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In this paper, the complex dynamical behaviors in a discrete neural network loop with self-feedback are studied. Specifically, an
invariant closed set of the system of neural network loops is built and the subsystem restricted on this invariant closed set is
topologically conjugate to a two-sided symbolic dynamical system which has two symbols. In the end, some illustrative numerical
examples are given to demonstrate our theoretical results.

1. Introduction

In recent years, researchers have found various chaotic
phenomena in the nervous system and that chaotic neural
networks play an important role in neural activities. Chaos
in neural networks systems have been applied to all kinds of
practical problems such as combinatorial optimizations,
associative recognition memory, deep learning, and bio-
technology (see [1–5]). In fact, some nervous systems consist
of large-scale and complex nonlinear dynamics. At present,
neuroscience has provided abundant evidence to prove that
the central nervous system has complex nonlinear dynamic
behavior at all levels [6]. So how to analyze the dynamical
behavior of neural networks plays an important role in
practical applications. In order to obtain a deep and clear
understanding of complex neural networks, there are

increasing studies on bifurcations and chaotic behaviors of
neural network systems [7].

Recently, Huang and Zou in [8] showed the discrete
network system consisting of two identical neurons with a
uniform delay demonstrates snapback repeller chaotic be-
haviors near an equilibrium point. For the Hopfield net-
works with two different neurons [9–11], the conditions that
the systems exhibit chaos are obtained. In [12], Wu et al.
analyzed the chaotic behaviors of the parameterized discrete
dynamics of recurrent m-neuron networks evoked by ex-
ternal inputs and obtained some conditions which the
subsystem is topologically conjugate to symbolic dynamical
system. In this paper, we will devote to analysis of the chaotic
behaviors of the following discrete neural network loops
with multiple delays and self-feedback:

x1(n + 1) � β1x1(n) + α11f1 x1 n − k11( (  + α1mfm xm n − k1m( ( ,

x2(n + 1) � β2x2(n) + α21f1 x1 n − k21( (  + α22f2 x2 n − k22( ( ,

⋮

xm(n + 1) � βmxm(n) + αmm− 1fm− 1 xm n − kmm− 1( (  + αmmfm xm n − kmm( ( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n ∈ Z, kij ≥ 1, (1)
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where n ∈ Z, for i � 1, 2, . . . , m, βi ∈ (0, 1) is the internal
decay rate of the neurons, αij is the self-feedback strength or
the connection strength of the ith neuron to the next neuron,
and the transmission delay kij ≥ 1 is a positive integer.

For the case of the neural network with m-identical
neurons, Cheng constructed a snapback repeller in [13] and
then justified chaos in neural networks. When the discrete
neural network with m-different neurons has multiple time
delays and self-feedback, it is challenging to rigorously
analyze the dynamical behaviors. In this paper, we consider
the chaotic behaviors of model (1). To this end, we first
rewrite the model (1) as a system of difference equations
without delay by a novel way. Especially, this transformation
requires a little skill. +en, we find an invariant set for the
transformed system by projection and show that the system
restricted on this set is topologically conjugate to the full
shift map on the symbolic dynamical system. +is implies
that the system has chaotic behaviors. +e obtained results
extend the related ones in [10, 11, 13]. Also, we provide some
numerical simulations to verify the theoretical results.

2. Invariant Subsystem of Model (1)

Let l∞ denote the Banach space of bounded sequences of real
numbers with the supremum norm defined on it. +e norm
is denoted by ‖ · ‖. Let σ: l∞⟶ l∞ be shift map defined by
(σξ)n � (ξ)n+1, n ∈ Z, for ξ � (. . . , ξ− n, . . . , ξ− 1,

ξ0, ξ1, . . . ,

ξn, . . .) ∈ l∞. +at is,

σ . . . , ξ− n, . . . , ξ− 1,
ξ0, ξ1, . . . , ξn, . . . 

� . . . , ξ− n+1, . . . , ξ0, ξ1, ξ2, . . . , ξn+1, . . . .
(2)

Clearly, the shift map σ on l∞ is continuously invertible,
and its inverse σ− 1 is being defined by (σ − 1ξ)n � ξn− 1, n ∈ Z.

