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Many works studied on complex dynamics of Cournot or Stackelberg games, but few references discussed a dynamic game model
combined with the Cournot game phase and Stackelberg game phase. Under the assumption that R&D spillovers only flow from the
R&D leader to the R&D follower, a duopoly Stackelberg–Cournot game with heterogeneous expectations is considered in this paper.
Two firms with different R&D capabilities determine their R&D investments sequentially in the Stackelberg R&D phase and make
output decisions simultaneously in the Cournot production phase. R&D spillovers, R&D investments, and technological innovation
efficiency are introduced in our model. We find that: (i) the boundary equilibrium of the dynamic Stackelberg–Cournot duopoly
system, where two players adopt boundedly rational expectation and näıve expectation, respectively, is unstable if the Nash
equilibrium of the system is strictly positive. (ii) +e Nash equilibrium of the dynamic Stackelberg–Cournot duopoly system, where
two players adopt boundedly rational expectation and näıve expectation, respectively, is locally asymptotically stable only if themodel
parameters meet certain conditions. Especially, results indicate that small value of R&D spillovers or big value of output adjustment
speed may yield bifurcations or even chaos. Numerical simulations are performed to exhibit maximum Lyapunov exponents,
bifurcation diagrams, strange attractors, and sensitive dependence on initial conditions to verify our findings. It is also shown that the
chaotic behaviors can be controlled with the state variables feedback and parameter variation method.

1. Introduction

An oligopolistic market has a structure where there are a tiny
number of firms producing the same or homogeneous
commodities, which are sold in a common market. +e
classic oligopoly model, proposed by Augustin Cournot
originally in 1838 [1], gives a mathematical description of the
competitions in oligopolistic markets, and it shows how the
firms influence each other in making production decisions.
In static Cournot oligopoly games, all firms know other
opponents’ strategy space, payoff functions, and make ac-
tions simultaneously, which means each firm adopts a näıve
expectation to make his production decision, so he assumes
that the opponents’ yield keeps the same level as that in the
previous period. However, there is no doubt that asymmetry
information exists widely in production practice. To reflect

this phenomenon, significant additions to the formal theory
of oligopoly were made by Stackelberg [2], which was named
as the “leader-follower model”. In this model, two com-
peting firms, where one is called as the leader and the other is
called as the follower, determine their outputs successively
[3] and the leader know the follower’s reaction function, so
the leader usually gains more profits than the follower for his
first-mover advantage. Exactly due to that, each oligopolistic
enterprise must consider not only its own quantity decision
but also the reactions of all other competitors, and behaviors
of both Cournot games and Stackelberg games becomemore
and more complicated.

Precisely because of the strong hypothesis that, the
classical Cournot model and the typical Stackelberg model
require perfect rationality, is difficult to achieve in reality [4],
expectations turn into an important role in modeling
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economic phenomena, and each oligopolistic producer can
use different expectation to adjust his output. Referring to
previous literatures, näıve [5–9], boundedly rational [3, 6–8,
10–15], adaptive [6, 7, 9, 10, 13, 16], local monopolistic ap-
proximation [15, 17–19], expectations are commonly avail-
able strategies and have been adopted to describe dynamics in
Cournot games [6–8, 18, 20–22] and Stackelberg games [3, 15,
23, 24], with two or more players.

Many works focus on games with homogeneous strat-
egies [3, 4, 16], but the belief that each firm in oligopolistic
market behaves with different expectation [6–8, 10, 13, 25,
26], is common in real word, and as a consequence, our
paper will apply this belief to a duopoly game.

Technological innovation is the sustained driving force for
the survival and development of firms, and R&D activities are
important carriers of technological innovation, while they are
also crucial means for firms to acquire core competitiveness.
As referred in many works [27–32], R&D spillovers inevitably
occur in the R&D activities, with both positive and negative
effects. +at means, on one hand, R&D spillovers can lower
the enthusiasm of firms because of other firms’ “hitchhike”,
and on the other hand, it could also reduce all firms’ pro-
duction cost due to the positive externalities. In addition, one-
way R&D spillovers [27, 28] can happen on account of the gap
of R&D capabilities between firms, that is, R&D spillovers
only flow from enterprises with stronger R&D capabilities to
weaker ones in the R&D process, and this phenomenon
would be applied in our paper.

