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(e initial-boundary value problem of a porous medium equation with a variable exponent is considered. Both the diffusion
coefficient a(x, t) and the variable exponent p(x, t) depend on the time variable t, and this makes the partial boundary value
condition not be expressed as the usual Dirichlet boundary value condition. In other words, the partial boundary value condition
matching up with the equation is based on a submanifold of zΩ × (0, T). By this innovation, the stability of weak solutions
is proved.

1. Introduction

(e porous medium equation with a constant exponent is
widely used to model several real-life problems, and it has
been extensively studied, one can refer to the survey
books [1–6] and the references therein. (e dynamics
system of a partially nonlocal and inhomogeneous
nonlinear medium has been considered in [7–9]. (e case
where the exponent of nonlinearity is not constant was
proposed by Antontsev and Shmarev in [10], where the
existence, uniqueness, and some properties of the solu-
tion in a bounded fixed domain were researched. By using
the Galerkin finite element method, Duque et al. [11]
proved the convergence of a fully discrete solution for
this problem in a fixed domain. Based on one of the
properties proved in [11] that the solution is with the
finite speed of propagation, Duque et al. [12] considered
the free boundary problem by using the moving mesh
method to the porous medium. However, the moving
mesh method was first introduced by Huang and Russell
in [13].

In this paper, we consider the initial-boundary value
problem of a generalized porous medium equation with a
variable exponent:

ut � div a(x, t)|u|
m(x,t)∇u􏼐 􏼑 + 􏽘

N

i�1

zbi um(x,t)+1( 􏼁

zxi

,

(x, t) ∈ QT � Ω ×(0, T),

(1)

where m(x, t)> 0 is a C1(QT) function, a(x, t)≥ 0 is a
C1(QT) function, bi(s) ∈ C1(R), and Ω ⊂ RN is a bounded
domain with a smooth boundary zΩ.

Equation (1) is a special case of the reaction-diffusion
equation:

ut � div(a(u, x, t)∇u) + div( b
→

(u, x, t)). (2)

Because a(·, x, t) may degenerate on the boundary, how
to impose a suitable boundary value condition to study the
well posedness of weak solutions to equation (2) has
attracted extensive attention and has been widely studied for
a long time. In some details, though the initial value

u(x, 0) � u0(x), x ∈ Ω, (3)

is always imposed, the Dirichlet boundary condition

u(x, t) � 0, (x, t) ∈ zΩ ×(0, T), (4)
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may not be imposed or be imposed in a weaker sense than
the traditional trace. One can refer to the references [14–19]
for the details.

Naturally, besides the porous medium equation with
variable exponents, the so-called electrorheological fluid
equations with the form

ut � div |∇u|
p(x)− 2∇u􏼐 􏼑 + f(x, t, u,∇u), (5)

have been brought to the forefront by many more
scholars. Since the beginning of this century, there are a
great deal of papers devoting to the well-posedness
problem, the intrinsic Harnack inequalities, the long-time
behavior, and the Hölder regularity of weak solutions, one
can refer to the literatures [20–31] and the references
therein.

If m(x, t) � m(x), then a(x, t) � a(x) satisfies

a(x)> 0, x ∈ Ω, a(x) � 0, x ∈ zΩ, (6)

0≤ u0 ∈ L
∞

(Ω),
����
a(x)

􏽰
∇um(x)

0 ∈ L
2
(Ω).

(7)

(e existence and the stability of weak solutions to
equation

ut � div a(x)|u|
m(x)∇u􏼐 􏼑 + 􏽘

N

i�1

zbi um(x)+1( 􏼁

zxi

,

(x, t) ∈ Ω ×(0, T),

(8)

has been studied in [32]. It is found that the degeneracy of
a(x) on boundary (6) may replace the usual boundary value
condition (4). In other words, if a(x) satisfies (6), the sta-
bility of weak solutions may be proved without the usual
boundary value condition (4).

In this paper, we will use some ideas of [32] to study
the well posedness of weak solutions to equation (1).
Because both a(x, t) and p(x, t) are dependent on the
time variable t, the problem becomes more difficult and
the question of existence of such solutions is still open
for equation (8), as well as for evolution p-Laplace
equation with the exponent p depending on t [22]. In-
stead of condition (6), we only assume that a(x, t)≥ 0. By
this assumption, we find out a partial boundary value
condition matching up with the equation. Moreover,
because both a(x, t) and p(x, t) are dependent on the
time variable t, the partial boundary value condition
cannot be expressed as the usual Dirichlet boundary
value condition. In other words, the partial boundary
value condition is based on a submanifold of zΩ × (0, T).
By this innovation, the stability of weak solutions is
proved.

