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*e modified first Zagreb connection index ZC∗1 is a graph invariant that appeared about fifty years ago within a study of
molecular modeling, and after a long time, it has been revisited in two papers ((Ali and Trinajstić, 2018) and (Naji et al., 2017))
independently. For a graph G, this graph invariant is defined as ZC∗1(G) � v∈V(G)dvτv, where dv is the degree of the vertex v and
τv is the connection number of v (that is, the number of vertices having distance 2 from v). In this paper, the graphs with
maximum/minimum ZC∗1 value are characterized from the class of all n-vertex trees with fixed number of pendent vertices (that
are the vertices of degree 1).

1. Introduction

*roughout this paper, we consider only simple and con-
nected graphs. *e vertex set and edge set of a graph G are
denoted by V(G) and E(G), respectively. *e degree of a
vertex v ∈ V(G) is the number of edges incident to v and is
denoted by dv(G) or simply by dv if the graph under
consideration is clear.

Let Ω be the collection of all graphs. A mapping
f: Ω⟶ R is called a graph invariant or a topological
index, if for every graph H isomorphic to G, it holds that
f(G) � f(H), where R is the set of all real numbers. In
chemical graph theory, there are many topological indices
having different applications in isomer discrimination,
QSAR/QSPR investigation, pharmaceutical drug design, etc.
*ere are various topological indices that are extensively
studied by a number of researchers. *e first Zagreb index
M1 and the second Zagreb index M2 are among these much
studied topological indices. *ese Zagreb indices for a graph
G are defined as

M1(G) � 
v∈V(G)

dv( 
2
,

M2(G) � 
uv∈E(G)

dudv.
(1)

To the best of our knowledge, the first Zagreb index
firstly appeared in a formula derived in [1] and the second
Zagreb index was firstly introduced in [2]. *ese two Zagreb
indices have several chemical applications, for example, see
the recent papers [3, 4]. Detail about the mathematical
properties of the indices M1 and M2 can be found in the
recent survey papers [5–8], recent papers [9–22], and related
references listed therein.

*e following topological index ZC∗1 is known as the
modified first Zagreb connection index [23]:

ZC∗1(G) � 
v∈V(G)

dvτv, (2)

where τv is the connection number of the vertex v (that is,
the number of vertices having distance 2 from v, see [24]).
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Actually, this index initially appeared within a certain for-
mula, derived by Gutman and Trinajstić [1]. *e index ZC∗1
was referred as the third leap Zagreb index in [25]. After the
publications of the papers [23, 25], the modified first Zagreb
connection index has attracted a considerable attention from
researchers, for example, see [25–39].

*e main idea of the present paper comes from [40]. In
the present paper, the sharp lower and upper bounds on the
modified first Zagreb connection index of trees in terms of
order and number of pendent vertices are derived and the
corresponding extremal trees are characterized.

2. Some Definitions and Notations

For s≥ 1, let P � v0v1, . . . , vs be a path in a graph G with
dv1

� · · · � dvs− 1
� 2 unless s � 1. If dv0

� 1 and dvs
≥ 3, then P

is called a pendent path of G and s is called the length of this
pendent path. If dv0

, dvs
≥ 3, then P is called an internal path

of G. A tree containing exactly one vertex of degree greater
than 2 is called a starlike tree. K1,n1

(p1, p2, . . . , pn1
) is used to

denote the starlike tree of order n which is obtained by
attaching paths of lengths p1, p2, . . . , pn1

to the pendent
vertices of the star K1,n1

where n � n1 + 1 + 
n1
i�1 pi and pi ≥ 0

for all 1≤ i≤ n1.
PTn,n1

is used to denote the set of all trees of order n≥ 5
and with n1 pendent vertices. Since the path graph is the only
member of PTn,2 and the star graph is the unique element
of PTn,n− 1, we assume 3≤ n1 ≤ n − 2 in the remaining part
of the paper. For any T ∈ PTn,n1

