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+is paper mainly considers the unicity of meromorphic solutions of the Pielou logistic equation y(z + 1) � ((R(z)y(z))/
(Q(z) + P(z)y(z))), where P(z), Q(z), and R(z) are nonzero polynomials. It shows that the finite order transcendental
meromorphic solution of the Pielou logistic equation is mainly determined by its poles and 1-value points. Examples are given for
the sharpness of our result.

1. Introduction

For a meromorphic function f(z), we use standard nota-
tions of the Nevanlinna theory, such as T(r, f), m(r, f), and
N(r, f) (see, e.g., [1–3]). Let S(r, f) denote any quantity that
satisfies S(r, f) � o(T(r, f)) as r⟶∞ possibly outside of
an exceptional set of finite logarithmic measure. And we
define the order of growth of f(z) by

ρ(f) ≔ limsup
r⟶∞

logT(r, f)

log r
. (1)

Also we know that the unicity of solutions of a given
equation is always one of its most essential properties. +is
paper is to discuss the unicity of meromorphic solutions of
the Pielou logistic equation

y(z + 1) �
R(z)y(z)

Q(z) + P(z)y(z)
, (2)

where P(z), Q(z), and R(z) are nonzero polynomials.
Equation (2) is an important equation generalized from the
famous Verhulst-Pearl equation, which is the most popular
continuous model of growth of a population:

x′(t) � x(t)[a − bx(t)], a, b> 0. (3)

By denoting f(z) � 1/y(z), we can get from (2) that

R(z)f(z + 1) − Q(z)f(z) � P(z), (4)

which is a linear difference equation.
On the growth, zeros, and poles of meromorphic so-

lutions of (2) and (4), Chen proved numbers of significant
results in [4]. +en, Cui and Chen [5, 6] began to consider
the unicity of meromorphic solutions concerning their
zeros, 1-value points, and poles and proved.

Theorem 1 (see [5]). Let f(z) be a finite order transcen-
dental meromorphic solution of the equation

P1(z)f(z + 1) + P2(z)f(z) � 0, (5)

where P1(z) andP2(z) are nonzero polynomials such that
P1(z) + P2(z) ≡ 0. If a meromorphic function g(z) shares
0, 1,∞ CM with f(z), then either f(z) ≡ g(z) or
f(z)g(z) ≡ 1.

Theorem 2 (see [6]). Let f(z) be a finite order transcen-
dental meromorphic solution of the equation

P1(z)f(z + 1) + P2(z)f(z) � P3(z), (6)

where P1(z), P2(z), andP3(z) are nonzero polynomials such
that P1(z) + P2(z) ≡ 0. If a meromorphic function g(z)

shares 0, 1,∞ CM with f(z), then one of the following cases
holds:
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(i) f(z) ≡ g(z),

(ii) f(z) + g(z) � f(z)g(z),

(iii) 2ere exists a polynomial β(z) � az + b0 and a
constant a0 satisfying ea0 ≠ eb0 such that

f(z) �
1 − eβ(z)

eβ(z) ea0− b0 − 1( 
,

g(z) �
1 − eβ(z)

1 − eb0− a0
,

(7)

where a0 ≠ 0, b0 are constants.
Here and in the following, f(z) and g(z) are said to

share the value a CM (IM), provided that f(z) − a and
g(z) − a have the same zeros counting multiplicities (ig-
noring multiplicities). And f(z) and g(z) are said to share
the value∞ CM (IM), provided that f(z) and g(z) have the
same poles with the same multiplicities (ignoring
multiplicities).

Cui and Chen’s work is a natural product of general-
ization work (see, e.g., [1, 3, 7–11]) on the famous Nevan-
linna’s 5 IM (4 CM) +eorem (see, e.g., [3, 12]) during the
past, about 90 years, especially of the hot research studies on
the complex differences and complex difference equations
(see, e.g., [1, 4, 8–10, 13–15]) recently. +ey have given
examples to show that all cases of+eoremA and+eorem B
can happen, and the numbers of shared values cannot be
reduced. Li and Chen [16] turned to consider the following
question: What can we say about the unicity of finite order
transcendental meromorphic solutions of the equation

R1(z)f(z + 1) + R2(z)f(z) � R3(z), (8)

where R1(z) ≡ 0, R2(z), R3(z) are rational functions? And
we proved some interesting results and also provided some
examples for sharpness of them. Two of those results read
are as follows.

