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In this work, we investigate the following system of fractional q-difference equations with four-point boundary problems: Dα
qu(t)􏽮

+ f(t, v(t)) � 0, 0< t< 1; D
β
qv(t) + g(t, u(t)) � 0, 0< t< 1; u(0) � 0, u(1) � c1u(η1); and v(0) � 0, v(1) � c2u(η2), where Dα

q and

D
β
q are the fractional Riemann–Liouville q-derivative of order α and β, respectively, 0< q< 1, 1< β≤ α≤ 2, 0< η1, η2 < 1,

0< c1ηα− 1
1 < 1, and 0< c2η

β− 1
2 < 1. By virtue of monotone iterative approach, the iterative positive solutions are obtained. An

example to illustrate our result is given.

1. Introduction

In [1, 2], Jackson studied the q-difference calculus firstly;
since then, many authors have investigated this subject
duo to applications of the q-difference calculus in
quantum mechanics, particle physics, hypergeometric
series, and complex analysis [3, 4]. *e extension of q-
difference calculus is the fractional q-difference calculus,
which was originally investigated by Al-Salam [5] and
Agarwal [6]. In the past decade, in many works con-
cerning nonlinear fractional q-difference boundary value
problem, the results of the existence and the uniqueness of
solutions have been given. In [7], Ferreira considered the
existence of positive solutions to the nonlinear fractional
q-difference equation:

Dα
qu(t) + f(t, u(t)) � 0, 0< t< 1, 1< α≤ 2,

u(0) � u(1) � 0.
􏼨 (1)

In [8], Ferreira studied the existence of positive solutions
to the nonlinear fractional q-difference equation:

Dα
qu(t) + f(t, u(t)) � 0, 0< t< 1, 2< α≤ 3,

u(0) � Dqu(0) � 0, Dqu(1) � β≥ 0.

⎧⎨

⎩ (2)

By using a fixed-point theorem in partially ordered sets,
Garzi and Agheli [9] studied the existence and uniqueness of
a positive and nondecreasing solution to the fractional q-
difference equation:

Dα
qu(t) + f(t, u(t)) � 0, 0< t< 1, 3< α≤ 4,

u(0) � Dqu(0) � D2
qu(0) � 0, D2

qu(1) � βD2
qu(η),

⎧⎨

⎩

(3)

where 0< η< 1 and 1 − βηα− 3 > 0.
In [10], Guo and Kang obtained the existence and

uniqueness of a positive solution for the fractional q-dif-
ference equation of the form

Dα
qu(t) + f(t, u(t), u(t)) + g(t, u(t)) � 0, 0< t< 1, 1< α≤ 2,

u(0) � 0, u(1) � βu(η),
􏼨

(4)

by virtue of fixed-point theorems for the mixed monotone
operator. Here, 1< α≤ 2 and 0< βηα− 1 < 1.

Recently, by using the monotone iterative approach, in
[11], Wang investigated the iterative positive solutions of the
following fractional q-difference equations with three-point
boundary conditions:
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Dα
qu(x) + λh(x)f(u(x)) � 0, 0<x< 1, 2< α≤ 3,

u(0) � Dqu(0) � Dqu(1) � 0.

⎧⎨

⎩

(5)

It should be noted that the existence of positive solutions
of problem (5) had been studied by Li et al. [12] by means of
a fixed-point theorem in cones. *e novel idea of [11] is to
find the positive solution.

Motivated by the above mentioned works, in this paper,
we consider the following system of fractional q-difference
equations with four-point boundary conditions:

Dα
qu(t) + f(t, v(t)) � 0, 0< t< 1,

D
β
qv(t) + g(t, u(t)) � 0, 0< t< 1,

u(0) � 0,

u(1) � c1u η1( 􏼁,

v(0) � 0,

v(1) � c2u η2( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where Dα
q and D

β
q are the fractional Riemann–Liouville q-

derivative of order α and β, respectively, 0< q< 1,
1< β≤ α≤ 2, 0< η1, η2 < 1, 0< c1ηα− 1

1 < 1, and 0< c2η
β− 1
2 < 1.

By using the monotone iterative approach, in this paper,
we will construct two convergent monotone iterative
schemes for seeking one coupled positive solution and
obtain the coupled positive solution of problem (6). To the
best of our knowledge, there is no paper to study the iterative
coupled positive solutions for the coupled system of frac-
tional q-difference boundary value problems. It is noted that
we may investigate the approximate solutions of problem (6)
by numerical approximation algorithms, which will be
presented as another paper. For the latest development of
numerical approximation algorithms of some boundary
value problems, see [13–17] and the references therein.