, we assume V1(T) :� v: v{

is a pendent vertex of T}, V2(T) :� ∪v∈V1(T)N(v), and
V3(T) :� V(T)\[V1(T)∪V2(T)]. Taking Sn

n1
:� K1,n1

(0, 0, . . . , n − n1 − 1) and Kn
n1

:� K1,n1
(0, 0, . . . , 0,

1, 1, . . . , 1√√√√√√√√
n− n1− 1

), we assume that Tn
n1

:� K1,n1
(p1, p2,

. . . , pn1
): pi ≥ 1, 1≤ i≤ n1}. *en, Kn

n1
⊆PTn,n1

, Sn
n1
⊆PTn,n1

,
and Tn

n1
⊆PTn,n1

(see Figure 1).

Let T∗n1 : � T ∈ PT2n1− 2,n1
: T has n1 − 2 vertices of

degree 3, where n1 ≥ 4}, further E∗(T): � uv ∈{

E(T): du � dv � 3}. Let T∗n,n1
be a set of trees of order n

obtained from T ∈ T∗n1 by replacing each edge of E∗(T) by a
path with length at least 2.

3. On the Minimum Modified First Zagreb
Connection Index of Trees with Fixed
Number of Pendent Vertices

Lemma 1 (see [41]). Let T ∈ PTn,n1
and v ∈ V(T), then

(i) dv ≤ n1,
(ii) dv � n1 > 2 which implies that T is a starlike tree.

Lemma 2. Let T ∈ PTn,n1
and P � v0v1, . . . , vs be consid-

ered as a suspended path of T such that v0 ∈ V1(T) and
dvs

� t≥ 3. Considering |N(vs)∩V1(T)| � q and
N(vs)\(V1(T)∪ vs− 1 ) � x1, x2, . . . , xt− q  for s � 1 and

N(vs)\(V1(T)∪ vs− 1 ) � x1, x2, . . . , xt− q− 1  for s≥ 2 and
let dxi

� di ≥ 2 for 1≤ i≤ t − q, then

(a) If s≥ 2, then (i) 
t− q− 1
i�1 (di)≤ n1 + t − 2q − 2 and (ii)

q≥max 0, 2t − n{ }.
(b) If s � 1, then (i) 

t− q
i�1(di)≤ n1 + t − 2q and (ii)

≥max 1, 2t − n + 1{ }.

Proof.
(a) See [41].
(b) (i) As T\ v0, v1  contains t − q subtrees

Tx1
, Tx2

, . . . , Txt− q
containing x1, x2, . . . , xt− q, re-

spectively, where each Txi
has at least di − 1 pendent

vertices of T. *erefore, 
t− q
i�1(di − 1)≤ n1 − q or


t− q
i�1(di − 1)≤ n1 + t − 2q.

(ii) Since for n≥ 2t the result is obvious, so let n< 2t,
and we observe that 

t− q− 1
i�1 (di)≤ n − (t + 1) and

also 
t− q− 1
i�1 (di)≥ t − q as di ≥ 2.

Hence, t − q≤ n − t − 1 or q≥ 2t − n + 1. □

Lemma 3. If T ∈ PTn,n1
is a tree such that ZC∗1(T) is as

small as possible, then T contains at most one pendent path of
length greater than 1.

Proof. We contrarily assume that P � v0v1, . . . , vs and P′ �
v0′v1′, . . . , vl

′(l, s≥ 2) are two pendent paths of T such that
v0, v0′ ∈ V1(T) and dvs

, dvl
′ ≥ 3. If T′ � T − vs− 1vs− 2 + vs− 2v0′,

then T′ ∈ PTn,n1
and we have

ZC
∗
1 T′(  − ZC

∗
1(T) � dvs

− 1  − 3dvs
− 2  + 4 − 1

� 2 2 − dvs
 < 0,

(3)

which is a contradiction to the choice of T.
Let us denote Tn1

� T: T ∈ PTn,n1
 and

T is a generalized star}. □

Lemma 4. For any tree T ∈ Tn1
,

ZC∗1(T)≥ 4n + n
2
1 − 3n1 − 8 . (4)

Equality in the above expression holds if and only if
T � Sn

n1
.