2. The Partial Boundary Value Condition and
the Main Results

For any given t ∈ [0, T) and small enough λ> 0, we set

Ωλt � x ∈ Ω: a(x, t)> λ{ },

Ωλi1t � x ∈ Ω\Ωλt: axi
< 0􏽮 􏽯,

Σ1it � lim
λ⟶0
Ωλi1t, i � 1, 2, . . . , N,

(9)

Ωλi2t � x ∈ Ω\Ωλt: axi
≥ 0􏽮 􏽯,

Σ2it � lim
λ⟶0
Ωλi2t, i � 1, 2, . . . , N.

(10)

(e most important and essential improvement is that
instead of the usual boundary value condition (4), the
stability of weak solutions is proved based on a partial
boundary value condition:

u(x, t) � 0, (x, t) ∈ Σ1 ∪Σ2, (11)

where

Σ2 � x ∈ zΩ: a(x, t)≠ 0{ }, (12)

and for any given i ∈ 1, 2, . . . , N{ }, if bi
′(s)≥ 0,

Σ1 � ∪N
i�1
Σ1it ×(0, T)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (13)

and if bi
′(s)≤ 0,

Σ1 � ∪N
i�1
Σ2it ×(0, T)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (14)

(us, if for every i ∈ 1, 2, . . . , N{ }, either bi
′(s)≥ 0 or

bi
′(s)≤ 0, then one can deduce an expression Σ1 from the
above discussion. For example, bi(s)≥ 0 when 1≤ i≤ k and
bi
′(s)≤ 0 when k + 1≤ i≤N; then,

Σ1 � ∪k
i�1
Σ1it ×(0, T)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∪ ∪N

i�k+1
Σ2it ×(0, T)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (15)

(e most characteristic out of the ordinary is that Σ1 or
Σ2 is just a submanifold of zΩ × (0, T), and it cannot be
expressed as a cylinder with the form Γ × (0, T) and Γ ⊂ zΩ.

Definition 1. If u(x, t)≥ 0 and satisfies

u ∈ L
∞

QT( 􏼁,
������
a(x, 0)

􏽰
|u|

m(x,0)
|∇u| ∈ L

∞ 0, T; L
2
(Ω)􏼐 􏼑,

(16)

and for ∀φ ∈ C1
0(QT),

B
QT

−
zφ
zt

u + a(x, t)|u|
m(x,t)∇u∇φ􏼠 􏼡dx dt

+ 􏽘
N

i�1
B

QT

bi u
m(x,t)+1

􏼐 􏼑φxi
(x, t)dx dt � 0,

(17)

and then u(x, t) is said to be a weak solution of equation (1)
with the initial value (3) in the sense
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lim
t⟶0

􏽚
Ω

u(x, t) − u0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dx � 0. (18)

Moreover, if u(x, t) satisfies (4) or (3) in the sense of the
trace in addition, then it is said to be a weak solution of the
initial-boundary value problem of equation (1).

Theorem 1. If m(x, t)> 0 is a C1(QT) function, bi(s)

satisfies

bi s1( 􏼁 − bi s2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c s1 − s2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, i � 1, 2, . . . , N. (19)

If u0(x)≥ 0 satisfies (16), then equation (1) with initial
value (3) has a nonnegative solution.

Theorem 2. Let m(x, t)> 0 be a C1(QT) function, then
bi(s) ∈ C1(R) satisfy (19):

􏽚
Ω

a
− 1

(x, t)dx≤ c(T). (20)

(en, the initial-boundary value problem (1), (3), and (4)
has a uniqueness solution.

Theorem 3. Let u(x, t) and v(x, t) be two solutions of
equation (1) with the initial values u0(x) and v0(x), re-
spectively, and with a partial boundary value condition

u(x, t) � v(x, t) � 0, (x, t) ∈ Σ1 ∪Σ2. (21)

It is supposed that, for every i ∈ 1, 2, . . . , N{ }, either
bi
′(s)≥ 0 or bi

′(s)≤ 0, a(x, t) satisfies

1
λ

􏽚
Ω\Ωλt

a(x, t)|∇a|
2dx􏼠 􏼡

1/2

≤ c(T), (22)

and u(x, t) and v(x, t) satisfy

􏽚
Ω

a(x, t)[1 +(m(x, t) + 1)log u]
2
|∇m|

2dx≤ c(T),

􏽚
Ω

a(x, t)[1 +(m(x, t) + 1)log v]
2
|∇m|

2dx≤ c(T).

(23)

(en,

􏽚
Ω

|u(x, t) − v(x, t)|dx≤ c(T)􏽚
Ω

u0(x) − v0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dx.

(24)

Hereinafter, the constant c(T) represents a constant
which depends on T.

At the end of this section, we would like to suggest that if
m(x, t) � m is a constant, then condition (22) in (eorem 3
is naturally true.

