively, with
ξrs and δrs representing the catchability coefficients of
fishing fleets, coming from Crs, to harvest middle pred-
ators and top predators from Cpq.

And u
Crs

i and v
Crs

i represent the fishing effort controls
of fishing fleets, coming from Crs, to harvest middle
predators and top predators from Cpq.

'en, for a given area Cpq, the model is given by
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Figure 6: 'e biomass of top predator behavior within Ω without the control. (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.
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Cpq

i 1 −
x

Cpq

i

k
Cpq

1

⎛⎝ ⎞⎠ + 
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⎛⎝ ⎞⎠ + 
Crs∈Vpq

c
Cpq

1 y
Crs

i − 
Crs∈Vpq

α1rsy
Cpq

i z
Crs

i + 
Crs∈Vpq

αrsx
Cpq

i y
Crs

i − 
Crs∈Vpq

c
Crs

1 y
Cpq

i − 
Crs∈Vpq

ξrsu
Crs

i y
Cpq

i ,

z
Cpq

i+1 � cpqz
Cpq

i 1 −
z

Cpq

i

k
Cpq

3
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(7)

with i � 0, . . . , N − 1, and

x
Cpq

0 ≥ 0,

y
Cpq

0 ≥ 0,

z
Cpq

0 ≥ 0.

(8)

2.3. An Optimal Control Approach. We are interested in
controlling the fishing area Cpq. 'en, the problem is to
minimize the objective function given by

Jpq u
Crs , v

Crs  � 
N−1

i�1
Ψ1x

Cpq

i + Ψ2H y
Cpq

i  + Ψ3H z
Cpq

i ⎛⎝

− 
Crs∈Vpq

Ars

2
u

Crs

i 
2

− 
Crs∈Vpq

Brs

2
v

Crs

i 
2⎞⎟⎠,

(9)

subject to system (7). Here, Ψ1, Ψ2, and Ψ3 are positive
constants to keep a balance in the size of x

Cpq

i , y
Cpq

i , and z
Cpq

i ,
respectively.

In the objective function, Ars and Brs are the positive
weight parameters, which are associated with the controls
uCrs � (u

Crs

0 , . . . , u
Crs

N−1) and vCpq � (v
Crs

0 , . . . , v
Crs

N−1).
Our goal is to minimize the number of middle pred-

ators yCpq and top predators zCpq while maximizing the
harvesting function and increasing the number of prey xCpq

in Cpq.
In other words, we are seeking optimal controls uCrs∗ and

vCrs∗ such that

Jpq u
Crs ∗, v

Crs ∗  � max Jpq uCrs , vCrs( , uCrs ∈ U, vCrs ∈ V ,

(10)

where U and V are the sets of admissible controls defined
by

V �
vCrsmeasurable

vminCrs ≤ v
Crs

i ≤ vmaxCrs

, i � 0, . . . , N − 1, Crs ∈ Vpq

⎧⎨

⎩

⎫⎬

⎭,

U �
uCrsmeasurable

uminCrs ≤ u
Crs

i ≤ umaxCrs

, i � 0, . . . , N − 1, Crs ∈ Vpq

⎧⎨

⎩

⎫⎬

⎭,

(11)

where (u
Crs

min, u
Crs
max) ∈ (]0, 1[)2 and (v

Crs

min, v
Crs
max) ∈ (]0, 1[)2.

'e sufficient condition for existence of an optimal
control for the problem follows from the following theorem.

Theorem 1 (sufficient conditions). For the optimal control
problem given by (10), along with state equations (7), there
exists a control (uCrs∗ ), (vCrs∗ ) such that

Jpq u
Crs∗ , v

Crs∗  � max Jpq uCrs , vCrs( 

uCrs ∈ U
, v

Crs ∈ V . (12)

Proof. See 'eorem 1 of Dabbs [71].
At the same time, by using Pontryagin’s maximum

principle [72], we derive necessary conditions for our
optimal control. For this purpose, we define the Hamil-
tonian as