Theorem 3 (see [16]). Let f(z) and g(z) be two finite order
transcendental meromorphic solutions of equation (8), where
R3(z) ≡ 0. Suppose that f(z) and g(z) share 0,∞CM.2en,
either f(z) ≡ g(z) or

f(z) �
R3(z)

2R2(z)
e

a1z+a0 + 1( , g(z) �
R3(z)

2R2(z)
e

− a1z− a0 + 1( ,

(9)

where a1, a0 are constants such that e− a1 � ea1 � − 1, and the
coefficients of (8) satisfy R1(z)R3(z + 1) ≡ R3(z)R2(z + 1).

Theorem 4 (see [16]). Let f(z) and g(z) be two finite order
transcendental meromorphic solutions of equation (8), where

R1(z) + R2(z) ≡ R3(z),

R1(z) R3(z + 1) − R1(z + 1)  ≡ R3(z) − R2(z) R2(z + 1).

(10)

If f(z) and g(z) share 1,∞ CM, then f(z) ≡ g(z).

Remark 1. Notice that f(z) and g(z) share 0 CM if and only
if 1/f(z) and 1/g(z) share∞ CM; f(z) and g(z) share∞
CM if and only if 1/f(z) and 1/g(z) share 0 CM; and f(z)

and g(z) share 1 CM if and only if 1/f(z) and 1/g(z) share 1
CM. As a result, for the unicity of finite order transcendental
meromorphic solutions equation (2), we only need to
consider the case that two CM shared values are 1,∞. In-
deed, we prove the following +eorem 5, whose proof is
different from that in [5, 6, 16].

Theorem 5. Let x(z) and y(z) be two finite order tran-
scendental meromorphic solutions of equation (2). If x(z) and
y(z) share 1,∞ CM and one of the following cases holds:

(i) R(z) ≡ P(z) ≡ − Q(z)

(ii) R(z) ≡ P(z) and x(z) has infinitely many poles of
multiplicity ≥ 2

(iii) R(z) ≡ P(z), ρ(x) is not an integer, and x(z) has at
most finitely many simple poles, then x(z) ≡ y(z)

We give some examples for the sharpness of +eorem 5
as follows.

Example 1

(1) x(z) � 2/(eπiz + 1) and y(z) � 2/ (e− πiz + 1) satisfy
the equation

y(z + 1) �
y(z)

− 1 + y(z)
. (11)

Here, x(z) and y(z) share 1,∞ CM such that they
have infinitely many poles and ρ(x) � ρ(y) � 1 and
R(z) ≡ P(z) ≡ − Q(z) ≡ 1. +is example shows that
+eorem 5 may not hold for the case
R(z) ≡ P(z) ≡ − Q(z).

(2) x(z) � 1/(eπiz + 1) and y(z) � 1/(e− πiz + 1) satisfy
the equation

y(z + 1) �
y(z)

− 1 + 2y(z)
. (12)

Here, x(z) and y(z) share 1,∞CM such that they have
infinitely many simple poles and ρ(x) � ρ(y) � 1 and
P(z) ≡ 2 ≡ R(z) ≡ − Q(z) ≡ 1. +is example shows
that +eorem 5 may not hold for the case R(z) ≡ P(z)

if most (except finitely many) poles of x(z) are simple
or ρ(x) is an integer.

Remark 2. It is interesting to ask a question: whether the
shared condition “CM” is replaced by “IM” in +eorem 5.
We have tried hard but failed to find some negative examples
for this question. We conjecture that the conclusions in
+eorem 5 still hold when the shared condition “CM” is
replaced by “IM.”
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2. Proof of Theorem 5

To prove+eorem 5, we need the following lemma of Clunie
(see, e.g., [1, 2]).