+e ith iterate of σ, σ°σ · °σ
√√√√i times

, is denoted as σi. Let
Σk � (. . . i− 1i0i1 . . .)|in ∈ 1, 2, . . . , k{ }, n ∈ Z  denote a
symbolic space with k symbols. Endowing it with the metric

d(s, t) � max 2− |n|
|tn ≠ sn, n ∈ Z , t � . . . t− 1t0t1 . . .( ,

s � . . . s− 1s0s1 . . .(  ∈ Σk,

(3)

Σk becomes a compact and totally disconnected metric
space. +e shift map σ: Σk⟶Σk is defined by (σt)n � tn+1.
+en, (Σk, σ) is a two-sided symbolic system. To proceed, let
m, l≥ 2, i, j be positive integers.

Lemma 1. Let q≤m be a positive integer. aq1
, aq2

, . . . , aql
are

l different real numbers with l≥ 2 and ai is a real number with

1≤ i≠ q≤m. Λ � (ξn) ∈ l∞|ξmn+i � ai, ξmn+q � aqj
  be a

subset of l∞. +en, (Λ, σm) is topological conjugate to (Σl, σ).

Proof. Define g: Λ⟶ Σl by g(ξ) � (. . . , ξ− mn+q, . . . ,

ξ− m+q, ξq, . . . , ξmn+q, . . .), for ξ � (ξn) ∈ Λ. In fact, g(ξ) is
defined by deleting the elements whose indexes are con-
gruent i modulo m in W, where 1≤ i≠ q≤m. It is not
difficult to see that g is a homeomorphism. By definition of
g, we have g ∘ σm � σ ∘g. So (Λ, σm) and (Σl, σ) are topo-
logical conjugacy. □

Lemma 2 (see [14]). Let X and Y be Banach spaces, L is an
invertible linear map from X to Y, and S is a bounded linear
map from X to Y. If ‖S‖< ‖L− 1‖− 1, then L + S is an invertible
linear map from X to Y.

Lemma 3 (see [15]). Let (Λ, d) be ametric space,Y and X be
Banach spaces, and U ⊂ Λ × Y be open. Suppose that
F: U⟶ X is a continuous map and that there exists a point
(λ0, y0) ∈ U with the following conditions:

(i) F(λ0, y0) � 0.
(ii) DFy(λ, y) is continuous at (λ0, y0), where

DFy(λ, y) is Fre
�
chet partial derivative of F(λ, y)

with respect to y.
(iii) DFy(λ0, y0): Y⟶ X is an invertible linear map.

+en, there exist open balls Bδ0(y0) � y: ‖y − y0‖< δ0 

and Br0
(λ0) � λ: d(λ, λ0)< r0 , where δ0 > 0, r0 > 0 such

that, for any λ ∈ Br0
(λ0), the equation F(λ, y) � 0 has a

unique continuous solution y � h(λ) ∈ Bδ0(y0) with
h(λ0) � y0.

For convenience, we set i − 1 � m when i − 1 � 0. Let
α � α11, Cij � (αij/α)(i ∈ 1, 2, . . . , m{ }, j � i − 1 or i). With-
out losing generality, we may suppose that
kmm ≥ k1m ≥ km− 1m− 1 ≥ kmm− 1 · · · ≥ k22 ≥ k32 ≥ k11 ≥ k21. In the
other cases, we can discuss it in a similar way. +e activation
functions fi(i � 1, . . . , m) have the following conditions
(G1):

(G1) For every i ∈ 1, 2, . . . , m{ }, fi is a continuously
differentiable function fromR toR. f1 has two distinct
zero points xq1, xq2, satisfying f1(xq1) �

f1(xq2) � 0, f1′(xq1)≠ 0, andf1′(xq2)≠ 0, and
fi(i ∈ 2, . . . , m{ }) has a zero point xi,satisfying
fi(xi) � 0 andfi

′(xi)≠ 0.