8 Discrete Dynamics in Nature and Society



H(Ω) � Ψ1x
Cpq

i + Ψ2 
Crs∈Vpq

ξrsu
Crs

i y
Cpq

i + Ψ3 
Crs∈Vpq

δrsv
Crs

i z
Cpq

i − 
Crs∈Vpq

Ars

2
u

Crs

i 
2

− 
Crs∈Vpq

Brs

2
v

Crs

i 
2⎛⎜⎝ ⎞⎟⎠

+ ζCpq

1,i+1 apqx
Cpq

i 1 −
x

Cpq

i

k
Cpq

1

⎛⎝ ⎞⎠ + 
Crs∈Vpq

cpqx
Crs

i − 
Crs∈Vpq

αrsx
Cpq

i y
Crs

i − 
Crs∈Vpq

βrsx
Cpq

i z
Crs

i − 
Crs∈Vpq

crsx
Cpq

i
⎛⎜⎝ ⎞⎟⎠

+ ζCpq

2,i+1 bpqy
Cpq

i 1 −
y

Cpq

i

k
Cpq

2

⎛⎝ ⎞⎠ + 
Crs∈Vpq

c
Cpq

1 y
Crs

i − 
Crs∈Vpq

α1rsy
Cpq

i z
Crs

i + 
Crs∈Vpq

αrsx
Cpq

i y
Crs

i − 
Crs∈Vpq

c
Crs

1 y
Cpq

i − 
Crs∈Vpq

ξrsu
Crs

i y
Cpq

i
⎛⎜⎝ ⎞⎟⎠

+ ζCpq

3,i+1 cpqz
Cpq

i 1 −
z

Cpq

i

k
Cpq

3

⎛⎝ ⎞⎠ + 
Crs∈Vpq

c
Cpq

2 z
Crs

i + 
Crs∈Vpq

βrsx
Cpq

i z
Crs

i + 
Crs∈Vpq

α1rsy
Cpq

i z
Crs

i − 
Crs∈Vpq

c
Crs

2 z
Cpq

i − 
Crs∈Vpq

δrsv
Crs

i z
Cpq

i
⎛⎜⎝ ⎞⎟⎠,

(13)

i � 0, . . . , N − 1 with ζCpq

k , k � 1, 2, 3, the adjoint variables
associated to x

Cpq

i , y
Cpq

i , and z
Cpq

i , respectively, and defined
based on formulations of the following theorem. □

Theorem 2. Given optimal controls uCrs∗ and vCrs∗ and so-
lutions xCpq∗ , yCpq∗ , and zCpq∗ , there exists ζk,iCpq,
i � 0, . . . , N − 1, k � 1, 2, 3, the adjoint variables satisfying
the following equations:

ΔζCpq

1,i � − Ψ1 + ζCpq

1,i+1 apq 1 −
x

Cpq

i

k
Cpq

1

⎛⎝ ⎞⎠ − apq

x
Cpq

i

k
Cpq

1

− 
Crs∈Vpq

crs − 
Crs∈Vpq

αrsy
Crs

i − 
Crs∈Vpq

βrsz
Crs

i
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

+ ζCpq

2,i+1 
Crs∈Vpq

αrsy
Crs

i + ζCpq

3,i+1 
Crs∈Vpq

βrsz
Crs

i
⎤⎥⎥⎥⎥⎥⎦,

ΔζCpq

2,i � − 
Crs∈Vpq

Ψ2ξrsu
Crs

i + ζCpq

2,i+1 bpq 1 −
y

Cpq

i

k
Cpq

2

⎛⎝ ⎞⎠ − bpq

y
Cpq

i

k
Cpq

2

− 
Crs∈Vpq

α1rsz
Crs

i − 
Crs∈Vpq

c
Crs

1 − 
Crs∈Vpq

ξrsu
Crs

i
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

+ ζCpq

3,i+1 
Crs∈Vpq

α1rsz
Crs

i
⎛⎜⎝ ⎞⎟⎠⎤⎥⎥⎥⎥⎥⎦,

ΔζCpq

3,i � − 
Crs∈Vpq

Ψ3ξrsv
Crs

i + ζCpq

3,i+1 cpq 1 −
z

Cpq

i

k3

⎛⎝ ⎞⎠ − cpq

z
Cpq

i

k3
− 

Crs∈Vpq

c
Crs

2 − 
Crs∈Vpq

δrsv
Crs

i
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦,

(14)

