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-is paper investigates the finite-time synchronization of complex dynamical networks with nondelayed and delayed
coupling. By designing a simple continuous function controller, sufficient criteria for finite-time synchronization of
dynamical networks with nondelayed and delayed coupling are obtained. As a special case, the continuous function
controller designed in this paper may be the simplest and easy to implement for the finite-time synchronization of dynamical
networks without delay. Finally, numerical simulations are given to verify the effectiveness of the conclusions presented in
this paper.

1. Introduction

As synchronization behavior of complex systems is a
common phenomenon in the field of nature and engineering
technology, synchronization control of complex systems has
been attracted people to study [1–8]. However, in many
fields, people begin to realize that finite-time control of
complex systems may be more practical than infinite-time
control of complex systems [9–14]. For example, when the
brain is stimulated by external signals, the brain’s nervous
system will respond accordingly, and the response output
signals of the central nervous system and the sensory ner-
vous system should be consistent. -at is to say, the driving
neural network and the response neural network move
under different starting conditions. By properly controlling
the neural network, the trajectories of the two neural net-
works will coincide in a finite-time, which is the finite-time
control of the neural dynamic network. Since finite-time of

system control mainly depends on the initial state of
complex systems, the initial state of complex systems may be
random, which is not conducive to solving practical prob-
lems. Subsequently, Polyakov proposed a finite-time control
method independent of the initial state of complex systems,
that is, so-called fixed-time control of complex systems,
which compensated for the limitation of the finite-time
control method [15, 16]. -erefore, studying the finite-time
control problem of complex networks, on the one hand, it
expands synchronization control theory of complex net-
works; on the other hand, the finite-time control method
may save the control cost better and may have greater
practical value in the stability control application of complex
systems.

At present, based on the research of finite-time
control in complex networks, the authors have obtained
some interesting results, such as finite-time control via
optimal method [17], finite-time control via intermittent
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feedback [18], finite-time control via linear and nonlinear
control method [19], finite-time control with nonlinear
dynamics and uncertainties [20], finite-time control with
switched discontinuous systems, and so on [21]. How-
ever, in these discussions, the designed controller usually
contains symbolic functions. As the designed controller
contains symbolic function, which is a discontinuous
function, a flutter phenomenon may occur during the
control process. -e occurrence of the flutter phenom-
enon will obviously affect the finite-time control effect
of complex networks. In order to eliminate the flutter
phenomenon, some authors have proposed finite-time
controller with continuous functions. For example, in
[22], the authors effectively synchronize two complex
networks by designing continuous function control-
lers, eliminating the adverse effects caused by symbolic
function controllers, that is, the controller is ri � −liwi(t)−

k1w
m1/m2
i (t) − k2w

m3/m4
i (t), where li > 0, k1 > 0, k2 > 0,

m1, m2, m3, andm4 are positive odd integers satisfying,
m1 >m2, m3 <m4, and wi means the error. In [23], a simpler
continuous function controller for fixed-time synchronization
of complex networks with nondelayed coupling was proposed,
that is, the controller is ri � −k1w

m1/m2
i (t) − k2w

m3/m4
i (t).

-erefore, designing simple and effective finite-time controllers
is still an interesting topic.

In addition, in the network, time-delay is inevitable.
For example, in the process of transmission and response,
the physical limitations of propagation speed and the
existence of network congestion often lead to delay in
complex networks. -e generation of time-delay may
affect the stability of the whole network, such as the
oscillation and instability of the system. -erefore, it is
undoubtedly of great application value and theoretical
significance to study the synchronization control of the
time-delay coupled network. Although the finite-time
synchronization of time-delay complex networks has
been discussed in the existing literatures [24, 25], finite-
time controllers designed in their papers were generally
complex and contained symbolic functions, which may
cause chattering during network synchronization. In
general, an important criterion for studying finite-time
control of complex systems is that the controller is as
simple as possible and easy to implement. As far as we
know, finite-time synchronization of dynamical networks
with delayed coupling was less considered by using a
simple continuous function controller. In this paper, we
attempt to design a continuous finite-time controller to
realize finite-time control of complex systems with
delayed, and we also make the effort to propose the
simplest finite-time continuous function controller for
complex networks with nondelayed coupling.

