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We study the local dynamics and bifurcation analysis of a discrete-time modified Nicholson-Bailey model in the closed first
quadrant IRi. It is proved that model has two boundary equilibria: O(0, 0), A(({, — 1)/{,, 0), and a unique positive equilibrium
B((re")/(e" - 1),r) under certain parametric conditions. We study the local dynamics along their topological types
by imposing method of Linearization. It is proved that fold bifurcation occurs about the boundary equilibria:
0(0,0), A((¢, — 1)/{,,0). It is also proved that model undergoes a Neimark-Sacker bifurcation in a small neighborhood
of the unique positive equilibrium B((re")/(e" — 1), ) and meanwhile stable invariant closed curve appears. From the
viewpoint of biology, the stable closed curve corresponds to the period or quasi-periodic oscillations between host and
parasitoid populations. Some simulations are presented to verify theoretical results. Finally, bifurcation diagrams and

corresponding maximum Lyapunov exponents are presented for the under consideration model.

1. Introduction

The usual framework for the discrete-time host-parasite mod-
els is:

Xn+1 = ban(Xn’ Yn) }, (1)

Y, =eX,(1-f(X,Y,))

where X, and Y, represent the population size of the host and
parasite in successive generationsnand n + 1respectively. The
parameter b is the host finite rate of increase in the absence of
parasites, c is the biomass conversion constant and f is the
function defining the fractional survival of hosts from para-
sitism. The simplest version of this model is that of Nicholson,
and Nicholson and Bailey who explored in depth a model in
which the proportion of hosts escaping parasitism is given by
the zero term of the Poisson distribution [1-3]:

f(Xn’Yn) = e_“Yn) (2)

where aY, are the mean encounters per host. Thus,1 — e " is
the probability of a host will be attacked. Using (2) in (1), one
gets

X . =bX e
n+l n ) } (3)

Y, =cX,(1-e"

In 2014, Qureshi et al. [4] have investigated the asymptotic
behavior of the following Nicholson-Bailey model:

X ., =Rxe*V
Y, =x,(1-e") [

n

(4)

where R, a and initial conditions x,, ,are positive real numbers.
Further in 2015, Khan and Qureshi [5] have investigated the
dynamics of the following modified Nicholson-Bailey model:

_bX,e
1+ dX, : (5)
Y, =X, (1-¢")

where a,b, ¢, d and initial conditions x,, y, are positive real
numbers. Our aim in this paper is to explore the local dynam-
ics along with topological classification and bifurcation anal-
ysis of the model (5). First, we make the following rescaling
transformations:

X, =1y, =21,
h= Y, =2 ©)
then system (5) becomes
bx,e "
B T T4 (dfb)x
ac " ’ (7)

yn+1 = E'xn(l - eiy”)
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For simplicity, we assume that b = ac, and then model (7)
becomes:
_ Gixe
T Tvox ot (8)
Yurr = %,(1—€7")

where{, =b>0and{, =d/b > 0.

The rest of the paper is organized as follows: Section 2
deals with the study of existence of equilibria of the model (8).
In Section 3, we study the local dynamics and existence of
bifurcations about equilibria:  O(0,0), A(({, - 1)/{,,0),
B((re")/(e" = 1),r) of the model. Section 4 deals with the
study of Neimark-Sacker bifurcation about B((re”)/(e" — 1), 1)
of the model (8). Numerical simulations along with discussion
are presented in the last Section.

2. Existence of Equilibria of the Discrete-Time
Model (8)

In this Section, we study the existence of equilibria of the
model (8) in R, The results about the existence of equilibria
are summarized as follows:

Lemma 1. Discrete-time model (8) has at least two boundary
equilibria and the unique positive equilibrium point in R..
More precisely,

(i)  For all parametric values {, and (,, model (8) has a
unique equilibrium point: O(0, 0);

(i) If{, > 1then model has boundary equilibrium point:
A((Cl - 1)/52’0);

(iii) Suppose that

ye’

7

z=G(p) =€+,
e —1

> 9)

andz = {and when {, > {, + 1, the curve z = G(y) inter-
sect the line z = (| atr, say. If{, > {, + 1then there exist a
uniquer such that B((re")/(e" — 1), r) has a unique positive
equilibrium point of (8).