Proof. Let T′∈ Tn1
be the tree with minimal ZC∗1 among all

the members ofTn1
. Since T′ � K1,n1

, therefore it contains at
least one pendent path of length greater than 1. By using
Lemma 4, we conclude that T′ contains exactly one pendent
path of length greater than 1. *erefore, T′ � Sn

n1
. Since T′ is

a starlike tree, and for any T ∈ Tn1
,

ZC∗1(T)≥ZC∗1(T′) � 4n + n
2
1 − 3n1 − 8, (5)

□

and equality in the above expression holds if and only if
T � Sn

n1
.
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Lemma 5. If T ∈ (PTn,n1
\Tn1

) is a tree such that ZC∗1(T)

is as small as possible, then T does not contain a pendent path
of length greater than 1.

Proof. We contrarily assume that P � v0v1, . . . , vs(s≥ 2) be
a pendent path of T such that v0 ∈ V1(T) and dvs

� q≥ 3. As
T ∈ (PTn,n1

\Tn1
), so there must be a vertex v ∈ V(T)\ vs ,

with v ∈ V(T)\ vs . Also, there must be a path between v

and vs. Let u be a vertex in this path, adjacent to vs, and also,
let du � t≥ 2. If T′ � T − vsu, v0v1  + v0vs, v1u , then
T′ ∈ PTn,n1

\Tn1
and we have

ZC∗1(T′) − ZC∗1(T) � 3t − 4 + q − 2tq + t + q

� 2(q − 2)(1 − t)< 0,
(6)

which is a contradiction to the minimality of T. □

Theorem 1. If T ∈ PTn,n1
for 3≤ n1 ≤ n − 2, then

ZC∗1(T)≥ 4n − 8, if n1 � 3, and n≥ 5, (7)

ZC∗1(T)≥ 4n + 4n1 − 22, if 4≤ n1 ≤ n − 2. (8)

In the above inequality (7), equality holds if and only if
T � Sn

3. In (8), equality holds if and only if n≥ 3n1 − 5 and
T ∈ T∗n,n1

.

Proof. Let we denote ϕ(n, n1) � 4n + 4n1 − 22. If we take
T ∈ Tn1

, then by Lemma 4, ZC∗1(T)≥ 4n + n2
1 − 3n1 − 8 and

the equality holds if and only if T � Sn
3. So, the above the-

orem holds. Now, we assume that T ∈ PTn,n1
\Tn1

and
4≤ n1 ≤ n − 2. We observe that if T ∈ T∗n,n1

, then n≥ 3n1 − 5
and equality in equation (8) can be obtained by a simple
elementary calculation. Now, by applying induction on n1,
we show that if T ∈ PTn,n1

\Tn1
, then (8) holds and the

equality in (8) holds only if T ∈ T∗n,n1
. Let us choose T such

that ZC∗1(T) is as small as possible.
If n1 � 4, then by Lemma 5 T ∈ T∗4 when n � 6, or

T ∈ T∗n,4 if n≥ 7. Hence, ZC∗1(T) � 20>ϕ(n, n1) if n � 6 and
ZC∗1(T) � 4n − 6 � ϕ(n, n1) if n≥ 7. *erefore, equality in
(8) holds for n1 � 4 only if n≥ 7 and T ∈ T∗n,4. We assume
that n1 ≥ 5 and the result is true for all smaller values of n1.