2. Preliminaries

Let q ∈ (0, 1), the q-derivative of a function f is defined by

Dqf􏼐 􏼑(x) �
f(qx) − f(x)

(q − 1)x
,

Dqf􏼐 􏼑(0) � lim
x⟶0

Dqf􏼐 􏼑(x),

(7)

and q-derivatives of higher order by

D
0
qf􏼐 􏼑(x) � f(x),

D
n
qf􏼐 􏼑(x) � Dq D

n− 1
q f􏼐 􏼑(x), n ∈ N.

(8)

*e q-integral of a function f defined in the interval [0, b]

is given by

Iqf􏼐 􏼑(x) � 􏽚
x

0
f(s)dqs � x(1 − q) 􏽘

∞

k�0
f xq

k
􏼐 􏼑q

k
, x ∈ [0, b].

(9)

Similar to the derivatives, the operator In
q is given by

I
0
qf􏼐 􏼑(x) � f(x),

I
n
qf􏼐 􏼑(x) � Iq I

n− 1
q f􏼐 􏼑(x), n ∈ N.

(10)

Define
[a]q �

1 − qa

1 − q
, a ∈ R. (11)

*e q-analogue of the power function (a − b)n with
n ∈ N0 is

(a − b)
0

� 1,

(a − b)
n

� 􏽙
n− 1

k�0
a − bq

k
􏼐 􏼑, n ∈ N, a, b ∈ R.

(12)

Moreover, if α ∈ R, then

(a − b)
(α)

� a
α

􏽙

∞

n�0

a − bqn

a − bqα+n
. (13)

Remark 1. If b � 0, then a(α) � aα. If α> 0 and a≤ b≤ t, then
(t − a)(α) ≥ (t − b)(α).

*e q-gamma function [18] is defined by

Γq(x) �
(1 − q)(x− 1)

(1 − q)x− 1 , x ∈ R\ 0, − 1, − 2, . . .{ }, (14)

and satisfies Γq(x + 1) � [x]qΓq(x).

Definition 1. We say (u∗, v∗) is a solution of system (6), if
(u∗, v∗) satisfies the first and second equations of (6) and
boundary conditions of (6).

Definition 2 (see [19]). Let α> 0 and f be a function defined
on [0, 1]. *e fractional q-integral of the Riemann–Liouville
type is

I
α
qf􏼐 􏼑(x) �

1
Γq(α)

􏽚
x

0
(x − qt)

(α− 1)
f(t)dqt, x ∈ [0, 1].

(15)

Definition 3 (see [19]). *e fractional q-derivative of the
Riemann–Liouville type is defined by

D
α
qf􏼐 􏼑(x) � D

n
qI

n− α
q f􏼐 􏼑(x), α> 0, (16)

where n is the smallest integer greater than or equal to α.

Lemma 1 (see [19]). Let α, β≥ 0 and f be a function defined
on [0, 1]. -en, the following formulas hold:

(1) (I
β
qIαqf)(x) � (I

α+β
q f)(x),

(2) (Dα
qIαqf)(x) � f(x).

Lemma 2 (see [13]). Let α> 0 and n be a positive integer.
-en, the following equality holds:

I
α
qD

n
qf􏼐 􏼑(x) � D

n
qI

α
qf􏼐 􏼑(x) − 􏽘

n− 1

k�0

xα− n+k

Γq(α + k − n + 1)
D

k
qf􏼐 􏼑(0).

(17)
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By Lemmas 1 and 2, Guo and Kang in [10] obtained the
following lemma.

Lemma 3. For any g ∈ C[0, 1], the boundary value problem
Dα

qu(t) + g(t) � 0, 0< t< 1,

u(0) � 0, u(1) � c1u η1( 􏼁,

⎧⎨

⎩ (18)

has a unique solution:

u(t) � 􏽚
1

0
G1(t, qs)g(s)dqs, (19)

where

G1(t, qs) �

tα− 1(1 − qs)(α− 1) − tα− 1c1 η1 − qs( 􏼁
(α− 1)

