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In this paper, we study the higher order differential equation f(k) + Bf � H, where B is a rational function, having a pole at∞ of
order n> 0, andH ≡ 0 is a meromorphic function with finite order, and obtain some properties related to the order and zeros of its
meromorphic solutions.

1. Introduction and Results

In this paper, a meromorphic function means a function
that is meromorphic in the whole complex plane C. We
assume that the reader is familiar with the fundamental
results and the standard notations of Nevanlinna’s value
distribution theory of meromorphic functions (see [1, 2])
and use the same notations as in [3]. In addition, we use the
notations λ(f) and λ(f) to denote the exponents of
convergence of the zeros and distinct zeros of a mero-
morphic function f(z), respectively, and σ(f) to denote
the growth order of f.

In 1993, Chen [4] obtained the following theorems.

Theorem 1. Let A be a rational function with n-th order pole
at ∞, and let E be a transcendental meromorphic function
with σ(E) � β<(n + k)/k. If all solutions of the differential
equation

f
(k)

+ Af � E, k≥ 2, (1)

are meromorphic, then every solution f(z) of (1) satisfies

λ(f) � λ(f) � σ(f) �
(n + k)

k
, λ

1
f

  � λ
1
E

 , (2)

with at most one exceptional solution f0 satisfying
β≤ σ(f0)<(n + k)/k.

Theorem 2. Let A be a rational function with n-th order pole
at ∞, and let E be a transcendental meromorphic function
with(n + k)/k< σ(E) � β<∞. If all solutions f(z) of (1) are
meromorphic, then

(a) σ(f) � β, λ(1/f) � λ(1/E).
(b) If β � λ(E)> λ(1/E), then λ(f) � β.
(c) If β>max λ(E), λ(1/E){ }, then f(z) satisfies

λ(f) � λ(f) � σ(f) � β, (3)

with at most one exceptional solution f0 satisfying σ(f0)< β.

We all know from the fundamental theory of complex
differential equation that all solutions of linear differential
equation with entire coefficients are entire functions, but a
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solution of linear differential equation with meromorphic
coefficients is not always a meromorphic function. For
example, f(z) � exp 1/z{ } is a solution of the equation
f″ − (1/z4 + 2/z3)f � 0, but f(z) is not a meromorphic
function. Hence, the condition “all solutions f(z) of (1) are
meromorphic” in +eorems 1 and 2 is very rigorous. A
natural question to ask is whether the condition “all solu-
tions f(z) of (1) are meromorphic” in+eorems 1 and 2 can
be omitted? In this paper, we consider the above problem
and give a positive answer by proving the following
theorems.

Theorem 3. Let B be a rational function with n-th order pole
at ∞, and let H( ≡ 0) be a meromorphic function with
σ(H) � β. If the differential equation

f
(k)

+ Bf � H, (4)

has a meromorphic solution, then

(a) If β<(n + k)/k, then all meromorphic solutions f(z)

of (4) satisfy

λ(f) � λ(f) � σ(f) �
(n + k)

k
, (5)

with at most one exceptional solution f0 satisfying
σ(f0) � σ(H)<(n + k)/k.

(b) If β �(n + k)/k, then all meromorphic solutions f(z)

of (4) satisfy σ(f) �(n + k)/k and

max λ(f), λ
1
f

  ≥max λ(H), λ
1
H

  . (6)

Theorem 4. Let B be a rational function with n-th order pole
at ∞, and let H( ≡ 0) be a meromorphic function with
((n + k)/k)< σ(H) � β<∞. If differential equation (4) has
meromorphic solution, then

(a) σ(f) � β.
(b) If β � λ(H)> λ(1/H), then λ(f) � β.
(c) If β>max λ(H), λ(1/H){ }, then all meromorphic

solutions f(z) of (4) satisfy

λ(f) � λ(f) � σ(f) � β, (7)

with at most one exceptional solution f0 satisfying

max λ f0( , λ
1

f0
  ≥max λ(H), λ

1
H

  . (8)

2. Lemmas for the Proof of Theorems

Lemma 1 (see [5]). Let H be a meromorphic function and
σ(H) � β<∞. 8en, for any ε> 0, there exists a set

E1 ⊂ (1,∞) that has finite linear measure and finite loga-
rithmic measure, such that

|H(z)|≤ exp r
β+ε

 , (9)

holds for all z satisfying |z| � r ∉ E1 ∪ [0, 1].