Let u ∈ V2(T) and denote the degree of vertex u by t.
Considering v1, v2, . . . , vq and vq+1, vq+2, . . . , vt as the pen-
dent and nonpendent neighbors of u, respectively, then t −

q≥ 1 (because T≇K1,n− 1). Lemma 5 ensures that
(HTML translation failed), and we consider the following
cases:

Case I: t≥ 4.
Let T′ � T − v1. So, T′ ∈ PTn− 1,n1− 1 and we have

ZC∗1(T) � ZC∗1(T′) + 2q − 2 + 2 
t

i�q+1
dvi

≥ ϕ n − 1, n1 − 1(  + 2(q − 1) + 2(2(t − q))

� ϕ n, n1(  + 2t + 2(t − q) − 10≥ϕ n, n1( .

(9)

Case II: t � 3.
If q � 1, then we take N(u)\ v1  � x1, x2  and let dxi

�

di for i � 1, 2.
If T′ � T − v1 , then T′ ∈ PTn− 1,n1− 1 and

ZC∗1(T) � ZC∗1 T′(  + 2d1 + 2d2

≥ ϕ n − 1, n1 − 1(  + 8 � ϕ n, n1( ,
(10)

and equality holds only if d1 � d2 � 2 and
ZC∗1(T′) � ϕ(n − 1, n1 − 1). Further, by induction hy-
pothesis, T′ ∈ T∗n− 1,n1− 1. As d1 � d2 � 2, so there must
be an internal path of length at least 4, connecting x1
and x2 in T′ and |V(T′)|≥ 3(n1 − 1) − 3. Hence, n �

|V(T′)| + 1≥ 3n1 − 5 and T belongs toT∗n,n1
. If we take

q � 2, then N(u)\ v1, v2  � x1  and let dx1
� d1. As-

suming that P: u0(� u)u1(� x1)u2, . . . , ul be an in-
ternal path ofT with du � 3 and dul

� s≥ 3, having l≥ 1,
we consider the following cases:

Subcase I. If l � 1,
we consider T′ � T − v1, v2 , then T′ ∈ PTn− 2,n1− 1
and

ZC∗1(T) � ZC∗1 T′(  + 2 + 4d1

≥ ϕ n − 2, n1 − 1(  + 2 + 4d1

� ϕ n, n1(  + 4d1 − 10>ϕ n, n1( .

(11)

ZC∗1(T) � ZC∗1 T′(  + 2s + 4l + 2
≥ϕ n − l − 1, n1 − 1(  + 2s + 4l + 2
� ϕ n, n1(  + 2s − 6≥ ϕ n, n1( .

(12)

Subcase II. If l≥ 2,
we can obtain a tree T′ � T − v1, v2, u0, . . . , ul− 2  such
as T′ ∈ PTn− l− 1,n1− 1 and
To get equality, all the relations considered above
should be reduced to equalities. So, we get
ZC∗1(T) � ϕ(n − l − 1, n1 − 1), s � 3, and l≥ 2.
Further, by induction hypothesis, T′ ∈ T∗n− l− 1,n1− 1 and
|V(T′)|≥ 3(n1 − 1) − 3 − l. *erefore,

(a) (b) (c)

Figure 1: *e elements of the class PTn,n1
. (a) T ∈ Sn

n1
. (b) T ∈ Kn

n1
. (c) T ∈ Tn

n1
.
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n � |V(T′)| + (l + 1)≥ 3n1 − 5 and T ∈ T∗n,n1
which

completes the proof. □

4. On the Maximum Modified First Zagreb
Connection Index of Trees with Fixed
Number of Pendent Vertices

Lemma 6. Let T ∈ PTn,n1
be a tree that maximizes ZC∗1 ,

then

(a) For n≥ 2n1 + 1, T contains at least one pendent path
of length greater than 1,

(b) For n≤ 2n1, T contains at least one pendent path of
length 1.