Let p1 � mk11, pl � mk11 + 
l
i�2(m − i + 1)(kii− ki− 1i− 1),

2≤ l≤m, p � pm + m and define
η(n) � (η1(n), . . . , ηp(n)), where
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ηmj+i(n) � xi n − kii + j( , 0≤ j≤ k11, 1≤ i≤m,

ηp1+j(m− 1)+i(n) � xi n − kii + k11 + j( , 1≤ j≤ k22 − k11, 2≤ i≤m,

ηp2+j(m− 2)+i(n) � xi n − kii + k22 + j( , 1≤ j≤ k33 − k22, 3≤ i≤m,

⋮

ηpm− 1+m+j(n) � xi n − kii + km− 1m− 1 + j( , 1≤ j≤ kmm − km− 1m− 1, i � m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀n ∈ Z. (4)

For any 1≤ i≤m, there exists 1≤ li ≤m − 1 such that
klili
< ki− 1i− 1 − kii− 1 ≤ kli+1li+1. +en, we transform system (1)

into the discrete dynamical system without delays on Rp:

η(n + 1) � Fα(η(n)), n ∈ Z, (5)

where Fα: Rp⟶ Rp is defined as

Fα

η1(n)

η2(n)

⋮

ηp1+1(n)

ηp1+2(n)

⋮

ηpi+i(n)

ηpi+i+1(n)

⋮

ηp− 1(n)

ηp(n)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

ηm+1(n)

ηm+2(n)

⋮

β1ηp1+1(n) + C11αf11 η1(n)(  + C1mαf1m η
pl1+ kmm− k1m − kl1 l1  m− l1( )+m

(n) 

ηp1+m+1(n)

⋮

βiηpi+i(n) + Cii− 1αfii− 1 ηpli

(n)  + Ciiαfii ηi(n)( 

ηpi+m+1(n)

⋮

ηp(n)

βmηp(n) + Cmm− 1αfmm− 1 ηplm

(n)  + Cmmαfmm ηm( (n)( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where pli
� pli

+ (ki− 1i− 1 − kii− 1 − klili
)(m− li) + i − 1, 2≤ i≤

m.
To investigate chaos in System (1), we only consider the

chaotic behavior of the system (Rp, Fα). Next, by the
projection approach, we are going to find the invariant set

Λα of Fα such that the subsystem (Fα,Λα) has chaotic be-
havior for α being sufficiently large.

We consider a family of maps Φ(λ, ·): l∞⟶ l∞
depending on a parameter λ ∈ R, and the class of maps is
defined by

Φ(λ, ξ)m(n+1)+1 � λ − ξm(n+1)+1 + β1ξmn+1  + C11f1 ξ m n− k11( )( )+1  + C1mfm ξ m n− k1m( )( )+m ,

⋮

Φ(λ, ξ)m(n+1)+i � λ − ξm(n+1)+i + βiξmn+i  + Cii− 1fi− 1 ξm n− kii− 1( )+i− 1  + Ciifi ξm n− kii( )+i ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀ξ � ξn(  ∈ l∞, 2≤ i≤m.

(7)

It is easy to see that if ξ � ξn n∈Z ∈ l∞ satisfies
Φ(1/α, ξ) � 0, then the sequence x1(n), x2(n),

. . . , xm(n)}n∈Z with xi(n) � ξmn+i satisfies (1). On the

contrary, if the sequence x1(n), x2(n), . . . , xm(n) n∈Z sat-
isfies (1), then ξ � ξn n∈Z ∈ l∞ with ξmn+i � xi(n) satisfies
Φ(1/α, ξ) � 0.
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Let

Γ � ξ � ξn(  ∈ l∞|ξmn+i � x
i
, ξmn+1 � x

q1 or x
q2

, 2≤ i≤m, n ∈ Z ,

b11 � |C11 max f1′ x
q1

 


, f1′ x
q1

 


 ,

b21 � C21


min f1′ x
q1

 


, f1′ x
q2

 


 ,

bii � Ciifi
′ x

i
 



, (i ∈ 2, . . . , m{ }),

bii− 1 � Cii− 1fi− 1′ x
i

 


, (i ∈ 1, 3, 4, . . . , m{ }),

b≜
1

max b
− 1
11 , b

− 1
ii + b

− 1
ii bii− 1b

− 1
i− 1i− 1 + · · · + b

− 1
ii bii− 1b

− 1
i− 1i− 1 . . . b21b

− 1
11 , ∀2≤ i≤m 

.