Due to enterprises’ bounded rationality and the univer-
sality of R&D spillovers, we need to consider the following
questions: (i) in a perfectly rational duopolymarket consisting
of two stages of successive R&D and simultaneous produc-
tion, what is the relationship between equilibrium output and
R&D input? (ii) When the duopoly is a bounded rational and
adopts a different output adjustment mechanism, is there
stable output? If Nash equilibrium output exits, what is the
condition? To address these issues, our paper adopts a
Stackelberg–Cournot model to analyze the decision-making
process, which is divided into a Stackelberg R&D phase and a
Cournot production phase. In our model, the oligopolistic
market contains two firms where firm 1 is called as the R&D
leader and firm 2 is called as the R&D follower. Consider that
firms use heterogeneous strategies to adjust their outputs, and
we assume that firm 1 represents a boundedly rational player
and firm 2 adopts näıve expectation. Finally, our research
gives the relationship between Nash equilibrium output and
R&D input in a completely rational monopoly market and
provides the region where the equilibrium output exists in a
boundedly rational duopoly.

Our research contributes to the extant literature on
complex dynamics of Cournot or Stackelberg games. +e
literature on Cournot or Stackelberg games has been studied
a lot, respectively, but few references discussed a dynamic
game model combined with the Cournot game phase and
Stackelberg game phase. Mathematical properties of a sto-
chastic Stackelberg–Nash–Cournot game [33] and a dis-
continuous Cournot–Stackelberg model [34] have been
studied. Flåm et al. [35] discussed continuity properties of
the followers reaction and provided sufficient conditions for

existence of Stackelberg–Cournot equilibrium in oligopo-
listic markets. Julien [36] compared the Cournot equilib-
rium and the Stackelberg–Cournot equilibrium in a mixed
markets exchange economy. Ma and Ren [37] analyzed a
dynamic Cournot–Stackelberg model, which involved a
feedback regulation system with one manufacturer and two
retailers in the market. Xu et al. [38] used a novel Stack-
elberg–Nash–Cournot equilibrium model to discuss the
relationship between the subarea managers and the reservoir
authority, at the perspective of water rights transaction.
+ese papers, which studied on Stackelberg–Cournot games
or Cournot–Stackelberg games, are primarily based on
perfect rationality. By contrast, our paper focuses on a
Stackelberg–Cournot game with imperfect rationality.

Our research also complements the literature that
studied R&D spillovers in a nonlinear dynamic system. Ever
since D’Aspremont and Jacquemin proposed AJ model [27],
where completely rational duopoly firms play a two-stage
game with Cournot R&D and Cournot production, many
papers have studied the influence of technology spillover on
enterprise competition and cooperation [28, 39], and im-
perfect rationality plays an important role in dynamic
analysis of R&D spillovers [29–32]. Our paper differs from
these aforementioned references in three ways. First, extant
literature is generally based on the assumptions of bilateral
spillovers and simultaneous actions in a two-stage game
[29–32]. By contrast, this paper considers a Stack-
elberg–Cournot model which includes the Stackelberg R&D
phase with one-way spillovers and the Cournot production
phase. Second, in a two-stage game, we assume duopoly
firms are bounded rationality in quantity decision-making,
the hypothesis same as that of [15], while most previous
literature assume that oligopoly enterprises are bounded
rational in R&D activities. Unlike [15], we increase the study
of the R&D spillover coefficient. +ird, like other papers, we
study the spillover coefficient, but the difference is that we
also study the influence of technological innovation effi-
ciency (TIE) on the equilibrium output.

Two important findings of our research are summarized
as follows. First, the equilibrium quantity is ultimately de-
termined by firms’ R&D spillover, TIE, and marginal cost in
a perfectly rational duopoly market consisting of the suc-
cessive R&D stage and simultaneous production stage, not
the R&D input, which is different from our common sense
that the Nash equilibrium output is directly related to R&D
input [29, 32]. +is is because the R&D input is also de-
termined by firms’ R&D spillover, TIE, and marginal cost
with backward induction. Second, we give the local stability
condition of Nash equilibrium. Unlike extant references [29,
31, 32], our paper particularly studies the influence of R&D
spillover and TIE on the stability of the Nash equilibrium
output, where two firms adopt boundedly rational expec-
tation and naı̈ve expectation, respectively, and we find that
small value of R&D spillovers or big value of output ad-
justment speed may yield bifurcations or even chaos.