− (t − qs)(α− 1) 1 − c1ηα− 1
1( 􏼁

Γq(α) 1 − c1ηα− 1
1( 􏼁

, 0≤ qs≤ t≤ 1, qs≤ η1,

tα− 1(1 − qs)(α− 1) − (t − qs)(α− 1) 1 − c1ηα− 1
1( 􏼁

Γq(α) 1 − c1ηα− 1
1( 􏼁

, 0≤ η1 ≤ qs≤ t≤ 1,

tα− 1(1 − qs)(α− 1) − tα− 1c1(η − qs)(α− 1)

Γq(α) 1 − c1ηα− 1
1( 􏼁

, 0≤ t≤ qs≤ 1,

tα− 1(1 − qs)(α− 1)

Γq(α) 1 − c1ηα− 1
1( 􏼁

, 0≤ t≤ qs≤ 1, η1 ≤ qs,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

is the Green function of BVP (18).

Similarly, we have the following.

Lemma 4. For any h ∈ C[0, 1], the boundary value problem

D
β
qv(t) + h(t) � 0, 0< t< 1,

v(0) � 0, v(1) � c2v η2( 􏼁,

⎧⎨

⎩ (21)

has a unique solution:

v(t) � 􏽚
1

0
G2(t, qs)h(s)dqs, (22)

where

G2(t, qs) �

tβ− 1(1 − qs)(β− 1) − tβ− 1c2 η2 − qs( 􏼁
(β− 1)

− (t − qs)(β− 1) 1 − c2η
β− 1
2􏼐 􏼑

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

, 0≤ qs≤ t≤ 1, qs≤ η2,

tβ− 1(1 − qs)(β− 1) − (t − qs)(β− 1) 1 − c2η
β− 1
2􏼐 􏼑

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

, 0≤ η2 ≤ qs≤ t≤ 1,

tβ− 1(1 − qs)(β− 1) − tβ− 1c2 η2 − qs( 􏼁
(β− 1)

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

, 0≤ t≤ qs≤ 1,

tβ− 1(1 − qs)(β− 1)

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

, 0≤ t≤ qs≤ 1, η2 ≤ qs,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

is the Green function of BVP (21).

Lemma 5. (see [10]). For G1(t, qs) and G2(t, qs) defined as
in Lemmas 3 and 4, respectively, we have

(i) G1(t, qs) and G2(t, qs) are two continuous functions
(ii) (M1qs(1 − qs)(α− 1)/Γq(α)(1 − c1ηα− 1

1 ))tα− 1 ≤ G1(t,

qs) ≤ ((1 − qs)(α− 1)/Γq(α)(1 − c1ηα− 1
1 ))tα− 1, ∀0 ≤ t,

s≤ 1, where 0<M1 � min 1 − c1ηα− 1
1 , c1ηα− 2

1 (1−􏼈

η1), c1ηα− 1
1 }< 1

Discrete Dynamics in Nature and Society 3



(iii) (M2qs(1 − qs)(β− 1)/Γq(β)(1 − c2η
β− 1
2 ))tβ− 1 ≤G2(t,

qs)≤ ((1 − qs)(β− 1)/Γq(β)(1 − c2η
β− 1
2 ))tβ− 1, ∀0≤ t,

s≤ 1, where 0<M2 � min􏼚1 − c2η
β− 1
2 , c2η

β− 2
2 (1−

η2), c2η
β− 1
2 􏼛< 1

3. Main Result

In this paper, we will employ the Banach space C[0, 1],
equipped with norm ‖u‖ � supt∈[0,1]|u(t)| for each
u ∈ C[0, 1]. Define two cones P1 and P2 in C[0, 1] as follows:

P1 � u ∈ C[0, 1] | there exist two positive numbers 0< a1 < 1< b1, such that a1t
α− 1 ≤ u(t)≤ b1t

α− 1
, t ∈ [0, 1]􏽮 􏽯,

P2 � v ∈ C[0, 1] | there exist two positive numbers 0< a2 < 1< b2, such that a2t
β− 1 ≤ v(t)≤ b2t

β− 1
, t ∈ [0, 1]􏽮 􏽯.

(24)

Now, we define the operators Ti: C[0, 1]⟶
C[0, 1](i � 1, 2) by

T1v(t) � 􏽚
1

0
G1(t, qs)f(s, v(s))dqs,

T2u(t) � 􏽚
1

0
G2(t, qs)g(s, u(s))dqs.

(25)

From Lemmas 3 and 4, BVP (6) can be transformed into
the following system of integral equations:

u(t) � 􏽚
1

0
G1(t, qs)f(s, v(s))dqs,

v(t) � 􏽚
1

0
G2(t, qs)g(s, u(s))dqs,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

By (26), we know that (u∗, v∗) is a solution of (6) if and
only if u∗ � T1v∗ and v∗ � T2u∗.