(8)

Lemma 4. Under the assumption (G1), if b11 > b1m and
bii > b1m + bii− 1(2≤ i≤m), then we have the following:

(i) +ere exist positive real numbers r0 and δ0 such that,
for any ξ ∈ Γ and − r0 ≤ λ≤ r0, there exists a unique
point ξ(λ) ∈ Bδ0(ξ), satisfying Φ(λ, ξ(λ)) � 0.

(ii) For every 0< δ < δ0, there exists 0< r< r0 such that,
for any − r≤ λ≤ r and ξ ∈ Γ, there is a unique point
ξ(λ), satisfying ‖ξ(λ) − ξ‖≤ δ and Φ(λ, ξ(λ)) � 0.

Bδ0(ξ) is the open ball in l∞ centered at ξ with radius δ0.

Proof. For a given sequence ξ ∈ Γ, we have Φ(0, ξ) � 0. By
the assumption (G1) and the definition of Φ(λ, ξ), this can
ensure the continuous differentiability of Φ(λ, ξ). +e
Fréchet derivative of Φ(0, ξ) with respect to ξ at the point
(0, ξ) be denoted as DΦξ(0, ξ) which is represented as

DΦξ(0, ξ)ξ 
m(n+1)+1 � C11f1′ ξm n− k11( )+1 ξm n− k11( )+1 + C1mfm

′ ξm n− k1m( )+m ξm n− k1m( )+m,

DΦξ(0, ξ)ξ 
m(n+1)+i

� Cii− 1fi− 1′ ξm n− kii− 1( )+i− 1 ξm n− kii− 1( )+i− 1 + Ciifi
′ ξm n− kii( )+i ξm n− kii( )+i,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

n ∈ Z, 2≤ i≤m. (9)

Firstly, we have to show the invertibility of DΦξ(0, ξ).
We denote that DΦξ(0, ξ) � L1(ξ) + L2(ξ), where

L1(ξ)ξ 
m(n+1)+1 � C11f1′ ξm n− k11( )+1 ξm n− k11( )+1,

L1(ξ)ξ 
m(n+1)+i

� Cii− 1fi− 1′ ξm n− kii− 1( )+i− 1 ξm n− kii− 1( )+i− 1 + Ciifi
′ ξm n− kii( )+i ξm n− kii( )+i,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

n ∈ Z, 2≤ i≤m,

L2(ξ)ξ 
m(n+1)+1 � C1mfm

′ ξm n− k1m( )+m ξm n− k1m( )+m,

L2(ξ)ξ 
m(n+1)+i

� 0,

⎧⎪⎪⎨

⎪⎪⎩
n ∈ Z.

(10)

Let

a
l
ii− 1 � Ci− l+1i− lfi− l

′ ξm n+kii− kii− 1+···+ki− l+1i− l+1− ki− li− l− 1+i− l− 1( ) (0≤ l≤ i − 1),

a
l
ii � Ci− li− lfi− l

′ ξm n+kii− kii− 1+ki− 1i− 1− ···+ki− li− l+i− l( ) (0≤ l≤ i − 1).

(11)
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It follows from (G1) that the linear operator L1(ξ) is
invertible. By directing calculation, the inverse operator
L1(ξ)− 1 is

L1(ξ)
− 1ξ 

m(n− 1)+1 �
1

a
0
11
ξm n+k11( )+1,

L1(ξ)
− 1ξ 

m(n− 1)+i
�

1
a
0
ii

ξm n+kii( )+i −
1
a
0
ii

a
0
ii− 1

1
a
1
ii

ξm n+kii − kii− 1+ki− 1i− 1( )+i− 1+,

· · · +(− 1)
i− 1 1

a
0
ii

a
0
ii− 1

1
a
1
ii

, . . . , a
i− 2
ii− 1

1
a

i− 1
ii

ξm n+kii − kii− 1+···− k21+k11( )+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n ∈ Z, 2≤ i≤m. (12)

Since ξ ∈ Γ, ξmn+1 � xq1 or xq2, ξmn+i � xi, 2≤ i≤m. +is
implies that

L1(ξ)
− 1����

����≤
1
b
,

L2(ξ)
����

���� � b1m,

(13)

so

L1(ξ)
− 1����

����
− 1
> L2(ξ)

����
����, (14)

by the fact that b11 > b1m and bii > b1m + bii− 1(2≤ i≤m). +is
shows the invertibility of DΦξ(0, ξ) by Lemma 2.