+e content of this paper is as follows. In Section 2, the
nonlinear duopoly Stackelberg–Cournot model is described,
and a two-dimensional discrete system with heterogeneous
players is formulated. In Section 3, the existence and stability
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of equilibrium points in the dynamical system are analyzed,
and the stable regions are also calculated. To verify our
theoretical results, numerical simulations are carried on to
show complex dynamic in Section 4, such as maximum
Lyapunov exponents, bifurcations, strange attractors, and
sensitive dependences on initial conditions. In Section 5, a
new method named control strategy of the state variables
feedback and parameter variation is employed to control
chaos of the system. Finally, the research results are sum-
marized and discussed in Section 6.

2. The Model

2.1. 'e Duopoly Stackelberg–Cournot Model. In this paper,
the duopoly Stackelberg–Cournot game is divided into
two stages. Stage 1 is the Stackelberg R&D phase where the
strategy space is the choice of R&D investments, two firms
with different R&D capabilities sequentially carry out
non-cooperative game around R&D investments for the
sake of higher revenues, in the innovative process, the
R&D leader makes decision on its R&D investments first,
the follower determines his input after observing the
opponent’s decision, and furthermore, we assume that
R&D spillovers only flow from the R&D leader to the
follower. Stage 2 is the Cournot production phase where
the strategy space is the choice of output, and in this
phase, the choices of R&D investments made in stage 1 are
common knowledge, the two oligarchs decide their out-
puts simultaneously.

We consider a duopoly Stackelberg–Cournot game
where two firms, labelled by i � 1, 2, produce perfect sub-
stitute goods with production levels qi, i � 1, 2, respectively,
and sell them at discrete time periods t � 0, 1, 2, . . . on a
commonmarket. Firm 1 is the Stackelberg leader, and firm 2
is the follower; besides, we denote the output of firm i at time
period t by qi(t), which is updated according to discrete time
steps.

Assume that the inverse demand function has the linear
form p(Q) � a − Q, where the total supply Q � q1 + q2, and
the positive constant α represents the maximum amount of
outputs that can be brought to the market. +e production
cost function is denoted by Ci(qi) � ciqi, where ci represents
the marginal cost of firm i’s products, and c1 � c2 � c before
the innovation.

In the Stackelberg R&D phase, it generates autono-
mous cost reductions under decreasing returns to R&D
investments, that is, firms should define the optimal R&D
level to balance the innovation cost and the marginal cost
reduction. With sequential play at the Stackelberg R&D
stage, due to R&D’s one-way flow, the cost reduction
accruing to the firm 1 just depends on his own invest-
ments x1, and the marginal cost for the R&D leader is
given by c1 � c − β1

��
x1

√ (the assumption same as that of
[28], while that for the R&D follower is given by
c2 � c − β2(

��
x2

√
+ θ ��

x1
√

). βi is the technological inno-
vation efficiency (TIE) of firm i. θ is the coefficient of
R&D spillovers, which implies that some benefits of firm
1’s R&D flow to firm 2 without payment, the external
effect of the leader’s R&D is to lower the follower’s

marginal production cost, specifically, and θ ∈ [0, 1], θ �

0 means the technological innovation of the R&D leader
is not freely obtained by the follower, while θ � 1 means
fully obtained without any payment. Moreover, the cost
reduction yi � βi

��
xi

√ represents the R&D production
function, characterized by the inverse mapping of the
R&D cost function used by D’Aspremont and Jacquemin
[27], with xi � ((1/βi)yi)

2 and βi � (2/c). As to firm 2, the
cost reduction is not only due to the innovation of its
own R&D investments but is also attributed to the
technology spillover from firm 1.

With these assumptions, the profit of each firm is

π1 q1, q2( 􏼁 � q1 a − q1 − q2 − c − β1
��
x1

√
( 􏼁􏼂 􏼃 − x1, (1)

π2 q1, q2( 􏼁 � q2 a − q1 − q2 − c − β2
��
x2

√
− θβ2

��
x1

√
( 􏼁􏼂 􏼃 − x2.