3. The Proof of Theorem 1

First, we suppose that u0 ∈ C∞0 (Ω) and 0≤ u0 ≤M and
consider the following regularized problem:

unt � div a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓∇u􏼒 􏼓 + 􏽘

N

i�1

zbi um(x,t)+1
n( 􏼁

zxi

, (x, t), (x, t) ∈ QT,

un(x, t) �
1
n

, (x, t) ∈ zΩ ×(0, T),

un(x, 0) � u0n(x) � u0(x) +
1
n

, x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

According to the standard parabolic equation theory,
there is a weak solution un ∈ L∞(QT) satisfying

a(x, t) +
1
n

􏼒 􏼓
1/2

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓
1/2
∇u ∈ L

2
QT( 􏼁,

1
n
≤ un(x, t)≤ u0

����
����L∞(Ω)

+
1
n

, (x, t) ∈ QT.

(26)

Moreover, by comparison theorem, we clearly have

un+1(x, t)≤ un(x, t), (27)

which yields

u(x, t) � lim
n⟶∞

un(x, t), (28)

|u(x, t)|≤M + 1. (29)

In what follows, we are able to prove that the limit
function u is a weak solution of (1) with the initial value (3).

Multiplying both sides of the first equation in (25) by
ϕ � (m(x, t) + 2)(um(x,t)+1

n − (1/n)m(x,t)+1) and integrating it
over QT, we have
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B
QT

unt u
m(x)+1
n −

1
n

􏼒 􏼓
m(x,t)+1

􏼠 􏼡(m(x, t) + 2)dx dt

� B
QT

div a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓∇u􏼔 􏼕 u
m(x,t)+1
n −

1
nm(x,t)+1􏼒 􏼓(m(x, t) + 2)dx dt

+ 􏽘
N

i�1
B

QT

zbi um(x,t)+1
n( 􏼁

zxi

u
m(x,t)+1
n −

1
n

􏼒 􏼓
m(x)+1

􏼠 􏼡(m(x, t) + 2)dx dt.

(30)

For the left-hand side of (29),

B
Qt

unt u
m(x,t)+1
n −

1
n

􏼒 􏼓
m(x,t)+1

􏼠 􏼡(m(x, t) + 2)dx dt

� 􏽚
Ω

u
m(x,t)+2
n (x, t) − u

m(x)+2
n (x, 0)􏽨 􏽩dx

− 􏽚
Ω

1
n

􏼒 􏼓
m(x,t)+1

un(x, t) − un(x, 0)􏼂 􏼃(m(x, t) + 2)dx

+ B
QT

un

z

zt

1
n

􏼒 􏼓
m(x,t)+1

(m(x, t) + 2)􏼢 􏼣dx dt.

(31)

For the first term of the right-hand side of (29), because

lim
n⟶∞

a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓 (m(x, t) + 1)u
m(x,t)
n􏽨 􏽩

− 1
|∇m|

2

· log unu
m(x,t)+1
n −

1
n

􏼒 􏼓
m(x,t)+1

log n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� a(x, t)(m(x, t) + 1)
− 1

|∇m(x, t)|
2
u

m(x,t)+1
|log u|<∞,

B
QT

a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓 u
m(x,t)+1
n −

1
nm(x,t) + 1

􏼒 􏼓∇m
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
dx dt<∞,

(32)

by a complicated calculation and using the Young inequality,
we can deduce that

B
QT

div a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓∇un􏼔 􏼕 u
m(x,t)+1
n −

1
nm(x,t)+1􏼒 􏼓(m(x, t) + 2)dx dt

≤ − cB
QT

a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓(m(x, t) + 1)u
m(x,t)
n ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx dt + c.

(33)

For the second term of the right-hand side of (29),
because
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B
QT

zbi um(x,t)+1
n( 􏼁

zxi

u
m(x,t)+1
n (m(x, t) + 2)dx dt

� − B
QT

bi u
m(x,t)+1
n􏼐 􏼑

z

zxi

u
m(x)+1
n (m(x, t) + 2)􏼐 􏼑dx dt

� − B
QT

z

zxi

􏽚
​ um(x,t)+1

n

(1/n)m(x,t)+1
bi(s)ds + bi n

− m(x,t)− 1
􏼐 􏼑

1
n

􏼒 􏼓
m(x,t)+1

log nmxi
(x, t)⎡⎣ ⎤⎦(m(x, t) + 2)dx dt

− B
QT

bi u
m(x,t)+1
n􏼐 􏼑u

m(x,t)+1
n mxi

dx dt

� − B
QT

bi n
− m(x,t)− 1

􏼐 􏼑
1
n

􏼒 􏼓
m(x,t)+1

log nmxi
(x, t)dx dt − B

QT

bi u
m(x,t)+1
n􏼐 􏼑u

m(x,t)+1
n mxi

dx dt,

(34)

we can deduce that

􏽘

N

i�1
B

QT

zbi um(x,t)+1
n( 􏼁

zxi

u
m(x,t)+1
n −

1
n

􏼒 􏼓
m(x,t)+1

􏼠 􏼡dx dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ c.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(35)

From (28)–(34), we extrapolate

B
QT

a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓u
m(x,t)
n ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx dt≤ c.