Lemma 2 (see [5]). Let g(z) be a transcendental entire
function and σ(g) � α<∞. 8en, there exists a set
E2 ⊂ (1,∞) that has infinite logarithmic measure, such that

lim
r∈E2
r⟶∞

log logM(r, g)

log r
� lim

r∈E2
r⟶∞

log ]g(r)

log r
� α, (10)

where ]g(r) is the central index of g(z).

Lemma 3 (see [4]). Let B be a rational function with n-th
order pole at∞. If f(z)( ≡ 0) is a meromorphic solution of
the differential equation

f
(k)

+ Bf � 0, (11)

then σ(f) � ((n + k)/k).

Lemma 4 (see [4]). Let E( ≡ 0) be a meromorphic function,
and let bk− j(j � 1, 2, . . . , k) be some rational functions. If
f(z) is a meromorphic solution of the equation

f
(k)

+ bk− 1f
(k− 1)

+ · · · + b0f � E, (12)

satisfying σ(E)< σ(f)<∞, then λ(f) � λ(f) � σ(f).

Lemma 5 (see [6]). Let u1(z) be a meromorphic function
with σ(u1) � β<∞, and let ε> 0 be a given constant. 8en,
there exists a set E3 ⊂ (1,∞) that has finite logarithmic
measure, such that

u
(k)
1 (z)

u
(j)
1 (z)




≤ |z|

(k− j)(β− 1+ε)
, j � 0, 1, . . . , k � j + 1, j + 2, . . . ,

(13)

holds for all z satisfying |z| � r ∉ E3 ∪ [0, 1].

Lemma 6. Let b0, b1, . . . , bk− 1, H( ≡ 0) be some meromor-
phic functions and σ(H) � β<∞. For b0, b1, . . . , bk− 1, there
exists a set E4 ⊂ (1,∞) that has finite logarithmic measure,
such that for all z satisfying |z| � r ∉ E4 ∪ [0, 1], we have

bj(z)


≤ |z|
cj , j � 0, 1, . . . , k − 1, (14)

where cj(j � 0, 1, . . . , k − 1) are positive constants. If there is
an entire function g(z) satisfying the equation

g
(k)

+ bk− 1g
(k− 1)

+ · · · + b0g � H, (15)

then σ(g)<∞.

Proof. Suppose that σ(g) �∞, μ(r) is the maximum term
of g(z) when |z| � r, and ](r) is the central index of g(z).

Using a similar method as in the proof of Lemma 2 in [5],
we know that there exists a subset E2 ⊂ (1,∞) with infinite
logarithmic measure, such that
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lim
r∈E2
r⟶∞

log ](r/2)

log(r/2)
�∞. (16)

Since ](r) is a step function of r, without loss of gen-
erality, we suppose that 0 � t0 < t1 < t2 < · · · are disconti-
nuity points of ](r) and μ(t) � |a](t)|t

](t) has a fixed central
index ](t) � m when t ∈ (tj, tj+1). Hence, for t ∈ (tj, tj+1),
we have

μ′(r) � m am


t

m− 1
�
μ(t)](t)

t
, (17)

outside of finite points in [0, r). Since μ(t) is a continuous
function, for r> 2, we have

log μ(r) − log μ(1) � 
r

1

μ′(t)

μ(t)
 dt

� 
r

1

](t)

t
 dt> 

r

(r/2)

](t)

t
 dt

≥ ]
r

2
 log 2.