with transversality conditions

ζCpq

1,N � ζCpq

2,N � ζCpq

3,N � 0, (15)

where uCrs∗ � (u
C∗rs

0 , . . . , u
C∗rs

N−1) and vC∗rs � (v
C∗rs

0 , . . . , v
C∗rs

N−1) are
given by

u
C∗rs

i � min max u
Crs

min, Ψ2 − ζCpq

2,i+1 
ξrsy

Cpq

i

Ars

⎧⎨

⎩

⎫⎬

⎭, u
Crs

max
⎧⎨

⎩

⎫⎬

⎭, i � 0, . . . , N − 1, (16)

v
C∗rs

i � min max v
Crs

min, Ψ3 − ζCpq

3,i+1 
δrsz

Cpq

i

Brs

⎧⎨

⎩

⎫⎬

⎭, v
Crs

max
⎧⎨

⎩

⎫⎬

⎭, i � 0, . . . , N − 1. (17)

Proof. Using Pontryagin’s maximum principle [72]
and setting xCpq � xCpq∗, yCpq � yCpq∗, zCpq � zCpq∗, and

u
Crs

i � u
C∗rs

i v
Crs

i � v
C∗rs

i , we obtain the following adjoint
equations:
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ΔζCpq

1,i � −
zH

zx
Cpq

i

� − Ψ1 + ζCpq

1,i+1 apq 1 −
x

Cpq

i

k
Cpq

1

⎛⎝ ⎞⎠ − apq

x
Cpq

i

k
Cpq

1

− 
Crs∈Vpq

crs − 
Crs∈Vpq

αrsy
Crs

i − 
Crs∈Vpq

βrsz
Crs

i
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

+ ζCpq

2,i+1 
Crs∈Vpq

αrsy
Crs

i + ζCpq

3,i+1 
Crs∈Vpq

βrsz
Crs

i
⎤⎥⎥⎥⎥⎥⎦,

ΔζCpq

2;i � −
zH

zy
Cpq

i

� − 
Crs∈Vpq

Ψ2ξrsu
Crs

i + ζCpq

2,i+1 bpq 1 −
y

Cpq

i

k
Cpq

2

⎛⎝ ⎞⎠ − bpq

y
Cpq

i

k
Cpq

2

− 
Crs∈Vpq

α1rsz
Crs

i − 
Crs∈Vpq

c
Crs

1 − 
Crs∈Vpq

ξrsu
Crs

i
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

+ ζCpq

3,i+1 
Crs∈Vpq

α1rsz
Crs

i
⎛⎜⎝ ⎞⎟⎠⎤⎥⎥⎥⎥⎥⎦,

ΔζCpq

3,i � −
zH

zz
Cpq

i

� − 
Crs∈Vpq

Ψ3ξrsv
Crs

i + ζCpq

3,i+1 cpq 1 −
z

Cpq

i

k3

⎛⎝ ⎞⎠ − cpq

z
Cpq

i

k3
− 

Crs∈Vpq

c
Crs

2 − 
Crs∈Vpq

δrsv
Crs

i
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦,

(18)

with ζCpq

1,N � ζCpq

2,N � ζCpq

3,N � 0.
To obtain the optimality conditions, we take the varia-

tion with respect to controls u
Crs

i , v
Crs

i and set it equal to zero:

zH

zu
Crs

i

� 
Crs∈Vpq

Ψ2ξrsy
Cpq

i − 
Crs∈Vpq

Arsu
Crs

i − ζCpq

2,i+1 
Crs∈Vpq

ξrsy
Cpq

i
⎛⎜⎝ ⎞⎟⎠ � 0,

zH

zv
Crs

i

� 
Crs∈Vpq

Ψ3δrsz
Cpq

i − 
Crs∈Vpq

Brsv
Crs

i − ζCpq

3,i+1 
Crs∈Vpq

δrsz
Cpq

i
⎛⎜⎝ ⎞⎟⎠ � 0.