Proof. For finding number of equilibria of the model (8), we
have to solve the following system of equations:

_ (lxe_J7
X =

1+0% (10)
yz)?(l—e_y)

(i) Let X = 0, then 1™ equation of system (10) satisfied
identically and from 2™ equation we obtain 7 = 0.
So system (10) has always equilibrium O(0, 0) for all
parameter values {,,{, > 0.

(ii) Lety = 0,then 2 equation of (10) satisfied identically
and from1*equationweobtainx = ({, — 1)/,.Hence
system has boundary equilibrium A(({, - 1)/{,,0)
ifd, > 1.

(iii) Now we locate the unique positive equilibrium of
(10) in IRi. For this, let X # 0, then (10) becomes
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_ Ge”
C1+GE - (11)
y=x(1-¢")
Now eliminating X from (11), one gets
—~ 2)’7
5 e
(1:‘3),‘*'(2:;_1' (12)

Denote,

=~ 27

PO ye

G(y) =e +cze)7_ 1'

Then the y-coordinates of positive equilibria of (8) are the

corresponding y-coordinates of the point of intersection of

z = G(y) and z = {, with ¥ > 0. By calculating derivative of
F(y), one get

(13)

(ey - 1)(2)7+ 1) - ye’

(@)

G'(3) =€ +(e”

<0, Vy<0.(14)

Moreover

- 527
lim G(¥) = lim (ey +¢, e >,
70t y=0 e -1
=+ 1.

So, if {; < {, + 1, then there exists no intersection point of
z = G(¥) and z = {,. This implies that model (8) has no posi-
tive equilibria if{; < {, + 1L Andif{; > {, + 1, then there exists
a unique point of intersection ({;,r) of z = G(¥) and z = {,
with 7 > 0 (see Figure 1). Therefore, if {; > {, + 1then (8) has
positive equilibrium point and the positive equilibrium point
of (8) is unique. We denote it by B((re")/(e" — 1),r) where r
is the positive solution of (12).

(15)

3. Local Dynamics and Existence of
Bifurcations about Equilibria: 0(0,0),
A((¢, - 1)/¢,,0), B((re")/(e" - 1), ) of the Model (8)

In this Section, we will study the local dynamics of (8) about
0(0,0), A((¢, - 1)/¢,,0), and B((re")/(e"—1),r). The

Jacobian matrix J; ) of (8) about equilibrium (%, 7) becomes

(e ~ { xe”
Jes)=| (1+4x)7 144X ). (16)
1-e” Xe”
And its characteristic equation is
K = p(% e +q(%7) = 0, (17)
where R
~ {le—}’ = -y
X5 = 5 >
p(x.7) (1+ Z',232)2
- 5 5 18
gy L st
X5 = ~
N TP CR R
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Lemma 2. For equilibrium O, the following holds:

(i) Oisasinkif(, <1

(ii) O is never source;

(iii) Oisasaddleifl, > 1;

(iv) O is nonhyperbolic if {; = 1.

From Lemma 2, we can see that one of the eigenvalues
about the equilibrium O(0,0) is 1. So fold bifurcation may
occurs when parameter vary in the small neighborhood of

¢ =1

Lemma 3. For A(({, - 1)/{,,0), the following holds:
(i) A((¢,-1)/(,,0)isasinkif, >, - &

(i) A((¢,-1)/,,0) is never source;

(iii) A((¢,-1)/{,,0)isasaddleif(, <, -

(iv) A((¢, -1)/,,0) is nonhyperbolic if §, = {, — 1.