(18)

By Cauchy’s inequality, we have μ(r)≤M(r, g). From
the inequality above, we can get that

]
r

2
 log 2≤ logM(r, g) − log μ(1). (19)

Choosing a sufficiently large α such that

α>max c0, c1, . . . , ck− 1, β  + k + 2. (20)

By (16)–(19), we can see that for sufficiently large r,
r ∈ E2, we have

](r)≥ ]
r

2
 ≥

r

2
 

α
� d2r

α
, (21)

M(r, g)> d3 exp d4r
α

 , (22)

where d2, d3, andd4 are the positive constants.
From Wiman–Valiron theory (see [7]), we can choose

|z| � r, |g(z)| � M(r, g), such that we have

g
(j)

(z)

g(z)
�

](r)

z
 

j

(1 + o(1)), j � 1, 2, . . . , k, r ∉ E4,

(23)

where E4 is of finite logarithmic measure.
By Lemma 1, we can see that there exists a set

E1 ⊂ [1,∞) of finite logarithmic measure, such that for all z

satisfying |z| � r ∈ [1,∞) − E1, r⟶∞, we have

|H(z)|≤ exp r
β+(1/2)

 . (24)

Now, we can choose sufficiently large |z| � r ∈ E2−

(E1 ∪E3 ∪E4), |g(z)| � M(r, g), E2 − (E1 ∪ E3 ∪E4) is of
infinite logarithmic measure; by (15) and (23), we have

](r)

z
 

k

(1 + o(1)) + bk− 1
](r)

z
 

k− 1

· (1 + o(1)) + · · · + b0 �
H(z)

g(z)
,

(25)

that is,

](r)(1 + o(1)) + bk− 1 · z(1 + o(1)) + bk− 2

·
z
2

]
(1 + o(1)) + · · · + b0 ·

z
k

]k− 1 �
H

g

z
k

]k− 1.

(26)

By α> β, (20)–(22), and (24), we have

H

g

z
k

]k− 1




≤

exp r
β+(1/2)

  · r
k

d3 exp d4r
α

  · d2r
α

( 
k− 1⟶ 0, (r⟶∞),

(27)

where |z| � r ∈ E2 − (E1 ∪E3 ∪E4), |g(z)| � M(r, g). For
(j � 1, 2, . . . , k − 1), we have

bj− 1z
k− j+1

]k− j




≤

r
cj− 1+k− j+1

d2r
α

( 
k− j
⟶ 0, (28)

holds for |z| � r ∈ E2 − (E1 ∪E3 ∪E4), r⟶∞. Hence,

H

g

z
k

]k− 1 − bk− 1 · z(1 + o(1)) − bk− 2



· ·
z
2

]
(1 + o(1)) − · · · − b0 ·

z
k

]k− 1


� O bk− 1 · z( 

� O r
ck− 1+1

  � o r
ck− 1+k+1

 .

(29)

On the other hand, by (20) and (21), we can see that for
sufficiently large r, r ∈ E2, we have

|](r)(1 + o(1))|>
d2

2
r
α > r

ck− 1+k+1
. (30)

By (29) and (30), we can know that (26) implies a
contradiction. Hence, σ(g)<∞. □

Lemma 7. Let B be a rational function with n-th order pole at
∞, and let H( ≡ 0) be a meromorphic function with
σ(H) � β. If f(z) is a meromorphic solution of (4), then

(a) If β<(n + k)/k, then all meromorphic solutions f(z)

of (4) satisfy σ(f) �(n + k)/k, with at most one ex-
ceptional solution f0 satisfying σ(f0) � β.

(b) If β≥ ((n + k)/k), then σ(f) � β.

Proof. To our aim, we will consider the following three cases.