(2)

+en, the marginal profit of each firm at point (q1, q2) is
given by

zπ1

zq1
� a − 2q1 − q2 − c − β1

��
x1

√
( 􏼁. (3)

zπ2

zq2
� a − q1 − 2q2 − c − β2

��
x2

√
− θβ2

��
x1

√
( 􏼁. (4)

In order to maximize each firm’s profits, set (zπ1/zq1) �

0 and (zπ2/zq2) � 0 and solve for q1 and q2; then, the
Cournot Nash outputs are obtained as the following form:

q
c
1 �

a − c − θβ2 − 2β1( 􏼁
��
x1

√
− β2

��
x2

√

3
. (5)

q
c
2 �

a − c + 2θβ2 − β1( 􏼁
��
x1

√
+ 2β2

��
x2

√

3
. (6)

Substituting equations (5) and (6) into equation (2) to
get the maximum of π2, we calculate a derivative of π2
with respect to x2 and set it to zero; then, the optimi-
zation problem of the follower has a unique solution as
follows:

x2 x1( 􏼁 �
2β2 a − c + 2θβ2 − β1( 􏼁

��
x1

√
􏽨 􏽩

9 − 4β22

⎧⎨

⎩

⎫⎬

⎭

2

. (7)

We take equations (5)–(7) into equation (1), equate the
partial derivative of π1 with respect to x1 to zero, and then,
the optimal actions of firms can be obtained as follows:

x1 �
(a − c) Δ1 − 2β22􏼐 􏼑Δ2

9Δ21 − Δ22
⎡⎣ ⎤⎦

2

, (8)

x2 �
2β2(a − c)

Δ1
􏼢 􏼣

2

1 +
2θβ2 − β1( 􏼁 Δ1 − 2β22􏼐 􏼑Δ2

9Δ21 − Δ22
⎡⎣ ⎤⎦

2

, (9)

where Δ1 � 9 − 4β22 and Δ2 � 18β1 − 9θβ2 − 6β1β
2
2. We

substitute equations (8) and (9) into equations (5) and (6),
and then, the equilibrium solution in the Stack-
elberg–Cournot game is obtained as the following form:
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q
∗
1 �

(a − c) 9Δ31 − θβ2 − 2β1( 􏼁Δ21Δ2 − 18β22Δ
2
1 − Δ1Δ

2
2 − 2β22 θβ2 + β1( 􏼁Δ1Δ2 + 4β42 2θβ2 − β1( 􏼁Δ2 + 2β22Δ

2
2􏽨 􏽩

3Δ1 9Δ21 − Δ22􏼐 􏼑
,

q
∗
2 �

(a − c) 9Δ31 + 2θβ2 − β1( 􏼁Δ21Δ2 + 36β22Δ
2
1 − Δ1Δ

2
2 + 2β22 2θβ2 − β1( 􏼁Δ1Δ2 − 8β42 2θβ2 − β1( 􏼁Δ2 − 4β22Δ

2
2􏽨 􏽩

3Δ1 9Δ21 − Δ22􏼐 􏼑
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

2.2. Duopoly Stackelberg–Cournot Game with Heterogeneous
Strategies. We consider two firms think with different
strategies to decide their outputs for profit maximization.
+e leader uses bounded rationality, he does not have a
complete knowledge of the market demand function, and
determines his output on the basis of expected marginal
profit (zπ1/zq1); in consequence, he increases (decreases)
the production if the marginal profit is positive (negative) at
the next period. +e dynamic adjustment mechanism can be
modeled as follows:

q1(t + 1) � q1(t) 1 + v a − 2q1(t) − q2(t) − c − β1
��
x1

√
( 􏼁􏼂 􏼃􏼈 􏼉,

(11)

where v is a positive constant, which represents the output
adjustment speed of firm 1.

We assume the follower is a naı̈ve player, he computes
his output according to the reaction function, which is
derived from equation. (4), e.g., the dynamical equation of
firm 2 has the form as follows:

q2(t + 1) �
a − c − β2

��
x2

√
− θβ2

��
x1

√
( 􏼁 − q1(t)

2
. (12)

We combine equations (11) and (12); therefore, the two-
dimensional system that characterizes the dynamics of a
Stackelberg–Cournot duopoly game with heterogeneous
players is given by

q1(t + 1) � q1(t) 1 + v a − 2q1(t) − q2(t) − c − β1
��
x1

√
( 􏼁􏼂 􏼃􏼈 􏼉,

q2(t + 1) �
a − c − β2

��
x2

√
− θβ2

��
x1

√
( 􏼁 − q1(t)