+erefore, according the implicit function theorem,
there exist positive constants rξ , δξ such that, for every
− rξ ≤ λ≤ rξ , there is a unique point ξ � ξ(λ) ∈ Bδ

ξ
(ξ) with

Φ(λ, ξ(λ)) � 0.
To complete the proof of (i), it only needs to prove that

there exist two positive constants r0, δ0 which are inde-
pendent of ξ ∈ Γ such that the conclusion is satisfied in (i).
From the proof of the implicit function theorem, for the
given ξ ∈ Γ, the constants rξ and δξ above are chosen such
that, for − rξ ≤ λ≤ rξ and ξ ∈ Bδ

ξ
(ξ), we have

DΦξ(λ, ξ)  − DΦξ(0, ξ) 
�����

�����≤
1

2Mξ
,

‖Φ(λ, ξ)‖≤
δξ
2Mξ

.

(15)

Here, Mξ is the constant such that
‖(DΦξ(0, ξ))− 1‖≤Mξ .

We now give the above estimates which are independent
of ξ ∈ Γ. Firstly, we have, for any ξ ∈ Γ,

DΦξ(0, ξ) 
− 1�����

�����≤
1

L1(ξ)
− 1����

����
− 1

− L2(ξ)
����

����
≤

1
b − b1m

≜M,

(16)

where b is given by (8). Secondly, by assumption (G1), there
exists δ1 such that

max C11


, C21


  f1′(x) − f1′ x
q1

 


≤
1
8M

, (17)

for x ∈ Bδ1(xq1),

max C11


, C21


  f1′(x) − f1′ x
q2

 


≤
1
8M

, (18)

for x ∈ Bδ1(xq2), and

max cii− 1


, ci− 1i− 1


  fi− 1′ (x) − fi− 1′ x
i− 1

 


≤
1
4M

, (19)

for x ∈ Bδ1(xi− 1), 1≤ i≠ 2≤m. Note that

DΦξ(λ, ξ) − DΦξ(0, ξ)ξ 
m(n+1)+1

� λ − ξm(n+1)+1 + β1ξm(n+1)+1 

+ C11 f1′ ξm n− k11( )+1  − f1′ ξm n− k11( )+1 ξm n− k11( )+1 

+ C1m fm
′ ξm n− k1m( )+m  − fm

′ ξm n− k1m( )+m ξm n− k1m( )+m ,

DΦξ(λ, ξ) − DΦξ(0, ξ)ξ 
m(n+1)+i

� λ − ξm(n+1)+i + βiξm(n+1)+i 

+ Cii− 1 fi− 1′ ξm (n− kii− 1( )+i− 1  − f1′ ξm (n)− kii− 1( )+i− 1 

ξm (n− kii− 1( )+i− 1

+ Cii fi
′ ξm n− kii( )+i  − fi

′ ξm n− kii( )+i  ξm n− kii( )+i, 2≤ i≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Taking δ0 � δ1, r1 � (1/4M(1 + a)), where
a≜ max βi|i � 1, 2, . . . , m , we have that, for ξ ∈ Γ, ξ ∈ l∞
with ‖ξ − ξ‖≤ δ0 and |λ|≤ r1:

DΦξ(λ, ξ) − DΦξ(0, ξ)
����

����≤ |λ|(1 + a) +
1
4M
≤

1
2M

. (21)

On the contrary, let r2 � (δ0/2M(1 + a)), and it follows
from the definition of Φ(λ, ·) that

‖Φ(λ, ξ)‖≤ |λ|(1 + b)≤
δ0
2M

, (22)

when |λ|≤ r2.
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Finally, take r0 � min r1, r2  and then the constants r0
and δ0 satisfy (i).

For every 0< δ < δ0, (ii) follows by taking
r � min (1/4M(1 + a)), (δ/2M(1 + a)){ }(< r0) and the
proof of (i). □

3. Chaos in System (1)

In this section, we shall show that the system (1) exists
chaotic behaviors. By Lemma 4, for sufficiently large α> 0,
we define the map Tα from Γ to l∞ by

Tα(ξ) � ξ
1
α

 , (23)

where ξ(1/α) is the unique solution of Φ((1/α), ξ) � 0,
satisfying ‖ξ(1/α) − ξ‖≤ δ. +en, we have the following
proposition.