Proof.
(a) Let n≥ 2n1 + 1, and we assume that every pendent

path of T has length at most 1, so we have du ≥ 3 for
all u ∈ V2(T). Now, we show that dw ≥ 3 for all
w ∈ V3(T). Otherwise, there would be a path
P � w0w1w2, . . . , wqwq+1, such that for some l,
1< l< q, wl ∈ V3(T), and dwl

� 2, where
w0, wq+1 ∈ V1(T). Let dwi

� di, 0≤ i≤ q + 1. *en,
d1, dq ≥ 3 and di ≥ 2 for 2≤ i≤ q − 1.
If T′ � T − wl− 1wl, wlwl+1, w0 w1} + wl− 1wl+1,

w0wl, w1wl}, then T′ ∈ PTn,n1
and we have

ZC∗1 T′(  − ZC∗1(T) � 1 + 3d1 − 2 + 2dl− 1dl+1 − dl− 1 − dl+1

− 2d1 + 1 + d1 − 4dl− 1 + 2 + dl− 1

− 4dl+1 + 2 + dl+1

� 2d1 − 4 + 2 dl− 1 − 2(  dl+1 − 2( > 0,

(13)

which is a contradiction to the choice of T. Hence,
we have the result that dv ≥ 3 for all v ∈ V(T)V1(T).
*erefore, 2(n − 1) � v∈V(T) ≥ n1 + 3(n − n1)

which gives n≤ 2n1 − 2, a contradiction.
(b) Now for n≤ 2n1, if we assume that each pendent

vertex of T is adjacent to a vertex of degree 2, then
|V2(T)| � n1. Since T≇K1,n− 1, we therefore have
|V(T)\(V1(T)∪V2(T))|≥ 1. Hence, n � |V1(T)|

+|V2 (T)| + |V(T)\(V1(T)∪V2(T))|≥ 2n1 + 1, a
contradiction. □

Theorem 2. Let T be a tree such that T ∈ PTn,n1
, and if

3≤ n1 ≤ n − 2, then

ZC∗1(T)≤ 4n + 3n
2
1 − 9n1 − 4, if n≥ 2n1 + 1, (14)

ZC∗1(T)≤ n1 2n − n1 − 3( , if n≤ 2n1. (15)

Equalities in (14) and (15) hold if and only ifT ∈ Tn
n1
and

T � Kn
n1
, respectively.

Proof. We observe that if T ∈ Tn
n1

and T � Kn
n1
, then, re-

spectively, equalities (14) and (15) hold by using simple
elementary calculation. □

Let us denote φ1(n, n1): � 4n + 3n2
1 − 9n1 − 4 and

φ2(n, n1): � n1(2n − n1 − 3). Now, by applying induction
on n1, we show that if T ∈ Tn,n1

for n1 ≥ 3, then (14) and (15)
hold and the equalities in (14) and (15) hold only if T ∈ Tn

n1
and T � Kn

n1
, respectively. Let n1 � 3, then T is a starlike tree

and n≥ 5. It can be easily verified that T5,3 � T1  and
T6,3 � T2, T3  (see Figure 2).

Note that ZC∗1(T1) � 12 � φ2(5, 3), ZC∗1(T2) �

16<φ2(6, 3), ZC∗1(T3) � 18 � φ2(6, 3), and T1 � K5
3,

T3 � K6
3. *erefore, *eorem 2 holds for n � 5, 6, so we

assume that n≥ 7 or n≥ 2n1 + 1, and we find the following
results:

ZC∗1(T) �

4n − 4 � φ1(n, 3), if T ∈ Tn
3,

4n − 8<φ1(n, 3), if T � Sn
3,

4n − 6<φ1(n, 3), if T ∈ Tn,3\ Tn
3∪ Sn

3 ( .

⎧⎪⎪⎨

⎪⎪⎩

(16)

So, now we have to consider n1 ≥ 4, as the results hold for
the smaller values of n1. Let T ∈ Tn,n1

if T � Sn
n1
, then

ZC∗1(T) � 4n + n2
1 − 3n1 − 8. *erefore, ZC∗1(T) � φ1

(n, n1) − 2(n1 − 1)(n1 − 2)<φ1(n, n1) and

ZC∗1(T) � φ2 n, n1(  − 2 n1 − 2(  n − n1 − 2( ≤φ2 n, n1( .