-is paper is organized as follows: Section 2 gives the
model and preliminaries. Section 3 puts forward some
finite-time synchronization criteria for networks. Section 4

gives an illustrative example. -e conclusions are given in
Section 5.

2. Model and Preliminaries

Consider the following dynamical network with delay
coupling:

_μi(t) � g μi(t)(  + 
N

j�1
bijμj(t) + 

N

j�1
cijμj(t − τ), (1)

where μi(t) � (μi1(t), μi2(t), . . . , μin(t))T ∈ Rn is the state
vector, i � 1, 2, . . . , N, N denotes natural number, and
g(·) is the activation function. B � (bij)n×n and
C � (cij)n×n denote connection weight matrix. τ means
time-delay.

-e controlled dynamic network with delay coupling is
represented as follows:

_ϑi(t) � g ϑi(t)(  + 
N

j�1
bijϑj(t) + 

N

j�1
cijϑj(t − τ) + ri, (2)

where ϑi(t) � (ϑi1(t), ϑi2(t), . . . , ϑin(t))T ∈ Rn is the state
vector and i � 1, 2, . . . , N, ri means the controller.

Assumed the errors are expressed as wi � ϑi − μi, then

_wi(t) � g ϑi(t)(  − g μi(t)(  + 
N

j�1
bijwj(t) + 

N

j�1
cijwj(t − τ) + ri.

(3)

Assumption 1. Assume the function g(·) satisfies the fol-
lowing condition:

g ϑi(t)(  − g μi(t)( 


≤ c ϑi(t) − μi(t)


, c ∈ R
+
. (4)

Lemma 1 (see [22]). For any vectors μ, ϑ ∈ Rm and positive
definite matrix Ω ∈ Rm×m, the following matrix inequality
holds:

2μTϑ≤ μTΩμ + ϑTΩ− 1ϑ. (5)

Lemma 2 (see [24]). Consider the dynamical system as
follows:

_μ � g(μ(t)),

g(0) � 0,

μ ∈ R
n
,

μ(0) � μ0.

(6)
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Suppose a continuous and positive definite V(μ) satisfies

_υ(μ)≤ l1υ(μ) − l2υ
ξ
(μ),

υ1− ξ
(μ)<

l2

l1
,

l1 > 0, l2 > 0, 0< ζ < 1.

(7)

-en, the origin of the dynamical system (6) is finite-
time stable, and

Tμ μ0( ≤
1

l1(ξ − 1)
ln 1 −

l1

l2
υ1− ξ μ0(  . (8)

Lemma 3 (see [26]). For Θi ≥ 0, i � 1, 2, . . . , n, 0< λ≤ 1,
κ> 1, then



n

i�1
Θλi ≥ 

n

i�1
Θi

⎛⎝ ⎞⎠

λ

,



n

i�1
Θκi ≥ n

1− κ


n

i�1
Θi

⎛⎝ ⎞⎠

κ

.

(9)

3. Main Results

Based on the preparation of the second section, the section
will discuss the finite-time synchronization of two complex
networks.

Theorem 1. If Assumption 1 holds, two complex dynamical
networks (1) and (2) can be synchronized by the following
simpler finite-time controller:

ri � −
kwT

i (t − τ)wi(t − τ)

wi(t)
����

����
2 wi(t) − hiw

ξ
i (t), (10)

and

T≤
1

l(ξ − 1)
ln 1 −

2(1− ξ)/2l

λmin(H⊗ I)
υ(1− ξ)/2

(w(0)) , (11)

where k � (N/2)λmax(Ω− 1), l � c + λmax(B⊗ I) + (Nδ2/2)

λmax(Ω⊗ I), H � diag h1, . . . , hN , hi > 0, ξ � n1/n2, n1 and
n2 are positive odd integers, n1 < n2, andΩ is the positive definite
matrix.