We can easily see that if condition (iv) of Lemma 3 hold
then one of the eigenvalues about equilibrium A(({, — 1)/, ,0)
is 1. So fold bifurcation may occur when parameters vary in
a small neighborhood of {, ={, — 1. And we denote the
parameters satisfying {, = {, — las

F,={(,8) : =4 - 1,54, > 0 (19)

Hereafter, we will investigate the local dynamics of (8) about
B((re")/(e" = 1),r) by using Lemma 2.2 of [6]. The Jacobian
Matrix Jp((,er)/(e-1).r) of linearized system of (8) about

B((re")/(e" = 1),r) is

Kz—p;c+q=0, (20)
where
oo e -1 LT
e —1+0re € -1
o (21)
q +7r.

e —1+(re

Moreover eigenvalues of /p((re')/(e-1).-) about B((re")/(e” - 1),7)
is given by

-px VA
Klzzp—$ (22)
> 2
where
A:p2—4q
(e e51) oo )
= - r+r -4 ﬁ‘l’?’
e —1+0re e -1 e —1+(,re
e -1 r

(23)

< o

Hereafter, we will give the topological classification of (8)
about B((re")/(¢e" —1),r) according to the sign of
A=((e -1)/(e" =1+ re) = (n)](e - 1)) - 4r.

e —-1+0re € -1



Lemma 4. For B((re")/(e" — 1), r), the following holds:

(i) B((re")/(e" = 1),r) is Locally Asymptotically Node if

( e -1 r >2
- - — = —4r >0,
e —-1+0re € -1
) (24)
0<¢( < (- 1) ;
P (r-r+1)(e -1))
(ii)) B((re")/(e" —1),r) is Unstable Node if
( e -1 o )2 C4r >0
e —1+0re € -1 -7 (25)

(¢ - 1) ,
e(r—(r+1)(e-1))
(iii) B((re")/(e" = 1),r) is nonhyperbolic if

( c-l >2—4r20,
e€—-1+0re € -1

- (er_l)Z (26)
2 (r=(r+1)(e 1))

G, >

Lemma 5. For B((re")/(e" —1),r), following statements
holds:

(i) B((re")/(e" —1),r) is Locally Asymptotically Focus if

e(l-r-1
re'(r—1) °

(27)

r 2
-1
(,e ,—rr >—4r<0,0<(2<
e —1+0re” € -1

(ii) B((re")/(e"—1),r) is Unstable Focus if

e(l-r-1
re'(r-1) °

(28)

e -1 r o\
(er—1+(2rer - er—1> <G>
(iii) B((re")/(e" —1),r) is nonhyperbolic if

f(l-r) -1
re'(r—1) °

(29)

e -1 r Y\
- -4r<0,(, =
(er—1+C2rer e’—l) &

If condition (iii) of Lemma 5 holds then we obtain that
eigenvalues of B((re")/(e" — 1), r) are a pair of conjugate com-
plex numbers with modulus one. So Neimark-Sacker
bifurcation exists by the variation of parameter in
a small neighborhood of {, = (e'(1-r)-1)/(re'(r - 1)).
For simplicity, we denote the parameters satisfying

= Q-r)-1)/(re'(r—1))as

r 2
e —1 r
N, = , . — —-4r <0,
B {(cl c2) <€r—1+C21’€r er_1>
"1-r)-1 " 30
C2=e(r—r),0<r<r}. ( )
re' (r—1)
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4. Bifurcation Analysis about B((re")/(e" - 1),r) of
the Model (8)

This Section deals with the study of Neimark-Sacker bifurca-
tion of the model (8) about B((re")/(e" —1),r). Consider
parameter {, in a small neighborhood of {3, i.e, {, = {; +¢,
where € <« 1, then (8) becomes:

C]xne_yn
X = ————
U1+ (G +e)x, } (31)
yn+1 = xn(l - e’}’n)

The characteristic equation of ] B((re') /(1)) about
B((re")/(e" - 1),r) of (31) is

_— q,(e)x + g,(e) =0, (32)
where
e -1 r
0(€) = e —1+({ +e)re” " e -1
, (33)
q,(€) = +7.

e —1+({; +e)re

The roots of characteristic equation of ] B((re')/(¢ -1).r) ADOUL
B((re")/(e" - 1),r) are

q,(€) £ 11/4q,(e) - qf(e)
Kip = 2
_ e' -1 + T
2 -1+ (E He)re’)  2(e"-1)

r 2
L 4r — e -1 T
T2 e —1+( +ere’ €e-1)°

dlx
2l = Vaa(©), %

Additionally, we required that whene = 0,«7’, # L, m = 1,2,3,4,
which corresponds to g, (0) # 2,0, 1,2 Since g, (0)* - 44,(0) < 0
and q,(0) = 1. Thus q,(0)* < 4 and hence g, (0) # +2. So we
only require that g, (0) # 0, 1. By computation, we get