In order to facilitate our investigation, we make the
following assumptions:

(H1) f ∈ C([0, 1] × [0,∞), [0,∞)) is nondecreasing
with respect to v, and there exists a positive constant
σ1 > 1, such that

f(t, rv)≥ r
σ1f(t, v), ∀t ∈ [0, 1], v ∈ [0, +∞), r ∈ (0, 1].

(27)

(H2) g ∈ C([0, 1] × [0,∞), [0,∞)) is nondecreasing
with respect to u, and there exists a positive constant
0< σ2 < 1, such that

g(t, ru)≥ r
σ2g(t, u), ∀t ∈ [0, 1], u ∈ [0, +∞), r ∈ (0, 1].

(28)

(H3) 0< 􏽒
1
0 (1 − qs)(α− 1)f(s, 1)dqs< +∞.

(H4) 0< 􏽒
1
0 (1 − qs)(β− 1)g(s, 1)dqs< +∞.

Remark 2. *e conditions (H1) and (H2) imply that, for
∀r> 1, we have f(t, rv)≤ rσ1f(t, v) and g(t, ru)≤ rσ2g(t, u).

Theorem 1. Assume that conditions (H1)–(H4) hold and
there exist two positive constants R1 and R2 such that

1
Γq(α) 1 − c1ηα− 1

1( 􏼁
􏽚
1

0
(1 − qs)

(α− 1)
f(s, 1)dqs≤R

1− σ1
1 ,

(29)

1
Γq(β) 1 − c2η

β− 1
2􏼐 􏼑

􏽚
1

0
(1 − qs)

(β− 1)
g(s, 1)dqs≤R

1− σ2
2 ,

(30)

then the fractional q-difference system (6) has one positive
solution (u∗, v∗), where u∗ ∈ P1 and v∗ ∈ P2. Moreover, for
each t ∈ [0, 1], there exist constants 0<mi < 1< ni(i � 1, 2),
such that

u
∗
(t) ∈ m1t

α− 1
, n1t

α− 1
􏽨 􏽩,

v
∗
(t) ∈ m2t

β− 1
, n2t

β− 1
􏽨 􏽩,

(31)

which can be obtained by monotone iterative schemes un􏼈 􏼉

and vn􏼈 􏼉 generated by

un(t) � 􏽚
1

0
G1(t, qs)f s, vn− 1(s)( 􏼁dqs,

vn(t) � 􏽚
1

0
G2(t, qs)g s, un− 1(s)( 􏼁dqs.

(32)

i.e., ‖un − u∗‖⟶ 0 and ‖vn − v∗‖⟶ 0 as n⟶∞.

Proof. For any v ∈ P2, we know that there exist two con-
stants a1 and b1 with 0< a1 < 1< b1 such that

a1t
β− 1 ≤ v(t)≤ b1t

β− 1
, t ∈ [0, 1]. (33)

From Lemma 5 and condition (H1), we obtain
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T1v(t) � 􏽚
1

0
G1(t, qs)f(s, v(s))dqs

≥
qM1t

α− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
s(1 − qs)

(α− 1)
f(s, v(s))dqs

≥
qM1t

α− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
s(1 − qs)

(α− 1)
f s, a1s

β− 1
􏼐 􏼑dqs

≥
qM1a

σ1
1 tα− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
s(1 − qs)

(α− 1)
f s, s

β− 1
􏼐 􏼑dqs

≥ c1t
α− 1

,

T1v(t)≤
tα− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
(1 − qs)

(α− 1)
f(s, v(s))dqs

≤
tα− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
(1 − qs)

(α− 1)
f s, b1s

β− 1
􏼐 􏼑dqs

≤
b
σ1
1 tα− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
(1 − qs)

(α− 1)
f s, s

β− 1
􏼐 􏼑dqs

≤ d1t
α− 1

,

(34)

where d1 and c1 are two positive constants satisfying

d1 >max 1,
b
σ1
1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
(1 − qs)

(α− 1)
f s, s

β− 1
􏼐 􏼑dqs􏼨 􏼩,

0< c1 <min 1,
qM1a

σ1
1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
s(1 − qs)

(α− 1)
f s, s

β− 1
􏼐 􏼑dqs􏼨 􏼩.