Lemma 1 (see [1, 2]). Let f(z) be a transcendental mero-
morphic solution of the equation

f
n
P(z, f) � Q(z, f), (13)

where P(z, f) and Q(z, f) are polynomials in f and its
derivatives with meromorphic coefficients, say aλ | λ ∈ I ,
such that m(r, aλ) � S(r, f) for all λ ∈ I. If the total degree of
Q(z, f) as a polynomial in f and its derivatives is ≤ n, then

m(r, P(z, f)) � S(r, f). (14)

Proof of 2eorem 5. Since x(z) and y(z) are finite order
transcendental solutions of equation (2) and share 1,∞ CM,
without loss of generality, assume that ρ(x)≥ ρ(y), and we
get

x(z + 1) �
R(z)x(z)

Q(z) + P(z)x(z)
≔

x(z)

A(z) + B(z)x(z)
, (15)

y(z + 1) �
R(z)y(z)

Q(z) + P(z)y(z)
≔

y(z)

A(z) + B(z)y(z)
, (16)

y(z) − 1
x(z) − 1

� e
h(z)

, (17)

where h(z) is a polynomial such that deg h(z)≤ ρ(x),
and A(z) � Q(z)/R(z), B(z) � P(z)/R(z) are rational
functions.

If eh ≡ 1, then our conclusion holds.
If eh ≡ 1, then eh ≡ 1, and from (17), we have

y � e
h
x + 1 − e

h
,

y � e
h
x + 1 − e

h
.

(18)

Here and in the following, we use the notations

f � f(z + 1),

f � f(z + 2),
(19)

for any given meromorphic function f(z) for convenience.
Submitting (18) into (16), we have

e
h
x �

Beh − B + 1 ehx + C

Behx + A + B 1 − eh( 
, (20)

where

C � A e
h

− 1  + 1 − e
h

+ B 1 − e
h

  e
h

− 1 . (21)

From (15) and (20), we obtain

Beh − B + 1 ehx + C

Behx + A + B 1 − eh( 
� e

h
x �

ehx

A + Bx
, (22)

or equally,

B(B − 1) e
h

− 1 e
h
x
2

+ BC + A Be
h

− B + 1 e
h



− A + B 1 − e
h

  e
h
x + AC � 0.

(23)

Next, we discuss three cases. □

Case 1. R(z) ≡ P(z) ≡ − Q(z). +en, A(z) ≡ − 1,
B(z) ≡ 1, and

C � A e
h

− 1  + e
h 1 − e

h
 . (24)

+us, (23) is of the form

1 − e
h+h

 x � A e
h

− 1  + e
h 1 − e

h
 . (25)

We claim that eh+h ≡ 1. Otherwise, eh+h ≡ 1, and then
h(z) ≡ c1 and (25) yields that A(z) ≡ A �

ec1 : � c2 ∉ 0, ± 1{ }.
If there is a point z1 such that x(z1) � 1, then y(z1) � 1.

We can easily deduce from (2), (16), and (18) that
1

c2 + 1
�

y z1( 

c2 + y z1( 
� y z1 + 1(  � c2x z1 + 1(  + 1 − c2

�
c2

c2 + 1
+ 1 − c2,

(26)

which gives c2 ∈ 0, 1{ }, a contradiction to the fact that
c2 ∉ 0, ±1{ }.

If 1 is a Picard exceptional value of x(z), then 1 is also a
Picard exceptional value of y(z). What is more, from (2) and
(16), we see that 1/(1 + c2) is a Picard exceptional value of
x(z) and y(z). Since 1/(1 + c2)≠ 1, x(z) has no other Picard
exceptional value. Choose a point z2 such that
x(z2) � c2/(1 + c2), then

y z2(  � c2x z2(  + 1 − c2 �
1

1 + c2
. (27)

+is indicates that 1/(1 + c2) is not a Picard exceptional
value of y(z), a contradiction.