2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

3. Equilibrium Points and Local Stability

In this section, we solve the equilibrium points of the dy-
namic duopoly game to study their qualitative behavior. We
set qi(t + 1) � qi(t), i � 1, 2 in (13), and we can get the
solution of the nonlinear algebraic system as follows:

q1 � q1 1 + v a − 2q1 − q2 − c − β1
��
x1

√
( 􏼁􏼂 􏼃􏼈 􏼉,

q2 �
a − c − β2

��
x2

√
− θβ2

��
x1

√
( 􏼁 − q1

2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

Easily, the algebraic system (14) has two equilibrium
points:

E1 0,
a − c + β2

��
x2

√
+ θβ2

��
x1

√

2
􏼠 􏼡,

E2 q
∗
1 , q
∗
2( 􏼁,

(15)

where the expressions of x1 and x2 are given by equations (8)
and (9), respectively and q∗1 and q∗2 are shown in equation
(10). Obviously, E1 is a boundary equilibrium point and E2 is
the unique Nash equilibrium point. E2 has positive coor-
dinates provided that

a − c − θβ2 − 2β1( 􏼁
��
x1

√
− β2

��
x2

√ > 0,

a − c + 2θβ2 − β1( 􏼁
��
x1

√
+ 2β2

��
x2

√ > 0.

⎧⎨

⎩ (16)

To investigate the local stability of the equilibrium points
E1 and E2, we have to find the Jacobian matrix for the system
of equation (13) at any point (q1, q2) taking the following
form:

J q1, q2( 􏼁 �

1 + v a − 4q1 − q2 − c + β1
��
x1

√
( 􏼁 −vq1

−
1
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(17)

+e equilibrium points will be stable if the eigenvalues
φi, i � 1, 2 of the abovementioned Jacobian matrix satisfy
inequalities |φi|< 1.

Proposition 1. If the Nash equilibrium E2 is strictly positive,
the boundary equilibrium point E1 of the discrete dynamical
system (13) is a saddle point.

At the boundary equilibrium point E1, the Jacobian
matrix becomes a triangular matrix and takes the following
form:

J E1( 􏼁 �

1 +
v a − c + 2β1

��
x1

√
− β2

��
x2

√
− θβ2

��
x1

√
( 􏼁

2
0

−
1
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

The eigenvalues are given by the diagonal entries, i.e.,
φ1 � 1 + (v(a − c + 2β1

��
x1

√
− β2

��
x2

√
− θβ2

��
x1

√
)/2),φ2 � 0,

as we are only interested in positive trajectories, and we can
deduce φ1 > 1 from equation (16); therefore, the eigenvalue
φ1 is greater than 1 and φ2 less than 1, and E1 is a saddle
point (unstable).
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Similarly, we analyze the asymptotic stability of the Nash
equilibrium for the two-dimensional map (13). +e Jacobian
matrix at E2 has the following form:

J E2( 􏼁 �

1 − 2vq
∗
1 −vq

∗
1

−
1
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (19)

The characteristic equation of the matrix J(E2) is

P(φ) � φ2
− Trφ + Det � 0, (20)

where Tr is the trace and Det is the determinant of the
Jacobian matrix J(E2); hence,

Tr(J) � 1 − 2vq
∗
1,

Det(J) � −
vq
∗
1
2

,
(21)

since (Tr(J))2 − 4Det(J) � (1 − 2vq∗1 )2 + 2vq∗1 > 0; this
means that there are two real roots in the characteristic
equation.

As we know from the stability theory, the sufficient and
necessary conditions for the local stability of Nash equi-
librium E2 are that the eigenvalues of Jacobian matrix J(E2)

are inside the unit circle in the complex plane, and it is true
only if following Jury’s conditions, Peng et al. [15], hold:

(i): 1 + Tr(J) + Det(J)> 0,

(ii): 1 − Tr(J) + Det(J)> 0,

(iii): 1 − Det(J)> 0.