Proof. Consider the following function:

υ(t) �
1
2

w
T
(t)w(t), (12)

where w � (wT
1 , wT

2 , . . . , wT
n )T.

So,

_υ(t) � 

N

i�1
w

T
i (t) g ϑi(t)(  − g μi(t)(  + 

N

j�1
bijwj(t) + 

N

j�1
cijwj(t − τ) + ri

⎛⎝ ⎞⎠

≤ 
N

i�1
cw

T
i (t)wi(t) + 

N

i�1
w

T
i (t) 

N

j�1
bijwj(t) + 

N

i�1
w

T
i (t) 

N

j�1
cijwj(t − τ) − 

N

i�1
w

T
i (t)

kwT
i (t − τ)wi(t − τ)

wi(t)
����

����
2 wi(t)

− λmin(H⊗ I)w
T
(t)w

ξ
(t).

(13)

In equation (13), obviously,

w
T
(t)w

ξ
(t) � 

N

i�1


n

j�1
w

2
ij(t) 

(1+ξ)/2
≥ 

N

i�1


n

j�1
w

2
ij(t)⎛⎝ ⎞⎠

(1+ξ)/2

≥ w
T
(t)w(t) 

(1+ξ)/2
� (2)

(1+ξ)/2
(υ(t))

(1+ξ)/2



N

i�1
w

T
i (t) 

N

j�1
cijwj(t − τ)≤

Nδ2

2


N

i�1
wi(t) 

TΩwi(t) +
N

2


N

j�1
wj(t − τ) 

T
Ω− 1

wj(t − τ)),

(14)
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where |cij|≤ δ ∈ R+. So,

_υ(t)≤ 
N

i�1
cw

T
i (t)wi(t) + 

N

i�1
w

T
i (t) 

N

j�1
bijwj(t) +

Nδ2

2


N

i�1
wi(t) 

TΩwi(t) +
N

2


N

j�1
wj(t − τ) 

T
Ω− 1

wj(t − τ))

− 
N

i�1

kwT
i (t − τ)wi(t − τ)

wi(t)
����

����
2 w

T
i (t)wi(t) − λmin(H⊗ I)(2)

(1+ξ)/2
(υ(t))

(1+ξ)/2

≤ 
N

i�1
cw

T
i (t)wi(t) + 

N

i�1
w

T
i (t) 

N

j�1
bijwj(t) +

Nδ2

2


N

i�1
wi(t) 

TΩwi(t) +
N

2
λmax Ω

− 1
  

N

j�1
wj(t − τ) 

T
wj(t − τ))

− k 
N

i�1
w

T
i (t − τ))wi(t − τ) − λmin(H⊗ I)(2)

(1+ξ)/2
(υ(t))

(1+ξ)/2

≤ 
N

i�1
cw

T
i (t)wi(t) + 

N

i�1
w

T
i (t) 

N

j�1
bijwj(t) +

Nδ2

2


N

i�1
wi(t) 

TΩwi(t) +
N

2
λmax Ω

− 1
  − k  

N

j�1
wj(t − τ) 

T
wj(t − τ))

− 
N

i�1
lw

T
i (t)wi(t) + 

N

i�1
lw

T
i (t)wi(t) − λmin(H⊗ I)(2)

(1+ξ)/2
(υ(t))

(1+ξ)/2
.

(15)

When k � (N/2)λmax(Ω− 1), l � c + λmax(B⊗ I) + (Nδ2)
/2λmax(Ω⊗ I), we have

_υ(t)≤ 
N

i�1
lw

T
i (t)wi(t) − λmin(H⊗ I)(2)

(1+ξ)/2
(υ(t))

(1+ξ)/2

� 2lυ(t) − λmin(H⊗ I)(2)
(1+ξ)/2

(υ(t))
(1+ξ)/2

.

(16)

-en, the origin of the error systems (3) is finite-time
stable, and T satisfies

T≤
1

l(ξ − 1)
ln 1 −

2(1− ξ)/2l

λmin(H⊗ I)
υ(1− ξ)/2

(w(0)) . (17)

-e proof is completed. □

Remark 1. At present, few continuous function controllers
are designed for finite-time synchronization of delay dy-
namical networks.-erefore, the continuous function finite-
time controller in this paper may be more practical.