(34)

= _%e’(r -1)*<0. (35)

=0

r (e-1)r-1) @r-1)+1
r :/: > .
e —1 r r

(36)

Let u, =x,—x",v,=y,—y" then equilibrium B((re")/
(e" = 1),7) of system (8) transform into O(0, 0). By calculating,
we obtain

_ G, X )e_(vnﬂ*) - x*
(G +e)(u, +x7) SN
Vay1 = (un + X*)(l - e—(%ﬁ-)’*)) - y*
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wherex” = (re")/(e" — 1), y* = r. Hereafter, when € = 0, nor-
mal form of system (37) is studied. Expanding (37) up to third
order about (u,,v,) = (0, 0) by Taylor series, we get

_ 2
Uy = Mt + Ay, + Aju, + Ayu,y,
2 3 2 2
+A v, + A u, A uy, + A gu v,

(38)
3
+A V) + o((|un| +{v,]) ) ,
2
Uy = Mygth, + Mgy, + Ajsu, v, + Ay vy ,
A5tV + Mgy + o (fu| + v, )7)
where
1 . G
A = —,A = —X )A = -,
U+t P+ gxty
1 1 &
= _—’A == *)A = —23
14 1+ Cx0s 2 X Rs (1+ Z*x*)s
_ 2 __ 1 _ L. (39
17 18 * _ *\24Y19
(1+x") 2(1+¢;x7)
¢ -1 x" 1 :
Ay = o Ny = . Ny = 67>A24 = _567)
11 1x"
Ay = _ET’Aze = 6.
e e
Now, let
B e -1 LT
1 20" -1+ Gre)  2(e"-1)
2 (40)
1 ( e -1 r )
Cz = \[4r - r * _r T >
2 e —-1+(re € -1
and invertible matrix T defined by
A 0
T= ( " ) 41
n-~Ay (1)
Using following translation
2)=(rma, S)GE) e
<vn n-A, -C/\Y,/) (42)
(38) gives:
(ﬁl);(” ‘9(2)(?@\1)) (43)
Y, ¢ 1 \Y, \¥(X,7,)
where

a\)(i\n’?n) = Qn)/(\nz + QIZ)/(:Z + Q135/:2
+ QX7 +0Q,.X°Y, +Q,X,Y,°
)3), (44)
g~ v ~ 2 T X2
‘I/(Xn, Yn) =0, X, +0,X, Y, +Q,7,
+ Q245(713 + 0255(712?\71 + stj(:zz

))

+ Q1717;3 + O((|)Tn + ?;

0,7 o (K 4|7,

+

As(n-Ay)
Q, :A12A13+(’7_A11)|:A14+ M]’

Ay,
2A -A
Q= _<|:A14 + M]’
Ay
A
Q= A 15:014 = A12(A12A15 + A17(17 - All))
12

A -A
+(’7_A11)2(A18+ 19(1 H)>’
12

3A,(n-Ay)
le:_C[A12A17+(’7_A11)<2A18+ IQA - >:|’
12
3A,(n—-Ay,) CA
19 1 :|’Ql7:_ 19

QlG:(Z{AHﬁ n
12

12

n-A
Q,, = %[AIZ(AB +A,(n=Ay) _Azs)

r-a (2R )

A12

As(n-Ay)
sz:2(17—A11)<%_A24)_A12A14(’7_A11_A23)’
12
Ays(n-Ay)
Q :([M_,\ ]
23 A, 24
(n-4,)
024:T11 A=A )| ApA e+ A(-Ay)

(2000

I

Ay,
A A(n-Ay)
st:_(’I_Au)[An(%"'Z(%_Azs
12
A -A
+3(’1_A11)(w_1\26)1|’
12
A -A
026:C[A12< 18(1 11)_Azs>
12

- n (Pt ]

Ay(n—Ay) _A ]
2 |

Q, = —(2[
27 A12

In addition,

q)fnfn'(o,o) = ZQ“’
s 00 Qp
Oy, ©0) 20,5,

2Q

e, =60
X, X, X, 1(0,0) 142
Orxrl

00 ~ 1P

Pz,

20

00 ~ “TU1e

q)?fnﬂ(o,o) = 6Qy;,

(45)

(46)
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TaBLE 1: Number of equilibria along their qualitative behavior of (8).