⎧⎪⎪⎨

⎪⎪⎩
(22)

The abovementioned inequalities of (i), (ii), and (iii)
define a region where the Nash equilibrium point E2 is
locally stable. +e violation of any single inequality in (i),
(ii), and (iii), with other two being simultaneously fulfilled,
leads to (1) a flip bifurcation (real eigenvalue that passes
through −1) when 1 + Tr(J) + Det(J) � 0; (2) a fold or
transcritical bifurcation (a real eigenvalue that passes
through 1) when 1 − Tr(J) + Det(J) � 0; and (3) a Nei-
mark–Sacker bifurcation (i.e., the modulus of a complex
eigenvalue pair that passes through 1) when 1 − Det(J) � 0
and |Tr(J)| < 2.

We substitute Tr(J) and Det(J) into the inequalities of
(i), (ii), and (iii), and then, the stability conditions in (22)
can be written as follows:

(i): 1 + Tr(J) + Det(J) �
4 − 5vq

∗
1

4
> 0,

(ii): 1 − Tr(J) + Det(J) �
3vq
∗
1

2
> 0,

(iii): 1 − Det(J) � 1 +
vq
∗
1
2
> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Obviously, the inequalities (ii) and (iii) are always
satisfied. +en, condition (23) becomes

4 − 5vq
∗
1 > 0. (24)

We can obtain the threshold v∗ � (4/5q∗1 ) given by the
vanishing of the left-hand side of inequality (24). +erefore,

the Nash equilibrium point E2 can lose stability only through
a flip bifurcation. We will have the following proposition
about local stability of Nash Equilibrium point E2.

Proposition 2. 'e Nash equilibrium point E2 is asymp-
totically stable if v< v∗. System (13) undergoes a flip bifur-
cation at E2 when v � v∗. Moreover, period-2 points bifurcate
from E2 when v> v∗.

From the foregoing, some information about the effects
of the model parameters on the local stability of equilibrium
E2 can be obtained. +e Nash equilibrium point E2 is stable
for any given v< v∗, which means, if the speed of adjustment
of firm 1 is in the interval region defined by 0< v< v∗, the
yields of the two firms will tend towards the Nash equilibrium
E2. Also, with other parameters held fixed, an increase of the
output adjustment speed v would cause a destabilizing effect;
that means, the trajectory diagram of this point (q1, q2) will be
shown as follows: it crosses the flip bifurcation surface at v � v∗

and period-2 points bifurcate from E2 when v> v∗.
The similar analysis applies to one of the parameters

a, c, θ, β1 and β2 with other model parameters held fixed.
Complexity behaviors, such as period doubling and chaotic
attractors, will also occur, when the maximum Lyapunov
exponents of the system (13) are positive.

4. Numerical Simulation

+e main purpose of this section is to show the qualitative
behavior of a Stackelberg–Cournot duopoly game with
heterogeneous players, described by the system (13), and
exhibit how the system evolves when the model parameters
take different level of values. To provide some numerical
evidence for the existence of chaotic motions, we present
various numerical tools to show it, including bifurcation
diagrams, strange attractors, maximum Lyapunov expo-
nents, sensitive dependence on initial conditions, and so on.

Figure 1 presents a bifurcation diagram of system (13) in
the (v − q1q2) plane when a � 10, c � 2, β1 � 0.6, β2 � 0.3,

θ � 0.2. From Figure 1, we can see that the orbit of the
quantity outputs (q1, q2) approaches to the stable fixed point
E2(3.06, 2.58) for the adjustment speed v< v∗ � 0.261;
furthermore, we can get the optimal investments of each
firm with x1 � 1.377 and x2 � 0.267. As v increases, the
Nash equilibrium point E2(3.06, 2.58) becomes unstable, a
flip bifurcation for system (13) takes place at v � v∗ � 0.261,
period-2 points bifurcate as v> 0.261, and infinitely multi-
period doubling bifurcation of the phase quantity behavior
becomes chaotic, which means that dynamical game (13)
always converges to complex dynamics for a large value of
adjustment speed of the boundedly rational player firm 2. In
reality, the quantity outputs of firms acutely fluctuate when
bifurcation and chaos occur; therefore, it is hard for the
players to forecast their outputs and make decisions in the
future. In order to show bifurcations and chaos, the max-
imum Lyapunov exponent is also plotted in Figure 1, where
positive values show that the chaotic behaviors and the
maximum Lyapunov exponent equal to zero at bifurcation
point.
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Figures 2–4 shows partial bifurcation diagramswith respect
to the parameters θ, β1, β2 in system (13). FromFigures 2 and 4,
we can see that system (13) experiences chaos and period-
halving bifurcations, where the system dynamics is chaotic for
small values of θ or β2, and period-halving bifurcations occur as
θ or β2 increases. Figure 3 gives the bifurcation diagram with
respect to β1, the firms’ outputs are unstable even for small
values of β1, and as β1 increases, complex dynamic behavior
occurs, including higher-order cycles and chaos.