Remark 2. From the proof of -eorem 1, when the delay is
time-varying, -eorem 1 still holds.

Remark 3. If cij � 0, the coupled dynamical networks (1)-(2)
can reduce to complex dynamical networks with the non-
delayed coupling dynamical network. In this case, the finite-
time controller (10) is not available. In this case, since the
network does not contain delay, and the following Corollary
1 can be obtained.

Remark 4. -e matrix Ω is a positive definite matrix given
arbitrarily. To guarantee the optimality of result, the matrixΩ
should have minimum eigenvalue. As the convergence time is
related to the matrixΩ, the control strength k is also related to
the matrix Ω. From their expressions, we can see that the
smaller the eigenvalue of the matrix Ω, the shorter the
convergence time, but the greater the control strength k, and
how to choose the matrix Ω to guarantee the optimality of
result will be the topic for further consideration in the future.

When C � 0, the complex networks (1)-(2) changed into
the following complex dynamical networks with nondelayed
coupling:

_μi(t) � g μi(t)(  + 
N

j�1
bijμj(t), (18)

_ϑi(t) � g ϑi(t)(  + 
N

j�1
bijϑj(t) + ri. (19)

Corollary 1. If Assumption 1 holds, two complex dynamical
networks with nondelayed coupling (18) and (19) can be
synchronized by the simplest finite-time controller:

ri � −hiw
ξ
i (t), (20)

and the time is bounded as

T≤
1

l(ξ − 1)
ln 1 −

2(1− ξ)/2l

λmin(H⊗ I)
υ(1− ξ)/2

(w(0)) , (21)

where l � c + λmax(B⊗ I), ξ � n1/n2, and n1 and n2 are
positive odd integers, n1 < n2.
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De proof of Corollary 1 is similar to that of Deorem 1, so
we omit their reasoning process here.

Remark 5. Compared with the existing literature [15–18]
on finite-time synchronization of complex networks
without delay, the controller (20) designed in this paper

may be the simplest one. Generally speaking, simple
controllers may have better application in practical
engineering.

Remark 6. From (11) and (21), synchronization time of
complex networks is the same, that is to say, the delay term
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Figure 1: Error evolution of two networks.
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Figure 2: Synchronization evolution of two networks.
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of complex networks does not affect the synchronization
time of complex networks.

Remark 7. In [9, 10, 15, 24, 25], the authors proposed
continuous function controllers without symbolic functions,
but the synchronization of delay networks was not discussed
in their paper.

4. Numerical Simulation Example

Considering the following chaos system [27],

_ϑi �

−10 10 0

28 −1 0

0 0 −8/3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϑi1

ϑi2

ϑi3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

0

−ϑi1ϑi3

ϑi1ϑi2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (22)

It is well known that the chaos system is bounded, and
our analyses show

g ϑi(  − g μi( 
����

����2≤ 100.5571 wi

����
����2. (23)

If we use four nodes to describe the coupled complex
network, then

_μi(t) � g μi(t)(  + 
4

j�1
bijμj(t),

bij 4×4 �

−4 1 2 1

1 −6 3 2

2 3 −6 1

1 2 1 −4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(24)

Let initial values of the state variable are rand [0, 1]
and c � 115, ξ � 0.8, and hi � 200. Figure 1 shows that the
driver network and the response network cannot be
synchronized without a controller. Figure 2 shows finite-
time synchronization of two networks under the con-
troller. Numerical simulations illustrate the validity of
Corollary 1.

5. Conclusion

-e paper has studied synchronization of two complex
dynamical networks with nondelayed and delayed coupling
by the finite-time controller. -e designed finite-time
controller was continuous function. Especially, the contin-
uous function controller designed might be the simplest for
finite-time synchronization of complex dynamical networks
without delay. Finally, the numerical simulation verified the
validity of the theoretical results. As the results are sufficient
conditions in this paper, which implies that there is still
room for further improvement, which will be our next re-
search topic.
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