Case 1. Suppose that H(z) � B0(z)exp P(z){ }, where
B0(z) is a rational function and P(z) is a polynomial
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and then degP � β. By Lemma 3 in [4], we can know
that the conclusion holds.
Case 2. Suppose that H(z) is a meromorphic
function with infinitely many poles. +en, by (4), we
have σ(f)≥ β.

(a) First, we will prove that if σ(f) � α> β, then
σ(f) � ((n + k)/k).
Suppose that z′ is a pole of f(z) of order m1(≥ 1)

and B andH are all analytic at z′. +en, z′ must be a
pole of f(k) + Bf of order m1 + k, which contradicts
the fact that H is analytic at z′. Hence, all poles of f

come from poles of B and H. Since B has only finitely
many poles, we can see that all poles of f come from
poles of H with finitely many exceptions. Suppose
that z″ is a pole of H of order m2 and B is analytic at
z″, then z″ is a pole off(z) of orderm2 − k.+us, we
can know that f(z) has infinitely many poles. From

n(r, f) � n(r, H) − kn(r, H) + O(1)

≤ n(r, H) + O(1),

n(r, H) � n(r, f) + kn(r, f) + O(1)

≤ (k + 1)n(r, f) + O(1),

(31)

we can see that f(z) and H have the same exponent of
convergence of poles, that is,

λ
1
f

  � λ
1
H

 ≤ β. (32)

By Hadamard factorization theory, we can set
f(z) � g(z)/[zk2u(z)] � g(z)/u1(z), where k2 is a
nonnegative integer, g(z) is an entire function, and
u1(z) � zk2 · u(z), where u(z) is the canonical product
formed with the nonzero poles zj: j � 1, 2, · · · ; |zj| �

rj, 0< r1 ≤ r2 ≤ · · ·} of f(z). λ(u1) � σ(u1) � λ(1/f)≤
β. By σ(f) � α> β, we have σ(g) � σ(f) � α.
By Lemma 1, we can choose ε, such that

0<(k + 1)ε<min α − β,
(n + k)

k − β
 , (33)

holds, and there exists a set E1 ⊂ (1, +∞) of finite
logarithmic measure, such that for all z satisfying
|z| � r ∉ [0, 1]∪E1, r⟶∞, we have

1
u1(z)




≤ exp r

β+ε
 . (34)

By (32), we can know that f(z) and H have the same
exponent of convergence of poles. From the above
proofs, we can see that except for finitely many

exceptions, f(z) and H have the same poles with the
difference of their orders being k; hence, the above set
E1 concerning f(z), for H, we still have for all z

satisfying |z| � r ∉ [0, 1]∪E1, r⟶∞,

|H(z)|≤ exp r
β+ε

 , (35)

holds. Substituting f(z) � g(z)/u1(z) into (4), we get

g
(k)

g
+ bk− 1

g
(k− 1)

g
+ · · · + b0 + B(  �

u1H

g
, (36)

where bk− j are some differential polynomials, with
constant coefficients, in u1′/u1, u1″/u1, . . . , u

(j)
1 /u1. By

σ(u1)≤ β and Lemma 5, we can see that there exists a
set E3 ⊂ (1, +∞) with finite logarithmic measure, such
that for all z satisfying |z| � r ∉ [0, 1]∪E3, r⟶∞,
we have

u
(j)
1 (z)

u1(z)




≤ |z|

j(β− 1+ε)
, j � 1, 2, . . . , k. (37)

By (33), we have k(β − 1 + ε)< n. Hence, by (37), we
can easily obtain

bk− j



≤ c|z|
j(β− 1+ε)

, j � 1, 2, . . . , k,

b0 + B � dz
n
(1 + o(1)),

⎧⎨

⎩ (38)

where c and d are two nonzero constants and
|z| � r ∈ (1,∞) − E3, r⟶∞. +us, by Lemma 6,
(36) and (38), we have σ(g) � α<∞.
By Lemma 2 and σ(g) � α<∞, we can see that there
exists a set E2 ⊂ (1, +∞) with infinite logarithmic
measure, such that

lim
r∈E2
r⟶∞

log logM(r, g)

log r
� lim

r∈E2
r⟶∞

log ](r)

log r
� α, (39)

where ](r) is the central index of g(z).
Choosing |z| � r, |g(z)| � M(r, g), from Wiman–
Valiron theory, we can know that (23) holds outside a
set E4 with finite logarithmic measure. For sufficiently
large r, by (39), we have