(35)

*us, T1 maps P2 into P1. For each u ∈ P1, there exist
two constants a2 and b2 with 0< a2 < 1< b2 such that

a2t
α− 1 ≤ u(t)≤ b2t

α− 1
, t ∈ [0, 1]. (36)

Similarly, by Lemma 5 and condition (H2), we can get
that

c2t
β− 1 ≤T2u(t)≤ d2t

β− 1
, (37)

where d2 and c2 are two positive constants satisfying

d2 > max 1,
b
σ2
2

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

􏽚
1

0
(1 − qs)

(β− 1)
g s, s

α− 1
􏼐 􏼑dqs

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

0< c2 <min 1,
qM2a

σ2
2

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

􏽚
1

0
s(1 − qs)

(β− 1)
g s, s

α− 1
􏼐 􏼑dqs

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(38)
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which implies that T2 maps P1 into P2. On the other hand,
the proof of completely continuous T1 and T2 are as the
same as in [12], and we omit it here.

Let Pi(R) � u | u ∈ Pi, ‖u‖≤R􏼈 􏼉(i � 1, 2). In the fol-
lowing, we will prove T1(P2(R1)) ⊂ P1(R1) and
T2(P1(R2)) ⊂ P2(R2). In fact, for any v ∈ P2(R1) and
u ∈ P1(R2), by conditions (29) and (30), we obtain

T1v(t)≤
tα− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
(1 − qs)

(α− 1)
f(s, v(s))dqs

≤
tα− 1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
(1 − qs)

(α− 1)
f s, R1( 􏼁dqs

≤
R
σ1
1

Γq(α) 1 − c1ηα− 1
1( 􏼁

􏽚
1

0
(1 − qs)

(α− 1)
f(s, 1)dqs

≤R1,

T2u(t)≤
tβ− 1

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

􏽚
1

0
(1 − qs)

(β− 1)
g(s, u(s))dqs

≤
tβ− 1

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

􏽚
1

0
(1 − qs)

(β− 1)
g s, R2( 􏼁dqs

≤
R
σ2
2

Γq(β) 1 − c2η
β− 1
2􏼐 􏼑

􏽚
1

0
(1 − qs)

(β− 1)
g(s, 1)dqs

≤R2,

(39)

which implies that ‖T1v‖≤R1 and ‖T2u‖≤R2. So,
T1(P2(R1)) ⊂ P1(R1) and T2(P1(R2)) ⊂ P2(R2).

Taking e1(t) � tα− 1 and e2(t) � tβ− 1, then e1 ∈ P1,
e2 ∈ P2, T1(e2) ∈ P1, and T2(e1) ∈ P2. *us, there exist
constants 0<mi < 1< ni(i � 1, 2) such that

m1t
α− 1 ≤T1e2(t)≤ n1t

α− 1
,

m2t
β− 1 ≤T2e1(t)≤ n2t

β− 1
.

(40)

Let l1 and l2 be two positive numbers satisfying
0< l1 < l2 < 1, l2 < l

σ2
1 , and

l1l
− σ1
2 ≤m1,

l2l
− σ2
1 ≤m2.

(41)

Set

u0(t) � l1e1(t),

v0(t) � l2e2(t),
(42)

un � T1vn− 1,

vn � T2un− 1,

n � 1, 2, . . .

(43)

Obviously, u0(t)≤ v0(t) by β≤ α and 0< l1 < l2 < 1,
u0 ∈ P1(R2) and v0 ∈ P2(R1). By (H1) and (H2), we have

u1(t) � T1v0(t) � 􏽚
1

0
G1(t, qs)f s, v0(s)( 􏼁dqs

� 􏽚
1

0
G1(t, qs)f s, l2e2(s)( 􏼁dqs

≥ l
σ1
2 􏽚

1

0
G1(t, qs)f s, e2(s)( 􏼁dqs

� l
σ1
2 T1e2(t)≥ l

σ1
2 m1e1(t)≥ l1e1(t) � u0(t),

v1(t) � T2u0(t) � 􏽚
1

0
G2(t, qs)g s, u0(s)( 􏼁dqs

� 􏽚
1

0
G2(t, qs)g s, l1e1(s)( 􏼁dqs

≥ l
σ2
1 􏽚

1

0
G2(t, qs)g s, e1(s)( 􏼁dqs

� l
σ2
1 T2e1(t)≥ l

σ2
1 m2e2(t)≥ l2e2(t) � v0(t).