Now, we have proved that eh+h ≡ 1. From (25), we get

x �
eh+h − (A + 1)eh + A

eh+h − 1
. (28)

Since x(z) is transcendental, we see that
deg h(z) � n≥ 1. Set

h(z) � anz
n

+ an− 1z
n− 1

+ · · · + a1z + a0, (29)

where a0, a1, . . . , an are constants such that an � r1e
iθ1 ≠ 0.

Substituting (28) into (15), we get

e
h

+ h − (A + 1)e
h

+ A

eh + h − 1
� x �

x

A + x

�
eh+h − (A + 1)eh + A

(A + 1)eh+h − (A + 1)eh
, (30)
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which gives F(z) � 0, where

F � Ae
h
�

+2h+h
− (A + 1)(A + 1)e

h
�

+h+h
+[(A + 1)(A + 1) − A] eh

�

+h

+ [(A + 1)(A + 1) − A]eh+h − (A + 1)(A + 1)eh + A.

(31)

Since A(z) ≡ 0 is a rational function, there exist some
d> 0 and r2 > 1 such that for all z � reiθ, r> r2, and we have

|A|≥ r
− d

. (32)

Notice that

h re
− iθ1/n  � r1r

n
(1 + o(1)),

h re
− iθ1/n  � r1r

n
(1 + o(1)),

h re
− iθ1/n  � r1r

n
(1 + o(1)),

(33)

as r⟶ +∞. From (31) and (32), we can deduce that

lim
r⟶+∞

F re
− iθ1/n 



 � lim
r⟶+∞

e
4r1rn(1+o(1)))

(1 + o(1)) � +∞,

(34)

a contradiction to the fact that F(z) � 0.

Case 2. R(z) ≡ P(z) and x(z) has infinitely many poles of
multiplicity ≥ 2. From (23), we have

x
2

� Dx + E, (35)

where

D � −
BC + A Beh − B + 1 eh − A + B 1 − eh(  eh

B(B − 1) eh − 1 eh
,

E � −
AC

B(B − 1) eh − 1 eh
.

(36)

Subcase 1. h(z) is a constant. +en, D(z) andE(z) are
rational functions and hence have at most finitely many
poles. Choose a pole of x(z) withmultiplicity k1 ≥ 1, denoted
by z3, such that D(z3)≠∞, E(z3)≠∞. +en, z3 is a pole of
x2(z) with multiplicity 2k1 and a pole of D(z)x(z) + E(z)

with multiplicity k1. However, from (35), we see that it is
impossible.

Subcase 2. h(z) is a nonconstant polynomial such that
deg h(z) � n≥ 1. +en, from

e
h

− 1 
′ � h′eh

, (37)

we see that eh − 1 has at most n zeros of multiplicity ≥ 2.

+en, D(z) andE(z) are meromorphic functions which
have at most finitely many poles of multiplicity ≥ 2. Choose
a pole of x(z) with multiplicity k2 ≥ 2 denoted by z4 such
that z4 is not a pole of D(z), E(z) of multiplicity ≥ 2. +en,
z4 is a pole of x2(z) with multiplicity 2k2 ≥ 4 and a pole of
D(z)x(z) + E(z) with multiplicity at most k2 + 1. However,
from (35) and k2 + 1< 2k2, we find that it is also impossible.

Case 3. R(z) ≡ P(z),ρ(x) is not an integer, and x(z) has at
most finitely many simple poles. +en, deg h(z)< ρ(x) since
deg h(z)≤ ρ(x). From Case 2, we can suppose that x(z) has
at most finitely many poles of multiplicity ≥ 2 and use (35)
directly. Now, x(z) has at most finitely many poles.

On the one hand, we have

m(r, x) � T(r, x) − N(r, x) � T(r, x) + S(r, x). (38)

On the other hand, since deg h(z)< ρ(x), it is easy to
find that

m(r, D)≤T(r, D) � S(r, x), m(r, E)≤T(r, E) � S(r, x).

(39)

Applying Lemma 1 to (35), we get

m(r, x) � S(r, x), (40)

which contradicts to (38). Our proof of +eorem 5 is thus
completed.

3. Conclusion

Our result shows that the finite order transcendental mer-
omorphic solution of equation (2) is mainly determined by
its poles and 1-value points.
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