M(r, g)≥ exp r
α− ε

 , (40)

where |z| � r ∈ E2 − (E1 ∪E3 ∪E4), |g(z)| � M(r, g).
Since u1 is entire, σ(u1)≤ β, combining (35), (40), and
β + 2ε≤ β + (k + 1)ε< α, we have

4 Discrete Dynamics in Nature and Society



u1(z) · H(z)

g(z)




�

u1(z) · H(z)




M(r, g)
≤ exp 2r

β+ε
− r

α− ε
 

⟶ 0, (r⟶∞),

(41)

where |z| � r ∈ E2 − (E1 ∪E3 ∪E4), |g(z)| � M(r, g).
Choosing z such that |z| � r ∈ E2 − (E1 ∪ E3 ∪E4),

|g(z)| � M(r, g), since E2 − (E1 ∪E3 ∪E4) is of infinite
logarithmic measure, by (23), (36), (38), and (41), we
can see that for r⟶∞, we have

](r)

z
 

k

(1 + o(1)) + O r
β− 1+ε

 
](r)

z
 

k− 1

· (1 + o(1)) + · · · +|d|r
n
(1 + o(1)) �

u1(z)H(z)

g(z)
� o(1).

(42)

By (39), we can see that for r ∈ E2−

(E1 ∪E3 ∪E4), r⟶∞, we have

](r) � r
α+o(1)

. (43)

By (43), we can see that the degree of terms of the left-
hand side of (42) in r is

k(α + o(1) − 1), (α + o(1) − 1)(k − 1)

+(β − 1 + ε), . . . , (α + o(1) − 1) +(k − 1)(β − 1 + ε), n.

(44)

By (33), we have (β − 1 + ε)< (α + o(1) − 1), which
implies that

k(α + o(1) − 1)>(α + o(1) − 1)(k − 1) +(β − 1 + ε)

>(α + o(1) − 1)(k − 2) + 2(β − 1 + ε)

> · · ·

>(α + o(1) − 1) +(k − 1)(β − 1 + ε).
(45)

+us, comparing the degree of terms of both sides of
(42) in r, we obtain k(α − 1) � n, which implies
α � (n + k)/k, that is, σ(f) � σ(g) � (n + k)/k.
Now, we will prove that all meromorphic solutions
f(z) of (4) satisfy σ(f) �(n + k)/k, with at most one
exceptional solution f0 satisfying σ(f0) � β.
Suppose that f0 and f1(f1 ≡ f0) are two mero-
morphic solutions of (4) and satisfy σ(f0) �

σ(f1) � β. +en, σ(f0 − f1)< ((n + k)/k). Since
f0 − f1 is a meromorphic solution of homogeneous

equation (11) corresponding to (4), by Lemma 3, we
have σ(f0 − f1) �(n + k)/k, which is a contradic-
tion. Hence, equation (4) has at most one exceptional
solution f0 satisfying σ(f0) � β, and all other
meromorphic solutions are satisfying
σ(f) �(n + k)/k.