(19)

'en, we obtain the optimal control pair

u
Crs

i � Ψ2 − ζ
Cpq

2,i+1 
ξrsy

Cpq

i

Ars

,

v
Crs

i � Ψ3 − ζCpq

3,i+1 
δrsz

Cpq

i

Brs

.

(20)

By the bounds in U and V of the controls, it is easy to
obtain u

C∗rs

i and v
C∗rs

i in the following form:

u
C∗rs

i � min max u
Crs

min,
Ψ2 − ζCpq

2,i+1 

Ars

ξrsy
Cpq

i

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, u

Crs

max

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, i � 0, . . . , N − 1,

v
C∗rs

i � min max v
Crs ,
Ψ3 − ζCpq

3,i+1 

Brs

δrsz
Cpq

i

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, v

Crs

max

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, i � 0, . . . , N − 1.

(21)

□
3. Numerical Simulation

Now, we give the numerical results associated to system (7),
and we estimate that the initial population of the prey and
middle and top predators is given by x0 � 2250, y0 � 1100,

and z0 � 400. In order to show the importance of our work
and without loss of generality, we consider a 8 × 8 grid where
we focus in this grid on diagonal patch Ω1,Ω2,Ω3 and Ω4
with Ω1 � C11, C12, C21, C22 , Ω2 � C33, C34, C43, C44 ,
Ω3 � C55, C56, C65, C66 , and Ω4 � C77, C78, C87, C88 . It is
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therefore assumed that the prey distribution is not ho-
mogeneous with 600 in Ω1, 500 in Ω2, 350 in Ω3, and 800
inΩ4, where we placed 400 inΩ1, 200 inΩ2, 150 inΩ3, and
350 in Ω4 for middle predators, while for the top pred-
ators, we placed 100 in Ω1, 100 in Ω2, 50 in Ω3, and 150 in
Ω4 for our numerical simulation cited in Table 1. All
simulations are performed using the parameter values in
Table 2 which is taken from [70]. Also, the upper limits of
the optimality condition are considered to be u

Crs
max � 0.8

and v
Crs
max � 0.9

In this section, we present numerical results that illus-
trate and reinforce the effect of our control strategy. 'is
strategy consists in applying two types of controls in order to
preserve and increase the biomass of the prey and also to
ensure environmental sustainability and maintain a differ-
ential chain system. Concerning the numerical method, we
give numerical simulations to our system of optimality (7)
which is formulated by three equations of states with initial
conditions (8), adjoint equations with transversality con-
ditions (14) and (15), and optimal control characterization
(16) and (17). We apply the forward-backward scanning
method (FBSM) [54] to solve our optimality system in an
iterative process, and we use the explicit method of Euler of
second order; the initial control variables are guessed at the
beginning of the iterative method, and then the adjoint
equations are resolved backwards in time. Finally, the
control variables are updated with the current state. 'e
iterative process is repeated until a tolerance criterion is
reached.

In this paragraph, in order to obtain more accurate
information about the impact of each control separately,
we will develop our strategy by applying each control
individually, and numerical analysis will show us the

effectiveness of each strategy. In the first case, we will
limit ourselves to controlling the four studied areas only
using one of the two strategies u or v by making fishing
effort control by the fishing fleets in these areas. In the
second case, we will control all areas using both controls u
and v.

(i) Case 1: applying only control u

(ii) Case 2: applying both controls u and v

3.1.Case 1:ApplyingOnlyControlu. In this case, the control
applied to the top predators (vCpq) is not optimized, while
the control applied to the middle predators (uCpq) is
optimized to see its impact on the evolution of the three
species (prey, middle predators, and top predators).
According to Figures 7–9, we investigate numerical results
through a control strategy on the middle predators. In this
case, we observe a decrease in the number of prey with
their continuity in the studied areas, in a lesser way
compared to the results obtained in Figure 4, in which we
note the disappearance of these prey. 'ere is also an
increase in the number of middle and top predators during
the 200 days.