(17)

We observe that equality in (17) holds if n � n1 + 2. Also,
if n � n1 + 2, then Sn

n1
� Kn

n1
. Now, we consider the case that

T≇ Sn
n1

and T≇Kn
n1

for 4≤ n1 ≤ n − 3.
Let P: v0v1, . . . , vs be a pendent path of T such that

v0 ∈ V1(T) and dvs
� t≥ 3. Considering |N(vs)∩V1(T)| � q

and N(vs)\(V1(T))∪ vs− 1  � x1, x2, . . . , xt− q− 1 . *en,
q≥ 0, t − q≥ 2(SinceT≇Kn

n1
and dxi

� di ≥ 2). Now, we
consider the following two cases:

Case I. n≥ 2n1 + 1.
Here, we choose T such that ZC∗1(T) is as large as
possible.*erefore, by Lemma 6, T contains at least one
pendent path (say) P of length greater than 1. Let us
consider T′ � T − v0, v1, . . . , vs− 1 , so T′ ∈ PTn− s,n1− 1.
Now, for n − s≥ 2(n1 − 1) + 1, Lemma 2 implies that


t− q− 1
i�1 (di)≤ n1 + t − 2q − 2 and

ZC∗1(T) � ZC∗1(T′) + 1 + 4(s − 2) + 3t − 2 + q

− (t − q − 1) + 2 

t− q− 1

i�1
di

≤φ1 n − s, n1 − 1(  + 1 + 4(s − 2) + 3t − 2

+ q − (t − q − 1) + 2 n1 + t − 2q − 2( 

� φ1 n, n1(  − 4n1 + 4t − 2q

≤φ1 n, n1( ,

(18)
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where the equality holds if all the inequalities men-
tioned in the above argument turn into equalities.*us,
we have ZC∗1(T′) � φ1(n − s, n1 − 1), if q � 0 and
n1 � t.
By the induction hypothesis, T′ ∈ Tn− s

n1− 1. Here, T′
contains a unique vertex of degree greater than 2, and
hence T ∈ Tn

n1
.

Now if n − s≤ 2(n1 − 1), then

ZC∗1(T) � ZC∗1(T′) + 1 + 4(s − 2) + 3t − 2 + q

− (t − q − 1) + 2 

t− q− 1

i�1
di

φ2 n − s, n1 − 1(  + 1 + 4(s − 2) + 3t − 2

+ q − (t − q − 1) + 2 n1 + t − 2q − 2( 

φ1 n, n1(  + 2n1 − 6( (n − s) − 4n
2
1 + 10n1

− 6 + 4t − 2q

φ1 n, n1(  + 2 n1 − 1(  2n1 − 6(  − 4n
2
1 + 10n1

− 6 + 4t − 2q

φ1 n, n1(  − 4n1 + 4t − 2n1 − 6 − 2q<φ1 n, n1( .

(19)

Case II: n≤ 2n1

By using Lemma 2, we may choose P with s � 1. Let
T′ � T − v0, then T′ ∈ PTn− 1,n1− 1. So.

ZC∗1(T) � ZC∗1 T′(  + 2q − 2 + 2

t− q

i�1
di

≤ZC∗1 T′(  + 2n1 + 2t − 2q − 2.

(20)

Now if n � 2n1, then n − 1 � 2n1 − 1 and we get

ZC∗1(T)≤φ1 2n1 − 1, n1 − 1(  + 2n1 + 2t − 2q − 2

� φ2 2n1, n1(  − 2n1 + 2t − 2q + 2

≤φ2 2n1, n1( ,

(21)

where the equality holds only if ZC∗1(T′) �

φ1(2n1 − 1, n1 − 1), q � 1, and n1 � t. As T′ � K
2n1− 1
n1− 1

and K
2n1− 1
n1− 1 contain a unique vertex with degree greater

than 2, so we have T � K
2n1
n1 .