(b) Since σ(f)≥ β≥(n + k)/k, we will just prove that
σ(f) � α> β is false.
Suppose that α> β, and set f(z) � g(z)/u1(z),
where g(z) and u1(z) have the same meanings as in
(a). +en, using a similar method as in the proof of
(a), we can see that for any given ε(0< (k + 1)ε<
α − β), (34)–(37) hold. By β≥(n + k)/k and (37), we
can see that for |z| � r ∈ (1,∞) − E3, r⟶∞, we
have

bk− j



≤ c|z|
j(β− 1+ε)

, j � 1, 2, . . . , k,

b0 + B


 � |d|z
n
(1 + o(1)),

⎧⎪⎨

⎪⎩
(46)

where c andd are the two nonzero constants.
By using (36) and (46) in conjunction with Lemma 6,
we have σ(g) � α<∞. Continuing using a similar
method as in the proof of (a), we can see (39)–(43) hold.
Hence, for |z| � r ∈ E2 − (E1 ∪E3 ∪E4), we can see that
in the left-hand side of (42), only one term
(](r)/z)k(1 + o(1)) has the highest degree k(α − 1) in
r. It is impossible. Hence, σ(f) � β.
Case 3. Suppose that H(z) is a meromorphic function
with finite many poles and infinite many zeros. +en,
we can use a similar method as in the proof of Case 2 to
obtain our conclusions.

Using a similar method as in the proof of (a) in Lemma 7,
we can obtain the following lemma. □

Lemma 8. Let β(> 1) be a positive integer, and let Bk− j be
some rational functions with nk− j-th order pole at∞, where
nk− j � j(β − 1)(j � 1, 2, . . . , k). U ≡ 0 is a meromorphic
function, and σ(U)< β. If the differential equation

h
(k)

+ Bk− 1h
(k− 1)

+ · · · + B0h � U, (47)

has meromorphic solution, then all meromorphic solutions
h(z) of (47) satisfy σ(h) � β, with at most one exceptional
solution h0 satisfying σ(h0) � σ(U).

Lemma 9. Let Bk− j(j � 1, 2, . . . , k), Q be rational functions
and Bk− j has a pole of order nk− j(> 0) at ∞, and P is a
polynomial with deg P � β. If f(z) is a meromorphic solution
of the equation

f
(k)

+ Bk− 1f
(k− 1)

+ · · · + B0f � Qe
P
, (48)

then σ(f)<∞.
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Proof. Without loss of generality, we suppose that f(z) is
transcendental. Otherwise, f(z) is a rational function, and
we have σ(f)<∞.

Differentiating both sides of (48), we have

f
(k+1)

+ Bk− 1 −
Q′
Q

− P′ f
(k)

− Bk− 1′ + Bk− 2 − Bk− 1
Q′
Q

+ P′  f
(k− 1)

+ · · · + B1′ + B0 − B1
Q′
Q

+ P′  f′

+ B0′ − B0
Q′
Q

+ P′  f � 0,

(49)

that is,

f
(k+1)

+ 
k

j�0
Bk− j
′ + Bk− j− 1 − Bk− j

Q′
Q

+ P′  f
(k− j)

� 0,

(50)

where Bk � 1 andB− 1 � 0.
Since the poles of f(z) just appear at the poles of

Bk− j(j � 1, 2, . . . , k), Q, f(z) has finitely many poles. Using
f1 to denote the sum of the major part of all poles of f,
f2 � f − f1 is a transcendental entire function and
σ(f) � σ(f2). Substituting f � f1 + f2 into (50), we have

f
(k+1)
2 + 

k

j�0
Bk− j
′ + Bk− j− 1 − Bk− j

Q′
Q

+ P′  f
(k− j)
2

� − f
(k+1)
1 + 

k

j�0
Bk− j
′ + Bk− j− 1 − Bk− j

Q′
Q

+ P′  f
(k− j)
1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(51)

Since the right-hand side of (51) is a rational function, its
order is finite.

Suppose that Bk− j
′ � ak− jz

nk− j (1 + o(1)) and P′ �
bzβ− 1(1 + o(1)), where ak− j and b are some nonzero con-
stants. +en,

Bk− j
′ + Bk− j− 1 − Bk− j

Q′
Q

+ P′  � nk− jak− j · z
nk− j− 1

· (1 + o(1)) + ak− j− 1 · z
nk− j− 1(1 + o(1)) − bak− j

· z
nk− j+β− 1

(1 + o(1)),

(52)

hence, there must exist some positive constants ck− j(j �

0, 1, . . . , k) such that

Bk− j
′ + Bk− j− 1 − Bk− j

Q′
Q

+ P′ 




≤ |z|

ck− j , j � 0, 1, . . . , k.