(36)

Accordingly, there is ζ
→
∈ L2(QT) such that

a(x, t) +
1
n

􏼒 􏼓 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m(x,t)

+
1
n

􏼒 􏼓u
m(x,t)
n􏼔 􏼕

1/2
∇un⇀ ζ

→
, (37)

weakly in L2(QT). We now can prove

ζ
→

� a(x, t)
1/2

|u|
m(x,t)∇u, (38)

as in a similar way as that in [32].
(e last but not the least, by that bi ∈ C1(R), using (27),

we have

lim
n⟶∞

bi u
m(x)+1
n􏼐 􏼑 � bi u

m(x)+1
􏼐 􏼑. (39)

Letting n⟶∞ in (30), by (37), (38), and (39), we know
u(x, t) satisfies (18).

Secondly, if u0 satisfies only (16), we should consider
equation (9) with the initial value u0ε which is the mollified
function of u0, from the above that there is a weak solution

uε satisfying (18). Letting ε⟶ 0, the limit function u(x, t)

is a solution of (1) satisfying (17) and (18), but generally is
not continuous at t � 0 as in the case u0 ∈ C∞0 (Ω).

(irdly, the initial value (4) can be proved in a similar
way as that when m(x, t) � m − 1 is a constant, one can refer
to [5] for the details.(us, u is a solution of equation (1) with
the initial value (4). (us, (eorem 1 is proved.

4. The Proof of Theorem 2

One can see that, in Definition 1, there is not any definition
on the general derivative ut. At the beginning of this section,
we first answer this question.

For any t ∈ [0, T), the Banach space Vt(Ω) is defined by

Vt(Ω) � u(x, t): u(x, t) ∈ L
2
(Ω)∩W

1,1
0 (Ω),􏽮

· |∇u(x, t)|
2 ∈ L

1
(Ω)􏽯,

‖u‖Vt(Ω) � ||u||2,Ω +‖∇u‖2,Ω,

(40)

and Vt
′(Ω) is denoted as its dual space. (e Banach space

W(QT) is defined by

W QT( 􏼁 � u: [0, T]⟶ Vt(Ω)
􏼌􏼌􏼌􏼌 u ∈ L

2
QT( 􏼁, |∇u|

2
􏽮

∈ L
1

QT( 􏼁, u � 0 on Γ � zΩ􏽯,

||u||W QT( ) � ||∇u||2,QT
+||u||2,QT

,

(41)

and W′(QT) is denoted as its dual space. From [21], we have

w ∈W′ QT( 􏼁⇔

w � w0 + 􏽐
N

i�1
Diwi, w0 ∈ L2 QT( 􏼁, wi ∈ L2 QT( 􏼁,

∀ϕ ∈W QT( 􏼁, ≪w,ϕ≫ � B
QT

w0ϕ + 􏽘
N

i

wiDiϕ⎛⎝ ⎞⎠dx dt.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(42)

It is easy to prove the following lemmas, so we omit the
details here.

Lemma 1. If u(x, t) is a weak solution of equation (1) with
the initial value (3), then ut ∈W′(QT).

Discrete Dynamics in Nature and Society 5



Lemma 2. Suppose that u ∈W(QT) and ut ∈W′(QT). For
any continuous function h(s), let H(s) � 􏽒

s

0 h(s)ds. For
a.e. t1, t2 ∈ (0, T), there holds

􏽚
t2

t1

􏽚
Ω

h(u)utdx dt � 􏽚
Ω

H(u) x, t2( 􏼁 − H(u) x, t1( 􏼁( 􏼁dx􏼔 􏼕.

(43)

Lemma 3. If 􏽒Ωa(x, t)− 1dx≤ c(T), then 􏽒Ω|∇u
m(x,t)+1|

dx≤ c(T). So, the weak solution of equation (1) u(x, t) can be
defined as the homogeneous boundary value condition u|zΩ �

0 in the sense of the trace.

Theorem 4. Let u(x, t) and v(x, t) be two solutions of
equation (1) with the initial values u0(x) and v0(x) respec-
tively, and with

u(x, t) � v(x, t) � 0, (x, t) ∈ zΩ ×(0, T). (44)

If 􏽒Ωa(x, t)− 1(x)dx≤ c(T), then

􏽚
Ω

|u(x, t) − v(x, t)|≤ c􏽚
Ω

u0(x) − v0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dx. (45)

Proof. For any given positive integer n, let
gn(s) � 􏽒

s

0 hn(τ)dτ and hn(s) � 2n(1 − n|s|)+. (en,
hn(s) ∈ C(R), and we have

lim
n⟶∞

gn(s) � sgn s,

lim
n⟶∞

sgn
′ (s) � 0.