E.P

Corresponding behavior

0(0,0)
A((Cl - 1)/Cz> 0)
B(re' /(" - 1),7)

Sink if {; < 1; never source; saddle if {; > I; nonhyperbolic if{; = L
Sink if {, > {; — L; never source; saddle if {, < {, — 1; nonhyperbolic if{, = {, — L

Locally asymptotically node if

((e"=1)/(e" =1+ re) = (r)/(e" - 1))2 —4r > 0ands0 < {, < ((er - 1)2)/(6'(1’ —(r+1)(e -1)));

Unstable node if

(" =1)/(e =1+ Lre) = (r)/(e = 1))’ —4r = 0and {, > (¢ — 1)*/e"(r — (r + 1)(e" — 1));

Nonhyperbolic (for real eigenvalues) if

((¢"=1)/(e =1+ re") = (r)/(e" = 1))’ —4r > 0and{, = (- D")/(€ (r - (r+ 1)(e - 1)));

Locally asymptotically focus if

(¢ =1)/(e =1+ re’) = (r)/(e —1))’ —4r < 0and0 < {, < (¢'(1 —r) — 1)/(re’ (r - 1));

Unstable focus if

((e"=1)/(e" =1+ Lre") — (r)/(e" = 1))’ —4r < 0and{, > (¢'(1 —r) — 1)/(re’ (r — 1));
Nonhyperbolic (for complex eigenvalues) if

(e = 1)/(e =1+ re") = (r)/(e = 1)) —4r < 0and{, = (e'(1 —r) — 1)/(re"(r - 1)).

XX 00 = 20y,
\?X\ni (0,0) = 922’
@17"7”|(0,0) = 205

P 5.5 |00 = 0%

(47)

P xr 00 = 2%
20,

©00)

¥rr2 ] o) = 60

In order for (43) to undergo Neimark-Sacker bifurcation, it
is required that following discriminatory quantity, i.e., ¥ # 0
(see [6-13]).

(1 - 2&)&> 1 }
Y= _Re[?fnfzo] - 5”711”2 - ""’02"2 + Re(kty,),
(48)
where
17— - - - - -
7o = 5P~ Brp + ¥+ (Vw ~ Vir + 20x7)]|
17~ —~ ~
= 3 @xx + Orp + (Ys + Frp)|
1~ — — — — —
Ty = g[q’m ~Opp +2¥5p + (Vg - Yoy - Zq’m)]‘(o o
1 r—~ — — —
™ Tg [Pgxx + Oxrr + Yoxr + Vrrr,

¥z + ¥orr ~ Oxxr ~ Orrr)] |<0,0)-

(49)

After calculating, we get
1

T2 = Z[QH = Qs+ Oy +1(Qy — Uy + Q)]s
1
Tll = E[QH + Q13 + 1(021 + Q23)]’

1
T = Z[Qu = Q5+ Qyy +1(Qy,

(50)
- Qza - le)]’

1
T = 5[3014 + Qe + Qs + 30, + ’(3024 + 0 — Q5 — 3017)]'

Based on this analysis and Neimark-Sacker bifurcation
Theorem discussed in [12, 13], we arrive at the following
Theorem:

Theorem 1. If ¥ # 0 then model (8) undergoes a Neimark-
Sacker  bifurcation about B((re")/(e"—1),r) as the
parameters ({,,(,) go through N Additionally, attracting
(respectively repelling) invariant closed curve bifurcate from
B((re")/(e" = 1),r) if ¥ < 0 (respectively ¥ > 0).