If we have n< 2n1, then

ZC∗1(T)≤φ2 n − 1, n1 − 1(  + 2n1 + 2t − 2q − 2

� φ2 n, n1(  − 2n + 2n1 + 2t − 2q + 2

≤φ2 n, n1( .

(22)

*e above inequality follows from Lemma 2. Equality
ZC∗1(T) � φ2(n, n1) shows that all the above relations
are also equalities. Particularly ZC∗1(T′) �

φ2(n − 1, n1 − 1). *erefore, by induction hypothesis,
T′ � Kn− 1

n1− 1. We observe that Kn− 1
n1− 1 contains a unique

vertex of degree greater than 2 and dvs
≥ 3, hence

T � Kn
n1
. By this result the proof of *eorem 2 is

complete.
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theory and molecular orbitals. XII. Acyclic polyenes,” 7e
Journal of Chemical Physics, vol. 62, no. 9, pp. 3399–3405,
1975.

[3] A. B. Zakharov, A. V. Dyachenko, and V. V. Ivanov, “To-
pological characteristics of iterated line graphs in QSAR
problem: octane numbers of saturated hydrocarbons,” Journal
of Chemometrics, vol. 33, no. 9, Article ID e3169, 2019.

[4] A. B. Zakharov and V. V. Ivanov, “A new approach in to-
pological descriptors usage. Iterated line graphs in the the-
oretical prediction of physico-chemical properties of
saturated hydrocarbons,” Kharkov University Bulletin
Chemical Series, vol. 32, no. 55, pp. 38–45, 2019.

[5] A. Ali, I. Gutman, E. Milovanović, and I. Milovanović, “Sum
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[7] B. Borovićanin, K. C. Das, B. Furtula, and I. Gutman, “Bounds
for Zagreb indices,” Communications in Mathematical and in
Computer Chemistry, vol. 78, pp. 17–10, 2017.

[8] I. Gutman, E. Milovanović, and I. Milovanović, “Beyond the
Zagreb indices,” AKCE International Journal of Graphs and
Combinatorics, 2018, In press.

[9] A. Ali, “Tetracyclic graphs with maximum second Zagreb
index: a simple approach,” Asian-European Journal of
Mathematics, vol. 11, no. 5, Article ID 1850064, 2018.

[10] A. Ali, K. C. Das, and S. Akhter, “On the extremal graphs
for second Zagreb index with fixed number of vertices
and cyclomatic number,” Miskolc Mathematical Notes, 2019,
In press.

(a) (b) (c)

Figure 2: *e trees (a) T1, (b) T2, and (c) T3.

Discrete Dynamics in Nature and Society 5



[11] A. R. Ashrafi, M. Eliasi, and A. Ghalavand, “Laplacian co-
efficients and Zagreb indices of trees,” Linear and Multilinear
Algebra, vol. 67, no. 9, pp. 1736–1749, 2019.

[12] M. Azari, “Generalized Zagreb index of product graphs,”
Transactions on Combinatorics, vol. 8, no. 4, pp. 35–48, 2019.

[13] K. C. Das and A. Ali, “On a conjecture about the second
Zagreb index,”Discrete Mathematics Letters, vol. 2, pp. 38–43,
2019.

[14] M. Eliasi and A. Ghalavand, “Trees with the minimal second
Zagreb index,” Kragujevac Journal of Mathematics, vol. 42,
no. 3, pp. 325–333, 2018.

[15] F. Javaid, M. K. Jamil, and I. Tomescu, “Extremal k-gener-
alized quasi unicyclic graphs with respect to first and second
Zagreb indices,” Discrete Applied Mathematics, vol. 270,
pp. 153–158, 2019.

[16] J.-B. Liu, C. Wang, S. Wang, and B. Wei, “Zagreb indices and
multiplicative Zagreb indices of eulerian graphs,” Bulletin of
the Malaysian Mathematical Sciences Society, vol. 42, no. 1,
pp. 67–78, 2019.
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