(46)

Because u(x, t) � v(x, t) � 0 on the boundary
zΩ × [0, T), we choose gn(um(x,t)+1 − vm(x,t)+1) as the test
function and integrate over Qt � Ω × (0, t). (en,

􏽚
t

0
􏽚
Ω

gn u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
z(u − v)

zt
dx ds

+ B
Qt

a(x, s)

m(x, s) + 1
∇um(x,s)+1

− ∇vm(x,s)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
hn u

m(x,s)+1
− v

m(x,s)+1
􏼐 􏼑dx ds

− B
Qt

a(x, s)

m(x, s) + 1
u

m(x,s)+1log u − v
m(x,s)+1log u􏼐 􏼑

· hn u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑∇m∇ u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑dx ds

+ 􏽘
N

i�1
B

Qt

bi u
m(x,s)+1

􏼐 􏼑 − bi v
m(x,s)+1

􏼐 􏼑􏽨 􏽩 u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
xi

· hn u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑dx ds � 0.

(47)

Let us analyse every term in (47). In the first place,

B
Qt

a(x, s)

m(x, s) + 1
∇um(x,s)+1

− ∇vm(x,s)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
hn u

m(x,s)+1
− v

m(x,s)+1
􏼐 􏼑dx dt≥ 0, (48)

− B
Qt

a(x, s)

m(x, s) + 1
u

m(x,s)+1log u − v
m(x,s)+1log u􏼐 􏼑

· hn u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑∇m∇ u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑dx ds

≥ −
1
2
B

Qt

a(x, s)

m(x, s) + 1
∇um(x,s)+1

− ∇vm(x,s)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
hn u

m(x,s)+1
− v

m(x,s)+1
􏼐 􏼑dx ds

−
1
2
B

Qt

a(x, s)

m(x, s) + 1
u

m(x,s)+1log u − v
m(x,s)+1log u􏼐 􏼑hn u

m(x,s)+1
− v

m(x,s)+1
􏼐 􏼑􏽨 􏽩

2
dx ds.

(49)

In the second place, we deal with the fourth term on the
left-hand side of (47). For any given t ∈ [0, T), we set

Dnt � Ω: u
m(x,t)+1

− v
m(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
1
n

􏼚 􏼛,

D0t � x ∈ Ω: |u − v| � 0{ }.

(50)
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Clearly,

lim
n⟶∞

Dnt � D0t. (51)

Based on these denotations, we have

􏽚
t

0
􏽚
Ω

bi u
m(x,s)+1

􏼐 􏼑 − bi v
m(x,s)+1

􏼐 􏼑􏽨 􏽩 u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
xi

hn u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑dx ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽚
t

0
􏽚

Dns

bi u
m(x,s)+1

􏼐 􏼑 − bi v
m(x,s)+1

􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· hn u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑 u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
xi

dx ds

􏼌􏼌􏼌􏼌􏼌􏼌

≤ c 􏽚
t

0
􏽚

Dns

bi um(x,s)+1( 􏼁 − bi vm(x,s)+1( 􏼁

um(x,s)+1 − vm(x,s)+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
u

m(x,s)+1
− v

m(x,s)+1
􏼐 􏼑

xi

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌dx ds

� c 􏽚
t

0
􏽚

Dns

a(x, s)
− (1/2)bi um(x,s)+1( 􏼁 − bi vm(x,s)+1( 􏼁

um(x,s)+1 − vm(x,s)+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
a(x, s) u

m(x,s)+1
− v

m(x,s)+1
􏼐 􏼑

xi

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌dx ds

≤ c 􏽚
s

0
􏽚

Dns

a(x, s)
− (1/2)bi um(x,s)+1( 􏼁 − bi vm(x,s)+1( 􏼁

um(x,s)+1 − vm(x,s)+1􏼠 􏼡

2

dx⎡⎣ ⎤⎦

1/2

· 􏽚
t

0
􏽚

Dns

a(x, t) ∇ u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx ds􏼢 􏼣

1/2

.

(52)

Because 􏽒Ωa(x, s)− 1(x)dx≤ c(T),

􏽚
t

0
􏽚

Dns

a(x, s)
− (1/2)bi um(x,s)+1( 􏼁 − bi vm(x,s)+1( 􏼁

um(x,s)+1 − vm(x,s)+1􏼠 􏼡

2

dx ds

≤ c􏽚
Dns

a(x, s)
− 1dx ds

≤ c(T).

(53)

If D0s � x ∈ Ω: |um(x,s)+1 − vm(x,s)+1| � 0􏼈 􏼉 has 0 mea-
sure, then

lim
n⟶∞

􏽚
t

0
􏽚

Dns

a(x, s)
− 1dx � 􏽚

t

0
􏽚

D0s

a(x, s)
− 1dx ds � 0.