+e strange attractor is a standard tool to characterize
the chaos of a dynamic system, and it reflects the inherent
regularity of the complex phenomena in a chaotic state.
With the help of it, players can forecast their outputs in a
short term. Figure 5 shows the graph of a strange attractor of
the dynamic game (13) for the parameter values a � 10, c �

2, β1 � 0.6, β2 � 0.3, θ � 0.2, v � 0.41.
To demonstrate the sensitivity of system (13) to initial

conditions, we compute two sets of orbits, where one set of
orbits comprises two orbits with initial points (q1(0), q2(0))

and (q1(0) + 0.0001, q2(0)) and the other with initial points
(q1(0), q2(0)) and (q1(0), q2(0) + 0.0001). +e results are
shown in Figure 6, and the time series are indistin-
guishable at the beginning, but after a number of itera-
tions, the difference between them rapidly builds up.
Figure 6 shows sensitive dependence on initial conditions
for the q1-coordinate (or q2-coordinate) of the two orbits
for the system (13), plotted against the time with
the parameters values a � 10, c � 2, β1 � 0.6, β2 � 0.3, θ �

0.2, v � 0.42, and the q1-coordinate (or q2-coordinate) of
initial conditions differs by 0.0001, with the other coor-
dinate kept equal. From Figure 6, we can see that the time

series of system (13) is sensitive dependent on initial
conditions, i.e., complex dynamics behaviors occur in this
model.

v
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Figure 1: +e bifurcation diagram of the solutions q1 and q2 of
system (13) vs. v and down the maximum Lyapunov exponent Lyp
vs. v(a � 10, c � 2, β1 � 0.6, β2 � 0.3, θ � 0.2).
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Figure 2: +e bifurcation diagrams of system (13) with respect to
parameters θ; the values of other parameters are
a � 10, c � 2, β1 � 0.6, β2 � 0.3, and v � 0.39.
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Figure 3: +e bifurcation diagrams of system (13) with respect to
parameters β1; the values of other parameters are
a � 10, c � 2, β2 � 0.3, θ � 0.2, and v � 0.4.
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5. Chaos Control

In a nonlinear and dynamic discrete production system,
many factors, such as the adjustment speed, R&D invest-
ments, TIE, and R&D spillovers, will make the market
deviate from the equilibrium state and even become chaotic.
In the chaotic states, the market will sensitively depend on
the parameters values, and parameter variations will lead to
the markets’ long-term trajectory unpredictable. Precisely,
because the chaos in market are not expected and are even
harmful to the participants, certain methods should be

adopted to suppress or eliminate the occurrence of bifur-
cations and chaos. Various methods for controlling chaos
have been used in dynamical systems; the OGY method was
presented by Ott et al. [40] and had been applied in the
dynamic game model to control chaos [41, 42], a modified
straight-line stabilization method [12], adaptive control [13],
time-delayed feedback method [43], and other feedback
control methods [6–8] had also been studied for the chaos
control in an economic model with homogeneous or het-
erogeneous expectations. It can be known from previous
works that feedback and parameter variation are two

β2
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4
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Figure 4: +e bifurcation diagrams of system (13) with respect to parameters β2; the values of other parameters are
a � 10, c � 2, β1 � 0.6, θ � 0.2, and v � 0.385.
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Figure 5: +e strange attractor of the system (13) for the parameter values a � 10, c � 2, β1 � 0.6, β2 � 0.3, θ � 0.2, and v � 0.41.
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effective methods [9, 12, 13, 16, 27, 28, 40–44], to achieve
chaos control. Recently, a new control method called as
control strategy of the state variables feedback and pa-
rameter variation was proposed [45] and had been used in

the work of [8, 13, 26]. In this section, the same method will
be used to control the chaos of system (13); hence, the two-
dimensional discrete dynamic system (13) is changed into
the following format:

t
0 10 20 30 40 50 60 70 80 90 100

0
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1.5
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3
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5

q1 (t)[q1 (0) = 3.0]
q1 (t)[q1 (0) = 3.0001]