Proposition 1. For sufficiently large α> 0, let Γα � Tα(Γ),
then the map Tα and the shift map σm are commutative, i.e.,

σm ∘Tα � Tα ∘ σ
m

. (24)

Moreover, σm(Γα) � Γα.

Proof. Note that if ξ is a solution of Φ((1/α), ξ) � 0 so is
σm(ξ). +us, for any ξ ∈ Γ, σm°Tα(ξ) � σm(ξ(1/α)) is a so-
lution of Φ((1/α), ξ) � 0. On the contrary, ‖ξ(1/α) − ξ‖≤ δ
by Lemma 4, which leads to ‖σm(Tα
(ξ) − σm(ξ))‖ � ‖σm(ξ(1/α)) − σm(ξ)‖ � ‖ξ(1/α) − ξ‖≤ δ.
Hence, by the uniqueness of ξ(λ) in Lemma 4, we have
σm(Tα(ξ)) � Tα(σm(ξ)). Note that σm(Γ) � Γ, it follows that
σm(Γα) � Γα.

For every k ∈ Z, we define the projectionΠk: l∞⟶ Rp

by

Πk(ξ) � η(k), ∀ξ ∈ l∞, (25)

where for ξ � (ξn) ∈ l∞, η(k) � (η1(k), . . . , ηp(k)) ∈ Rp is
given by

ηmj+i(k) � ξm k− kii+j( )+i, 0≤ j≤ k11, 1≤ i≤m,

ηp1+j(m− 1)+i(k) � ξm k− kii+k11+j( )+i, 1≤ j≤ k22 − k11, 2≤ i≤m,

ηp2+j(m− 2)+i(k) � ξm k− kii+k22+j( )+i, 1≤ j≤ k33 − k22, 3≤ i≤m,

⋮

ηpm− 1+m+j(k) � ξm k− kmm+km− 1m− 1+j( )+m, 1≤ j≤ kmm − km− 1m− 1.

(26)
□

Proposition 2. LetΛα � Π0(Γα), thenΛα is invariant for Fα.

Proof. For each η(0) ∈ Λα, then there exists ξ ∈ Γα such that
Π0(ξ) � η(0). +erefore,

Fα(η(0)) � η(1) � Π0 σm
(ξ)(  ∈ Π0 σm Γα( (  � Π0 Γα(  � Λα.

(27)

+is proves Fα(Λα) ⊂ Λα.

On the contrary, by Proposition 1, we have σm(Γα) � Γα.
+us, there exists ξ′ ∈ Γα such that ξ � σm(ξ′). +us,

η(0) � Π0(ξ) � Π0 σm ξ′( (  � η′(1) � Fα η′(0)( 

� Fα Π0 ξ′( (  ∈ Fα Λα( ,
(28)

which shows that Λα ⊂ Fα(Λα). +erefore,
Fα(Λα) � Λα. □

Theorem 1. Under the assumption of (G1), if b11 > b1m and
bii > b1m + bii− 1(2≤ i≤m), then there exists α0 > 0 such that,
for any α> α0, (Λα, Fα) is topologically conjugate to the full
shift map (Σ2, σ), and therefore, the system is chaotic in the
sense of Devaney.

Proof. Note that(Γ, σm) is an invariant subsystem. By
Lemma 1 and Proposition 1, we only need to prove that there
is α0 > 0 such that, for any α> α0, (Λα, Fα) is topological
conjugate to (Γ, σm).

Let Ω � Π0(Γ), then Ω is a set in Rp consisting of 2k11+1

elements, denoted by

Ω � b1, b2, . . . , b2k11+1 . (29)

Let δ0 and r0 be given as in Lemma 4, and let δ ∈ (0, δ0)
be small enough such that the family of closed balls
Ai � B(bi, δ) 

2k11+1

i�1 in Rp is piecewise disjoint.
For the given δ and any ξ � (ξn) ∈ Γ, by (ii) in Lemma 4,

there exists an α0 � (1/r)> 0 such that, for every α> α0, there
exists a unique Tα(ξ) � ξ(1/α) satisfying ‖ξ(1/α) − ξ‖≤ δ
and Φ((1/α), ξ(1/α)) � 0. By the definition of the projec-
tions Πk and Γ, we have Πk(Γ) � Π0(Γ) � Ω. So we let

S � s � . . . , s− 1, s0, s1, . . .( |si ∈ 1, 2, . . . , 2k11+1
 ,

ξsi
� Πi(ξ), for some ξ ∈ Γ.