(53)

Applying Lemma 6 on (51) and (53), we have σ(f2)<∞.
Hence, σ(f)<∞. □

Lemma 10. Let Bk− j(j � 1, 2, . . . , k) be some rational
functions with nk− j-th order pole at∞, and let H( ≡ 0) be a
meromorphic function with σ(H) � β<∞. If the equation

f
(k)

+ Bk− 1f
(k− 1)

+ · · · + B0f � H, (54)

has meromorphic solution f, then

λ
1
f

  � λ
1
H

 , λ
1
f

  � λ
1
H

 ,

max λ(f), λ
1
f

  ≥max λ(H), λ
1
H

  .

(55)

Proof. Since Bk− j(j � 1, 2, . . . , k) have only finitely many
poles, we can see that if z0 is not a pole of
Bk− j(j � 1, 2, . . . , k), then z0 is an α-th order pole of f if and
only if z0 is an (α + k)-th order pole of H; hence,
λ(1/f) � λ(1/H). Since

α + k

2k
�

α
2k

+
1
2
≤ α, (56)

we have
1
2k

n(r, H) + O(1)≤ n(r, f)≤ n(r, H) + O(1),

1
2k

N(r, H) + O(log r)≤N(r, f)≤N(r, H) + O(log r).

(57)

+us,

λ
1
f

  � λ
1
H

 . (58)

Now, we will prove that every meromorphic solution f

of (54) satisfies σ(f)<∞. So, we will consider the following
three cases:

Case 1. Suppose that H(z) � Q(z)exp P(z){ }, where
Q(z) is a rational function and P(z) is a polynomial.
+en, degP � β. +us, by Lemma 9, we have σ(f)<∞.
Case 2. Suppose that H(z) is a meromorphic function
with infinitely many poles. +en, by (54), we have
σ(f)≥ β. If σ(f) � β, then σ(f)<∞. Without loss of
generality, we suppose that σ(f) � α> β.
Set f(z) � g(z)/u1(z), where g(z) and u1(z) have the
samemeanings as in the proof of (a) of Lemma 7. Using
a similar method as in the proof of (a) of Lemma 7, we
can get σ(u1)≤ β and σ(g) � σ(f) � α. Substituting
f(z) � g(z)/u1(z) into (54), we have

g
(k)

g
+ bk− 1

g
(k− 1)

g
+ · · · + b0 �

u1H

g
, (59)
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where bk− j are some differential polynomials, with
constant coefficients, in u1′/u1, u1″/u1, . . . , u

(j)
1 /u1, and

Bk− j, . . . , Bk− 1. Using a similar method as in the proof
of (a) of Lemma 7, we know (37) holds obviously.
Hence, we can easily obtain

bk− j



≤ c|z|
j(β− 1+ε)+n′

, j � 1, 2, . . . , k, (60)

where c is a nonzero constant, ε satisfies 0< ε< α − β,
and n′ � max n0, n1, . . . , nk− 1 . By Lemma 6 and (59)
and (60), we have σ(g) � α<∞. Hence, σ(f)<∞.
Case 3. Suppose that H(z) is a meromorphic function
with finitely many poles and infinitely many zeros.
+en, using a similar method as in the proof of Case 2,
we can get σ(f)<∞.