(44)

From conditions (H1) and (H2), we know that T1 and T2
are two nondecreasing operators.*us, by induction, we can
obtain

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ,

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ,

un ∈ P1 R1( 􏼁,

vn ∈ P2 R2( 􏼁,

n � 1, 2, . . . .

(45)

By the compactness of the operators T1 and T2, we have
that un􏼈 􏼉 and vn􏼈 􏼉 are two sequentially compact sets.
*erefore, there exist u∗ ∈ P1(R1) and v∗ ∈ P2(R2), such
that un converges to u∗ and vn converges to v∗ as n⟶∞,
respectively. Since the operators T1 and T2 are continuous,
un � T1vn− 1 and vn � T2un− 1, and we obtain u∗ � T1v

∗ and
v∗ � T2u

∗ as n⟶∞, which implies that system (6) has
a positive solution (u∗, v∗), and u∗ ∈ [m1t

α− 1, n1t
α− 1],

v∗ ∈ [m2t
β− 1, n2t

β− 1], and ∀t ∈ [0, 1], where mi and ni are
constants and 0<mi < 1< ni(i � 1, 2), which can be achieved
by the monotone scheme:

un(t) � 􏽚
1

0
G1(t, qs)f s, vn− 1(s)( 􏼁dqs,

vn(t) � 􏽚
1

0
G2(t, qs)g s, un− 1(s)( 􏼁dqs,

(46)

with initial values u0(t) and v0(t) defined as in (42).
In the following, we give an example to illustrate the

existence of positive solutions of BVP (6). □

Example 1. Consider the following system of fractional q-
difference with boundary conditions:
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D
(5/3)
(1/3)u(t) +

1
8

tv
(3/2)

(t) � 0, 0< t< 1,

D
(3/2)
(1/3)v(t) +

�
t

√
u(1/4)(t) +

u(1/3)(t)

1 + u(1/4)(t)
􏼠 􏼡 � 0, 0< t< 1,

u(0) � 0, u(1) � u
3
4

􏼒 􏼓,

v(0) � 0, v(1) �
5
4

v
1
2

􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where q � (1/3), α � (5/3), β � (3/2), η1 � (3/4),
η2 � (1/2), c1 � 1, c2 � (5/4), and

f(t, v) �
1
8

tv
(3/2)

,

g(t, u) �
�
t

√
u

(1/4)
+

u(1/3)

1 + u(1/4)
􏼠 􏼡,

(48)

Obviously, f(t, v) and g(t, u) are nondecreasing with
respect to v and u, respectively, and

0< c1η
α− 1
1 �

3
4

􏼒 􏼓
(2/3)

< 1,

0< c2η
β− 1
2 �

5
4

1
2

􏼒 􏼓
(1/2)

< 1.

(49)

Choosing σ1 � 2> 1 and σ2 � (1/3)< 1, we have

f(t, rv) �
1
8

tr
(3/2)

v
(3/2) ≥ r

2
f(t, v), ∀v ∈ [0, +∞), r ∈ (0, 1],

g(t, ru) �
�
t

√
r

(1/4)
u

(1/4)
+

r(1/3)u(1/3)

1 + r(1/4)u(1/4)
􏼠 􏼡,

≥
�
t

√
r

(1/3)
u

(1/4)
+

r(1/3)u(1/3)

1 + u(1/4)
􏼠 􏼡 � r

(1/3)
g(t, u),

∀u ∈ [0, +∞), r ∈ (0, 1].

(50)

So, conditions (H1) and (H2) hold. Moreover, we can
show that

0< 􏽚
1

0
1 −

1
3

s􏼒 􏼓
(2/3)

f(s, 1)dqs �
1
8

􏽚
1

0
1 −

1
3

s􏼒 􏼓
(2/3)

sdqs<∞,

0< 􏽚
1

0
1 −

1
3

s􏼒 􏼓

(1/2)

g(s, 1)dqs �
3
2

􏽚
1

0
1 −

1
3

s􏼒 􏼓
(1/2) �

s
√

dqs<∞,

(51)

which implies that (H3) and (H4) hold. Moreover, we know
that there exist two positive constants R1 and R2 such that
(29) and (30) hold, respectively. *us, it follows from
*eorem 1 that boundary value problem of fractional q-
difference system (47) has one iterative positive solution

(u∗, v∗) which can be obtained with the aid of monotone
iterative sequences.
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