(30)

+e set S is a subset of Σ2k11+1. For every
s � (. . . , s− 1, s0, s1, . . .) ∈ S, for all i, j> 0, we set

Vs− i...s0...sj
� F

− j
α Asj

 ∩ · · · ∩As0
∩ · · · ∩F

i
α Asi
 ,

Vs � ∩
i>0,j>0

Vs− i...s0...sj
.

(31)

We claim the following:

(1) For every s ∈ S, Vs contains a unique point.
(2) ∪ s∈SVs � Λα.

In fact, for each s ∈ S, we note that

Vs− i...s0...sj
� η ∈ Rp

|F
− i
α (η) ∈ Asi

, . . . , F
j
α(η) ∈ Asj

 .

(32)

+erefore, there exists a unique ξ ∈ Γ such that, for all
i ∈ Z, Πi(ξ) � ξsi

∈ Ω. +en, by the definition of Tα and
Lemma 4, there exists a unique Tα(ξ) � ξ(1/α), satisfying
‖ξ(1/α) − ξ‖≤ δ and Φ((1/α), ξ(1/α)) � 0. So
Πn(ξ(1/α)) � η(n) n∈Z is a bounded orbit of Fα, that is,
η(n) � Fn

α(η(0)) ∈ Asn
, ∀n ∈ Z. +erefore, η(0) ∈ Vs, which

implies Vs is nonempty.
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On the contrary, for any η′ ∈ Vs, for all n ∈ Z, there are
Fn
α(η′) ∈ Asn

. +us, Fn
α(η′) n∈Z is a bounded orbit of Fα.

+en, there exists ξ ∈ l∞ such that Πn(ξ) � Fn
α(η′). So

‖ξ − ξ‖≤ δ, andΦ((1/α), ξ) � 0. Again by Lemma 4 (ii), there
is ξ � Tα(ξ), and hence, η′ � η(0). Claim (1) holds.

For Claim (2), let η ∈ Λα. +en, there exists a ξ ∈ Γ such
that η � Π0(Tα(ξ)) Let s � (. . . s− 1, s0, s1 . . .) ∈ S be the
corresponding sequence of ξ. Similar to the above argument,
we have η ∈ Vs. +erefore,

Λα ⊂ ∪
s∈S

Vs. (33)

From Claim (1), each Vs contains a unique point which
belongs to Λα, so the converse inclusion holds. +is proves
Claim (2).

For every α> α0, define a map h: Γ⟶ Λα by
h � Π0 ∘Tα. We claim that h is a conjugacy from σm to Fα. To
prove this, we need to show that both h and h− 1 are con-
tinuous and

h ∘ σm
� Fα ∘ h, on Γ. (34)

By Claim (2) and the definition of h, it is easy see that h is
surjective. From Claim (1) and Lemma 4, it follows that h is
injective. +erefore, h is bijective. Since h is a map from a
compact metric space Γ to a Hausdorff space Λα, to prove
that h is homeomorphic, we just need to show the continuity
of h. Let the corresponding subindex sequence of ξ ∈ Γ be
s � (. . . s− 1, s0, s1 . . .) ∈ S. It follows from Claim (1) that

lim
i,j⟶+∞

diam Vs− i...s0...sj
  � 0, (35)

where diam(Vs− i...s0...sj
) denotes the diameter of the set

Vs− i...s0...sj
. +us, for any ε> 0, there exists a positive integer n

such that diam(Vs− n...s0...sn
)< ε. Take δ1 � (1/2m(n+kmm+1)).