(54)

If D0s � x ∈ Ω: |um(x,s)+1 − vm(x,s)+1| � 0􏼈 􏼉 has a positive
measure, then

lim
n⟶∞

􏽚
t

0
􏽚

Dns

a(x, s) ∇ u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx ds

� 􏽚
t

0
􏽚

D0s

a(x, s) ∇ u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx ds

� 0.

(55)

(us, in both cases, we always have

lim
n⟶∞

􏽚
t

0
􏽚
Ω

bi u
m(x,s)+1

􏼐 􏼑 − bi v
m(x,s)+1

􏼐 􏼑􏼐 􏼑hn

· u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑

· u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
xi

dx ds

� 0.

(56)

In the third place, for the first term on the left-hand side
of (47), by Lemma 2,

lim
n⟶∞

􏽚
t

0
􏽚
Ω

gn u
m(x,s)+1

− v
m(x,s)+1

􏼐 􏼑
z(u − v)

zt
dx ds

� 􏽚
t

0
􏽚
Ω
sgn u

m(x,s)+1
− v

m(x,s)+1
􏼐 􏼑

z(u − v)

zt
dx ds

� 􏽚
t

0
􏽚
Ω
sgn(u − v)

z(u − v)

zs
ds

� 􏽚
t

0

d

dt
u − v1

����
����ds.

(57)

Let n⟶∞ in (47). Formulas (48)–(57) yield
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􏽚
Ω

|u(x, t) − v(x, t)|dx≤􏽚
Ω

u0(x) − v0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dx. (58)
□

Corollary 1. =eorem 2 is true.

5. The Stability Based on the Partial Boundary
Value Condition

Theorem 5. Let u(x, t) and v(x, t) be two solutions of
equation (1) with the initial values u0(x) and v0(x) re-
spectively, and with a partial boundary value condition

u(x, t) � v(x, t) � 0, (x, t) ∈ Σ1 ∪Σ2, (59)

where Σ2 � x ∈ zΩ: a(x, t)≠ 0{ }, (60)

and for any given i ∈ 1, 2, . . . , N{ }, if bi
′(s)≥ 0,

Σ1 � ∪N
i�1
Σ1it ×(0, T)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (61)

and if bi
′(s)≤ 0,

Σ1 � ∪N
i�1
Σ2it ×(0, T)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (62)

It is supposed that

1
λ

􏽚
Ω \Ωλt

a(x, t)|∇a|
2
dx􏼠 􏼡

1/2

≤ c(T), (63)

and u(x, t) and v(x, t) satisfy

􏽚
Ω

a(x, t)[1 +(m(x, t) + 1)log u]
2
|∇m|

2dx≤ c(T),

􏽚
Ω

a(x, t)[1 +(m(x, t) + 1)log v]
2
|∇m|

2dx≤ c(T).

(64)

(en,

􏽚
Ω

|u(x, t) − v(x, t)|dx≤ c(T)􏽚
Ω

u0(x) − v0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dx.

(65)

Proof. According to the definition of weak solutions, for all
0≤φ ∈ C1

0(QT), we have

B
QT

utφ(x, t)dx dt + B
QT

a(x, t)

m(x, t) + 1
∇um(x,t)+1∇φdx dt −

− B
QT

a(x, t)

m(x, t) + 1
u

m(x,t)+1log u∇m∇φdx dt

+ 􏽘
N

i�1
B

QT

bi u
m(x,t)+1

􏼐 􏼑φxi
dx dt � 0.

(66)

For any t ∈ [0, T) and a small positive constant λ> 0,
based on

Ωλt � x ∈ Ω: a(x, t)> λ{ }, (67)

we define that

ϕλt(x) �

1, if x ∈ Ωλt,

a(x, t)

λ
, x ∈ Ω\Ωλt.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(68)

Let χτ,s(t) be the characteristic function of [τ, s] ⊂ (0, T).
Because

u(x, t) � 0 � v(x, t), x ∈ x ∈ Ω: a(x, t)≠ 0{ }, (69)

we can choose

χτ,s(t)ϕλt(x)gn u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑, (70)

as the test function. (en,

􏽚
s

τ
􏽚
Ω
ϕλt(x)gn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑

z(u − v)

zt
dx dt

+ 􏽚
s

τ
􏽚
Ω

a(x, t)

m(x, t) + 1
∇um(x,t)+1

− ∇vm(x,t)+1
􏼐 􏼑 · ϕλt(x)∇ u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑 · hn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

+ 􏽚
s

τ
􏽚
Ω

a(x, t)

m(x, t) + 1
∇um(x,t)+1

− ∇vm(x,t)+1
􏼐 􏼑 · ∇ϕλ(x, t)gn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

− 􏽚
s

τ
􏽚
Ω

a(x, t)

m(x, t) + 1
u

m(x,t)+1log u − v
m(x,t)+1log v􏽨 􏽩∇m · ϕλt(x)∇ u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑 · hn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

− 􏽚
s

τ
􏽚
Ω

a(x, t)

m(x, t) + 1
u

m(x,t)+1log u − v
m(x,t)+1log v􏽨 􏽩∇m · ∇ϕλt(x)gn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

+ 􏽘

N

i�1
􏽚

s

τ
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩 ϕλxi
(x)gn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑􏽨 + ϕλt u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑

xi

hn u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑􏼕dx dt

� 0.