3.2. Case 2: Applying Controls u and v. In Figures 10–12, we
note the effectiveness of applying simultaneously the
strategies of spatial-temporal control u

Cpq

i and v
Cpq

i . 'ese
controls are highly noticeable in maintaining the biomass of
the prey from absence and thusmaintaining a different chain
system. We note that the number of prey decreases at a very
low rate during the period of 200 days, while we note a slight
increase in the number of middle and top predators.

Table 2: List of all parameters of system (4).

Parameter Physical interpretation
apq Intrinsic growth rate of a prey from a cell Cpq

bpq Intrinsic growth rate of a middle predator from a cell Cpq

cpq Intrinsic growth rate of a top predator from a cell Cpq

cpq Prey movement rate coming from its neighbor cell Crs ∈ Vpq

crs Prey movement rate from a cell Cpq to neighbor cell Crs ∈ Vpq

c
Cpq

1 Middle predator movement rate coming from its neighbor cell Crs ∈ Vpq

c
Crs

1 Middle predator movement rate from a cell Cpq to neighbor cell Crs ∈ Vpq

c
Cpq

2 Top predator movement rate coming from its neighbor cell Crs ∈ Vpq

c
Crs

2 Top predator movement rate from a cell Cpq to neighbor cell Crs ∈ Vpq

αrs

Per capita predation of adequate contacts between a prey from a cell Cpq and a middle predator coming from its neighbor cell
Crs ∈ Vpq

αrs

Conversion rate predation of adequate contacts between a prey from a cell Cpq and amiddle predator coming from its neighbor
cell Crs ∈ Vpq

βrs

Conversion rate predation of adequate contacts between a prey from a cell Cpq and a top predator coming from its neighbor cell
Crs ∈ Vpq

βrs

Per capita predation of adequate contacts between a prey from a cell Cpq and a top predator coming from its neighbor cell
Crs ∈ Vpq

α1rs

Per capita predation of adequate contacts between a middle predator from a cell Cpq and a top predator coming from its
neighbor cell Crs ∈ Vpq

α1rs

Conversion rate predation of adequate contacts between a middle predator from a cell Cpq and a top predator coming from its
neighbor cell Crs ∈ Vpq

12 Discrete Dynamics in Nature and Society
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Figure 7: he biomass of prey behavior within Ω with control uCpq . (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.
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Figure 8: 'e biomass of middle predator behavior within Ω with control uCpq . (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.
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Figure 10: 'e biomass of prey behavior within Ω with control uCpq and vCpq . (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.

1

2

3

4

5

6

7

8

2 3 4 5 6 71
0
100
200
300
400
500
600
700
800
900
1000

(a)

1

2

3

4

5

6

7

8

2 3 4 5 6 71
0
100
200
300
400
500
600
700
800
900
1000

(b)

1

2

3

4

5

6

7

8

2 3 4 5 6 71
0
100
200
300
400
500
600
700
800
900
1000

(c)

0
100
200
300
400
500
600
700
800
900
1000

2 3 4 5 6 71
1

2

3

4

5

6

7

8

(d)

0
100
200
300
400
500
600
700
800
900
1000

2 3 4 5 6 71
1

2

3

4

5

6

7

8

(e)

Figure 9: 'e biomass of top predator behavior within Ω with control uCpq . (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.
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Figure 11: 'e biomass of middle predator behavior within Ω with control uCpq and vCpq . (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150.
(e) t� 200.
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Figure 12: 'e biomass of top predator behavior within Ω with control uCpq and vCpq . (a) t� 0. (b) t� 50. (c) t� 100. (d) t� 150. (e) t� 200.
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4. Conclusion

In this paper, we have considered a multiarea prey-predator
model with discrete time describing the dynamics of in-
teraction between different species in different areas via
movements. 'e application of a distributed optimal control
pair for a spatiotemporal prey-predator model is incorpo-
rated to preserve the biomass of the prey.We have shown the
existence of optimal controls to give a characterization of
controls in terms of states and adjoint functions. 'e op-
timality system, which is composed by the system state, the
dual system, and the characteristic of the control, is solved
numerically based on the forward-backward sweep method
(FBSM). Numerical simulations of the resulting optimality
system have shown that the optimal strategy is more efficient
if we apply simultaneously the two controls, which allow us
to guarantee sustainability and maintain a differential chain
system.
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