+en, for any ξ ∈ Γ with d(ξ, ξ)< δ1, it follows that ξ agrees
with ξ in those terms with lower indices from i � − m(n +

kmm + 1) to i � m(n + kmm + 1). Let s, s ∈ S be the symbolic
sequences corresponding to ξ and ξ, respectively. We have s

agrees with s in those terms with subscripts from i � − n to
i � n + kmm + 1. +us, h(ξ), h(ξ) ∈ Vs− n...s0...sn

and
‖h(ξ) − h(ξ)‖< ε. +is shows the continuity of h. Hence, we
conclude that h is a homeomorphism.

Finally, for any ξ ∈ Γ, we have

h(ξ) � Π0 ∘Tα(ξ) � η(0) � η1(0), . . . , ηq(0) 
T
. (36)

+us,

Fα(h(ξ)) � η1(1), η2(1), . . . , ηq(1) 
T

� Π0 ∘ σ
m ∘Tα(ξ) by(1)

� Π0 ∘Tα ∘ σ
m

(ξ), by Proposition 1

� h ∘ σm
(ξ).

(37)

+e +eorem 1 holds. □

4. Some Simulations

In this section, we will give some numerical simulation
results to verify our theoretical results. We choose β1 � β3 �

(1/4), β2 � β4 � (3/4)3/4, f1(t) � sin (t),f2(t) � tanh(t),

f3(t) � cos(t), f4(t) � tanh(t), α11 � 0.5α, α14 � α, α21 �

− 0.4α, α22 � 2α,k11 � 1, k21 � 2, k14 � 3, k22 � 4, k32 � 3,

k33 � 1, k43 � 2, and k44 � 4. In this case, system (1) becomes

x1(n + 1) �
1
4
x1(n) + 1.5α sin x1(n − 1)(  + α tanh x4(n − 3)( ,

x2(n + 1) �
3
4
x2(n) − 0.4α sin x1(n − 2)(  + 2α tanh x2(n − 4)( ,

x3(n + 1) �
1
4
x3(n) + α tanh x2(n − 3)(  + 1.5α cos x3(n − 1)( ,

x4(n + 1) �
3
4
x4(n) − 0.4α cos x3(n − 2)(  + 2α tanh x4(n − 4)( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀n≥ 5. (38)

In Figure 1, for every α value, the initial values were reset
to x1(1) � − 0.1, x1(2) � 0.1, x1(3) � 0.12, x1(4) � − 0.2,

x1(5) � 0.9, x2(1) � 0.11, x2(2) � − 0.2, x2(3) � − 0.1,

x2(4) � 0.2, x2(5) � 0.1, x3(1) � 0.12, x3(2) � 0.15, x3(3) �

− 0.2, x3(4) � 0.22, x3(5) � 1.1, and x4(1) � − 0.1, x4(2) �

− 0.23, x4(3) � − 0.1, x4(4) � 0.2, x4 (5) � 0.11. After 104
time steps being iterated, we plot the data consisting of 500
points for per α value. +e plotting is for x1, x3 vs the pa-
rameter α. +e bifurcation figures illustrate that the fixed

point of x1 loses stability and period bifurcation occurs when
α ≈ 0.95, and the fixed point of x3 loses stability and period
bifurcation occurs when α ≈ 1.1. Making the bifurcation
figures of the x2 vs α and the x4 vs α similar, they are omitted.

In Figure 2, we show the largest Lyapunov exponent
diagram for α ∈ [0, 6]. For every α value, the initial values
were the same as Figure 1. From the simulation results in
Figure 2, we can find that the largest Lyapunov exponent is
negative when α ∈ (0, 1) and is positive when α> 2.8. +us,

Discrete Dynamics in Nature and Society 7
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the figures illustrate that the system (38) has chaotic be-
haviors when α is large enough.

In Figure 3, we show the chaotic figures. For each α
value, after 6 × 105 time steps being iterated, plot the 6000
data points. +e figure illustrates that there are no chaos for
small α (e.g., α � 0.72, 2.1) and chaotic behavior occurs
when α is larger (e.g., α � 1.68, 3.0, 6.7, 100). +ose nu-
merical simulations support the theoretical results in
Section 2.

5. Conclusion

In this paper, the chaos of a discrete neural network loops
with self-feedback is studied. +e discrete neural network
loops with multiple delays and self-feedback can demon-
strate chaotic behavior when the interconnection strengths
are large enough. Numerical simulations support the the-
oretical results. +e theoretical results are to provide some
new methods for the design of chaotic neural networks.
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