(71)
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Firstly, we still have

􏽚
s

τ
􏽚
Ω

a(x, t)

m(x, t) + 1
∇um(x,t)+1

− ∇vm(x,t)+1
􏼐 􏼑

· ϕλt∇ u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑hn u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑dx dt

≥ 0.

(72)

Secondly, for the third term on the left-hand side of (71)
by that 1/λ(􏽒Ω\Ωλt

a(x, t)|∇a|2dx)1/2 ≤ c(T), we have

􏽚
s

τ
􏽚
Ω

a(x, t)

m(x, t) + 1
∇um(x,t)+1

− ∇vm(x,t)+1
􏼐 􏼑 · ∇ϕλtgn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
s

τ
􏽚
Ω\Ωλt

a(x, t)

m(x, t) + 1
∇um(x,t)+1

− ∇vm(x,t)+1
􏼐 􏼑 · ∇ϕλtgn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dx dt

≤ 􏽚
s

τ
􏽚
Ω\Ωλt

a(x, t)

m(x, t) + 1
∇um(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ∇vm(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 ∇ϕλt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx dt

≤ 􏽚
s

τ

1
λ
􏽚
Ω\Ωλt

a(x, t)

m(x, t) + 1
∇um(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ∇v(m(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓|∇a|dx dt

≤ c 􏽚
s

τ
􏽚
Ω\Ωλt

a(x, t) ∇um(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ ∇vm(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓dx􏼠 􏼡

1/2

·
1
λ

􏽚
Ω\Ωλt

a(x, t)|∇a|
2dx􏼠 􏼡

1/2

dt

⟶ 0,

(73)

as λ⟶ 0. (irdly, for the fourth term on the left-hand side
of (71), we can show

􏽚
s

τ
􏽚
Ω

a(x, t)

m(x) + 1
u

m(x,t)+1log u − v
m(x,t)+1log v􏽨 􏽩∇m

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

·ϕλt(x)∇ u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑hn u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑dx dt
􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
s

τ
􏽚

Dnt

a(x, t) ∇um(x,t)+1
− ∇vm(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx􏼠 􏼡

1/2

· c 􏽚
Dnt

a(x, t) u
m(x,t)+1log u

m(x,t)+1
− v

m(x,t)+1log v
m(x,t)+1

􏽨 􏽩
2
hn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑

2
|∇m|

2
dx􏼠 􏼡

1/2

dt

⟶ 0,

(74)

as λ⟶ 0. (e corresponding details are given below.
If D0t � x ∈ Ω: |u − v| � 0{ } is with 0 measure, then
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lim
n⟶0

􏽚
s

τ
􏽚

Dnt

a(x, t) ∇um(x,t)+1
− ∇vm(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx dt

≤ 􏽚
s

τ
􏽚

D0t

a(x, t) ∇um(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ ∇vm(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓dx dt

� 0,

(75)

and by (64),

􏽚
Ω

a(x, t)[1 +(m(x, t) + 1)log u]
2
|∇m|

2dx≤ c(T), (76)

we obtain

lim
n⟶0

􏽚
s

τ
􏽚

Dnt

a(x, t) u
m(x,t)+1log u

m(x,t)+1
− v

m(x,t)+1log v
m(x,t)+1

􏽨 􏽩
2

· hn u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑
2
|∇m|

2dx dt

􏼌􏼌􏼌􏼌􏼌􏼌

≤ lim
n⟶0

􏽚
s

τ
􏽚

Dnt

a(x, t)
um(x,t)+1log um(x,t)+1 − vm(x,t)+1log vm(x,t)+1􏽨 􏽩

2

um(x,t)+1 − vm(x,t)+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 |∇m|

2dx dt

≤ 􏽚
s

τ
􏽚

D0t

a(x, t)[1 +(m(x, t) + 1)log v]
2
|∇m|

2dx

≤ c(T).

(77)

When D0t � x ∈ Ω: |u − v| � 0{ } has a positive measure,

lim
n⟶0

􏽚
s

τ
􏽚

Dnt

a(x, t) ∇um(x,t)+1
− ∇vm(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx dt

≤ 􏽚
s

τ
􏽚
Ω

a(x, t) ∇um(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ ∇vm(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓dx dt

≤ c(T).