According to Neimark-Sacker bifurcation discussed in
[12, 13], the bifurcation is called supercritical Neimark-Sacker
bifurcation if the discriminatory quantity ¥ < 0. In the fol-
lowing Section, numerical simulations guarantee that super-
critical Neimark-Sacker bifurcation occurs for the model (8).
Biologically, attracting closed curve indicates that both para-
sitoid and host populations will coexist under the periodic or
quasi-periodic oscillations with long time.

5. Numerical Simulations and Discussion

This work deals with the study of local dynamics and bifurca-
tion analysis of a discrete-time two-species model in R>. We
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FIGURE 2: Phase portraits of the model (8). (a) ¢, = 0.01665 with (0.006, 0.04). (b) {, = 0.042365 with (0.006, 0.04). (c) {, = 0.235 with
(0.006, 0.004). (d) ¢, = 0.477 with (0.06, 0.04). () {, = 0.4789 with (0.06, 0.04). (f) {, = 0.4789235 with (0.06, 0.04). (g) {, = 0.466 with
(0.06,0.04). (h) {, = 0.4332 with (0.06, 0.04). (i) {, = 0.45545 with (0.06, 0.04).

F1GURE 3: Continued.
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FIGURE 3: Phase portraits of the model (8). (a) Cz = 2.9 with (0.1, 0.02). (b) Cz = 2.989 with (0.1, 0.2). (c) (2 = 2.9899 with (0.1, 0.2). (d)
{, = 3.6 with (0.001, 0.002). () {, = 3.754 with (0.001, 0.002). (f) {, = 4.1with (0.01, 0.02). (g) {, = 4.231 with (1.001, 0.2). (h) {, = 4.5
with (0.01, 0.0000002). (i) {, = 5.9 with (0.01, 0.002).
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FIGURE 4: Bifurcation diagram and their corresponding maximum lyapunov exponent of the model (8) about B((re")/(e" — 1), 7). (a)-(b)
Bifurcation diagram of the model if {, € [0.32,1.85] and initial condition (1.1, 1.2). (c) Maximum lyapunov exponent corresponding

to (a)-(b).
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FIGURE 5: 3D bifurcation diagrams of the model (8).

proved that the model has two boundary equilibria:
O, A((¢, - 1)/¢,,0) and a unique positive equilibrium point
B((re")/(e" — 1), r) under certain parametric conditions. We
studied the local dynamics along with topological classifica-
tion about equilibriaz  O(0,0), A(({, -1)/(,,0),
B((re")/(e" - 1),r), and conclusion is presented in Table 1.
We proved that about A(({, — 1)/{,, 0) there may exist a fold
bifurcation when parameters of (8) are located in the set:
F,={(,¢,) : ¢, =¢, - 1,{,,¢, > 0}. We also proved that if
{,=(e"(1=r)—1)/(re’(r — 1)) then eigenvalues Js((r¢’)/(¢1).r)
about B((re")/(e" — 1), r) are pair of complex conjugate with
modulus one and thus in particular supercritical Neimark-
Sacker bifurcation occurs under the bifurcation curve:

N, - {(cl,cz) 1

e -1 r )2
e —1+0re” € -1 (51)
ef(l-r)-1

<0, = re’(r—1)

,0<r<r*}.

Biologically, existence of stable closed curves implies that
there exist the periodic or quasiperiodic oscillations between
host and parasitoid populations. Finally, numerical simulations
are provided to verify theoretical discussion. These numerical
simulations presented in Figures 2-5 agree with our theoretical
discussion. Figure 2 shows that B((re")/(e" —1),r) of the
model (8) is Locally Asymptotically Focus when {, < {;, where
{; = 0.5000046770 as presented in Figures 2(a)-2(i) by
choosing ¢, = 2.9899. But when {, goes through the bifurcation
value {5, equilibrium B((re")/(e" - 1),r) of (8) is Unstable
Focus. Meanwhile, an attracting closed invariant curve bifur-
cates from B((re")/(e" — 1),r) of the model (8) as presented
in Figures 3(a)-3(i). Moreover, bifurcation diagrams along

with Maximum Lyapunov Exponent in this case, are plotted
and drawn in Figure 4. Finally 3D bifurcation diagrams are
also plotted and drawn in Figure 5.
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