+us, we can write f andH in the following form:

f � z
m1

E1

Q1
e

P1 ,

H � z
m2

E2

Q2
e

P2 ,

(61)

where m1 andm2 are the integers, E1 andE2 are the canonical
product formed with the nonzero zeros of f and H, Q1 andQ2
are the canonical product formedwith the nonzero poles off and
H, and P1 andP2 are the polynomials such that degP1 ≤ σ(f)

and degP2 ≤ σ(H). Substituting (61) into (54), we have

F E1, Q1(  � z
m2

E2

Q2
e

P2− P1 , (62)

where F is a rational function in E1, Q1, and its derivative,
with constant coefficients. Comparing the growth order of
both sides of (62) and noting that E2 andQ2 are canonical
products, we have

max σ E1( , σ Q1(  ≥ σ(F) � σ z
m2

E2

Q2
e

P2− P1 

� max σ E2( , σ Q2( , deg P2 − P1(  

≥max σ E2( , σ Q2(  ,

(63)

that is,

max λ(f), λ
1
f

  ≥max λ(H), λ
1
H

  . (64)
□

3. Proofs of Theorems

8e proof of 8eorem 3

(a) By Lemma 7, we can see that all meromorphic solutions
f(z) of equation (4) are satisfying
σ(f) �(n + k)/k, with at most one exceptional
meromorphic solution f0 satisfying σ(f0) �

σ(H) � β. From Lemma 4, we can know that
meromorphic solutions f(z) of (4) with σ(f) �

(n + k)/k satisfy λ(f) � λ(f) � σ(f) � (n + k)/k.
(b) By Lemmas 7 and 10, we get the required result.

8e proof of 8eorem 4

(a) By Lemma 7, we have σ(f) � β.
(b) If β � λ(H)> λ(1/H), then, by Lemma 10, we have

λ(f) � β.
(c) If β>max λ(H), λ(1/H){ }, set H � UeP, where

U � zk(V1/V2), k is an integer and V1 and V2 are the
canonical product (or polynomial) formed with the
nonzero zeros and nonzero poles of H, respectively.
σ(U) � max λ(H), λ(1/H){ }< β, and P(z) is a
polynomial with degP(z) � β. Setting f � h · eP,
where h is a meromorphic function. +us, f and h

have the same zeros and poles. Substituting f � h ·

eP andH � UeP into (4), we have

h
(k)

+ bk− 1h
(k− 1)

+ · · · + b0h � U, (65)

where

bk− 1 � kP′,

bk− j � C
j

k P′( 
j

+ Hj− 1 P′( , (j � 2, . . . , k − 1),

b0 � C
k
k P′( 

k
+ Hk− 1 P′(  + B,

(66)

where C
j

k are the binomial coefficients and Hj− 1(P′)
are the polynomials in P′ and its derivatives, with
constant coefficients and having degree j − 1. It is
easy to see the derivative of Hj− 1(P′) with respect to
z having the same form with Hj− 1(P′). Since
β>(n + k)/k, we know deg bk− j � j(β − 1)(j � 1, 2,

. . . , k). By σ(U)< β and Lemma 8, we can see that all
meromorphic solutions h(z) of (65) satisfy
σ(f) �(n + k)/k, with at most one exceptional
meromorphic solution h0 satisfying σ(h0) � σ(U).
By Lemma 4, we have λ(h) � λ(h) � σ(h) � β. From
Lemma 10, we can know that h0 satisfies

σ h0( ≥max λ h0( , λ
1
h0

  ≥max λ(H), λ
1
H

  .

(67)

Hence, (4) has at most one exceptional meromorphic
solution f0 � h0e

P satisfying

max λ f0( , λ
1

f0
  ≥max λ(H), λ

1
H

  , (68)

and all other meromorphic solutions f � heP satisfy
λ(f) � λ(f) � λ(h) � β.
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4. Conclusion

Our paper investigates the nonhomogeneous linear differ-
ential equation f(k) + Bf � H, where B is a rational func-
tion, having a pole at ∞ of order n> 0, and H ≡ 0 is a
meromorphic function with finite order, and obtains some
properties related to the order and zeros of its meromorphic
solutions.
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