(78)

Also by (64),

lim
n⟶0

􏽚
s

τ
􏽚

Dnt

a(x, t) u
m(x,t)+1log u

m(x,t)+1
− v

m(x,t)+1log v
m(x,t)+1

􏽨 􏽩
2
hn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑

2
|∇m|

2dx dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ lim
n⟶0

􏽚
s

τ
􏽚

D0t

a(x, t)
um(x,t)+1log um(x,t)+1 − vm(x,t)+1log vm(x,t)+1􏽨 􏽩

2

um(x,t)+1 − vm(x,t)+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 |∇m|

2dx dt

� 0.

(79)

Fourthly, when bi
′(s)≥ 0, using the partial boundary

value condition (59),
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− lim
λ⟶0

􏽚
s

τ
lim

n⟶∞
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩ϕλtxi
(x)gn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩ϕλtxi
(x)sign u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩ϕλtxi
(x)sign bi u

m(x,t)+1
􏼐 􏼑 − bi v

m(x,t)+1
􏼐 􏼑􏼐 􏼑dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω\Ωλt

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
axi

λ
dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω\Ωλt

u
m(x,t)+1

− v
m(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌bi
′(ξ)

axi

λ
dx dt

≤ lim
λ⟶0

􏽚
s

τ

1
λ

􏽚
Ωλi1t

− ciaxi
􏼐 􏼑 u

m(x,t)+1
− v

m(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dx dt

� 􏽚
s

τ
􏽚
Σi1t

− ciaxi
􏼐 􏼑 u

m(x,t)+1
− v

m(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dΣ dt

� 0.

(80)

When bi
′(s)≤ 0, using the partial boundary value con-

dition (59), we have

− lim
λ⟶0

lim
n⟶∞

􏽚
s

τ
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩ϕλtxi
(x)gn u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩ϕλtxi
(x)sign u

m(x,t)+1
− v

m(x,t)+1
􏼐 􏼑dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩ϕλtxi
(x)sign bi u

m(x,t)+1
􏼐 􏼑 − bi v

m(x,t)+1
􏼐 􏼑􏼐 􏼑dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω\Ωλt

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
axi

λ
dx dt

� − lim
λ⟶0

􏽚
s

τ
􏽚
Ω\Ωλt

u
m(x,t)+1

− v
m(x,t)+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌b
’
i(ξ)

axi

λ
dx dt

≤ lim
λ⟶0

􏽚
s

τ

1
λ

􏽚
Ωλi2t

− ciaxi
􏼐 􏼑 u

m(x,t)+1
− v

m(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dx dt

� 􏽚
s

τ
􏽚
Σi2t

− ciaxi
􏼐 􏼑 u

m(x,t)+1
− v

m(x,t)+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dΣ dt

� 0.

(81)

(e last but not the least, as in the proof of(eorem 2, we
can show that
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lim
λ⟶0

lim
n⟶∞

􏽚
s

τ
􏽚
Ω

bi u
m(x,t)+1

􏼐 􏼑 − bi v
m(x,t)+1

􏼐 􏼑􏽨 􏽩ϕλt u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑
xi

· hn u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑dx dt

� 0.

(82)

(en,

lim
n⟶∞

lim
λ⟶0

􏽚
s

τ
􏽚
Ω

gn u
m(x,t)+1

− v
m(x,t)+1

􏼐 􏼑ϕλt

z(u − v)

zt
dx dt

� 􏽚
Ω

|u(x, s) − v(x, s)|dx − 􏽚
Ω

|u(x, τ) − v(x, τ)|dx.

(83)

Letting λ⟶ 0 and n⟶∞ in (73), by (74) and
(80)–(85), we obtain

􏽚
Ω

|u(x, s) − v(x, s)|dx≤ c􏽚
Ω

|u(x, τ) − v(x, τ)|dx. (84)

By the arbitraries of τ, we have

􏽚
Ω

|u(x, t) − v(x, t)|dx≤􏽚
Ω

u0(x) − v0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dx. (85)
□

Proof of =eorem 2. Because for every i ∈ 1, 2, . . . , N{ }, ei-
ther bi
′(s)≥ 0 or bi

′(s)≤ 0, by checking the process of the
proof of (80) or (81), we easily obtain (eorem 3. □

6. Conclusion

In this paper, we consider the initial-boundary value
problem of a generalized porous medium equation with a
variable exponent. Different from the previous related
works, both the diffusion coefficient a(x, t) and variable
exponent p(x, t) are dependent on the time variable t, we
find out a partial boundary value condition matching up
with the equation.(emost important innovation is that the
partial boundary value condition matching up with the
equation is based on a submanifold of zΩ × (0, T). However,
because there is an additional condition (23) imposed,
(eorem 3 has not answered the problem globally. In other
words, how to obtain the same conclusion as that in (e-
orem 3 without condition (23) is remained to be studied in
the future.
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