(a)

t
0 10 20 30 40 50 60 70 80 90 100

2

2.5

3

3.5

4

4.5

q2 (t)[q2 (0) = 2.5]
q2 (t)[q2 (0) = 2.5001]

(b)

Figure 6: Sensitive dependence of system (13) on initial conditions. +e system orbits in the time periods [0, 100] are plotted with other
parameters values a � 10, c � 2, β1 � 0.6, β2 � 0.3, θ � 0.2, and v � 0.42 and (q1(0), q2(0)) � (3.0, 2.5). (a) q1 coordinate of the two orbits
for the system (13) with initial points (3.0, 2.5) and (3.0001, 2.5). (b) q2 coordinate of the two orbits for the system (13) with initial points
(3.0, 2.5) and (3.0, 2.5001).
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Figure 7: +e bifurcation diagram of system (25) with respect to the controlling factor μ with other parameters values
(a � 10, c � 2, β1 � 0.6, β2 � 0.3, θ � 0.2, a � 0.41). With μ increasing, the system chaos has being gradually controlled, and the system tends
to be stable when μ is large enough.
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q1(t + 1) � (1 − μ)q1(t) 1 + v a − 2q1(t) − q2(t) − c − β1
��
x1

√
( 􏼁􏼂 􏼃􏼈 􏼉 + μq1(t),

q2(t + 1) �
(1 − μ) a − c − β2

��
x2

√
− θβ2

��
x1

√
( 􏼁 − q1(t)􏼂 􏼃

2
+ μq2(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where μ> 0 is the controlling factor.
As the adjustment speed for firm 1 goes up, system (13) will

fall into an instability region; Figure 1 shows the bifurcation
diagramwith respect to v, andFigure 5 gives amapof the strange
attractor corresponding to the chaotic state (a � 10, c � 2, β1 �

0.6, β2 � 0.3, θ � 0.2, a � 0.41). However, after adding the
controlling factor μ to the chaotic state, the complex situation
could be forced to become steady. Figure 7 indicates that system
(13) can get rid of chaos successfully when the controlling pa-
rameter μ reaches 0.298, and Figure 8 shows that the chaotic
system is controlled at a fixed point when μ � 0.31.

As discussed in Section 3, many parameters, such as the
R&D leader’s adjustment speed, R&D spillover, and TIE,
affect the stability of equilibrium output. +erefore, in order
to facilitate a stable output, the R&D leader can slow its
output adjustment speed, with other parameters, as shown
in Figure 1; they can also enhance the atmosphere of
technology sharing, as shown in Figure 2; besides, the R&D
follower can improve its innovation efficiency, as shown in
Figure 4. In addition to the important impact of parameters
changes on equilibrium output with different adjustment
mechanisms, we should also consider the impact of the
previous output, especially the production quantity in the
last phase. With this new control method, we know that
when the duopoly market is unstable, we should take the

output of the previous period more into account for the
production adjustment of the next period.

6. Conclusions

+is paper investigates a dynamic Stackelberg–Cournot
duopoly game with one-way spillovers. Two types of het-
erogeneous players, who adopt the bounded rational ex-
pectation and naı̈ve mechanism, respectively, determine
their R&D investments sequentially in the Stackelberg R&D
phase and make output decisions simultaneously in the
Cournot production phase. +e R&D investments before
the Cournot production phase have been solved by backward
induction. Dynamics of the system under different regimes of
the main parameters, such as the R&D leader’s adjustment
speed, R&D investments, technology spillovers, and TIE,
have been explored. Basic properties of the discrete dy-
namical system have been analyzed numerically via com-
puting Lyapunov exponents, bifurcation diagrams, sensitive
dependence on initial conditions, strange attractors, and
chaos controlling. Research results show that complex
dynamic behaviors would occur as model parameters vary,
such as cycles and chaos, and we can stabilize the chaotic
behavior of the system to a stable fixed point by introducing
an appropriate controlling parameter.
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Figure 8: +e time series of system (25) when control parameter μ � 0.31. Values of other parameters are fixed as
a � 10, c � 2, β1 � 0.6, β2 � 0.3, θ � 0.2, and a � 0.41.
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