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In this paper, a three-dimensional path planning problem of an unmanned aerial vehicle under constant thrust is studied based on
the artificial fluid method.'e effect of obstacles on the original fluid field is quantified by the perturbationmatrix, the streamlines
can be regarded as the planned path for the unmanned aerial vehicle, and the tangential vector and the disturbance matrix of the
artificial fluid method are improved. In particular, this paper addresses a novel algorithm of constant thrust fitting which is
proposed through the impulse compensation, and then the constant thrust switching control scheme based on the isochronous
interpolation method is given. It is proved that the planned path can avoid all obstacles smoothly and swiftly and reach the
destination eventually. Simulation results demonstrate the effectiveness of this method.

1. Introduction

Unmanned aerial vehicles have the characteristics of high
flexibility, low cost, high safety, and strong concealment.
'ese unique superior performances have enabled the rapid
development of unmanned aerial vehicle technology and
gradually become the representative technology of the
world’s cutting-edge technology. 'ey are widely used in
various fields such as military reconnaissance, urban express
delivery, terrain exploration, and environmental monitor-
ing. 'e purpose of the unmanned aerial vehicle three-di-
mensional path planning is to find the optimal path between
the initial position and the target position under the con-
straints of the unmanned aerial vehicle and the
environment.

However, unmanned aerial vehicles still face a challenge;
that is, it is difficult to ensure the safety and reliability of
flight paths because unmanned aerial vehicles encounter
obstacles and threats, such as high-rise buildings and enemy
air-defense systems. To address the challenge, a path
planning problem has been actively studied, which derives a
flight path for an unmanned aerial vehicle from a point to
another with respect to navigating a region of interest safely.
Various operational constraints such as the maximum

energy level of an unmanned aerial vehicle and safety dis-
tance from an object (e.g., a building or another unmanned
aerial vehicle) are often imposed into the problem.

Following the importance of the path planning in un-
manned aerial vehicle deployment, various approaches
based on exact and heuristic approaches have been pro-
posed. Model predicted control (MPC) method [1], Voronoi
method [2], intelligent algorithms (e.g., genetic algorithm
and particle swarm optimization) [3–5], rapidly exploring
random tree (RRT) method [6], and artificial potential field
(APF) [7] are some of the typical algorithms. 'e improved
rapidly exploring random tree (RRT) method produces a
time parameterized set of control inputs to make the robot
move from the initial point to the destination, which proves
to be efficient for 3D path planning. Artificial potential field
(APF) method has the advantages of simple principle and
real-time computation [8, 9], but there exists local minimum
when the robot enters into a concave area. Besides, it is hard
to obtain a feasible path sometimes even if the magnitude of
the attractive or repulsive force is regulated.

'e intelligent algorithms, such as particle swarm
optimization [10], evolutionary algorithms [5], and ant
colony algorithm [11], are also widely used in 3D path
planning. 'ese methods can be easily employed in
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different environments, but it is possible to trap in a local
optimum. However, the abovementioned drawback can be
relieved when the intelligent methods are improved or
combined with other methods [12–16]. 'ese traditional
approaches are improved to solve the three-dimensional
path planning problem. However, the calculation of these
algorithms tends to increase exponentially if the planning
space enlarges. Besides, the planned path may be not
smooth enough for the robot to track. As a result, extra
strategy of the smoothing path is usually needed. Several
research studies targeted 3D path planning in order to plan
a feasible and smooth path. A novel algorithm based on the
disturbed fluid and trajectory propagation is developed to
solve the 3D path planning problem of an unmanned aerial
vehicle in static environment [17]. 'e core path graph
algorithm [18] calculates the core path graph where arcs are
minimum-length trajectories satisfying geometrical con-
straints and searches the optimal trajectory between two
arbitrary nodes of the graph. However, multiple quadratics
should be resolved, resulting in low computational effi-
ciency. In addition, constant thrust collision avoidance
maneuver in path planning is studied in our previous
studies [19, 20].

In this paper, a novel algorithm of constant thrust fitting
is proposed through the impulse compensation for constant
thrust maneuver of an unmanned aerial vehicle, and the
tangential vector and the disturbance matrix of the artificial
fluid method is improved by combing the interfered fluid
dynamical system. Although the physical characteristics of
the modified streamlines are broadened, they still conform
to the basic properties of fluid flow, i.e., smoothness, im-
penetrability, and accessibility.

'e rest of the paper is organized as follows. Section 2
focuses on the calculation of the shortest distance between
the unmanned aerial vehicle and the obstacle. Section 3
explains 3D path planning based on the improved artificial
fluid method. Section 4 describes constant thrust collision
avoidance maneuver. 'e simulation results are given in
Section 5. Section 6 concludes the paper.

2. Calculation of the Shortest Distance between
Unmanned Aerial Vehicle and Obstacle

'e purpose of an unmanned aerial vehicle is to avoid
obstacles and reach the destination. In this paper, the ob-
stacle is described approximately as a 3D space surface. We
define the relative motion coordinate system o − xyz as the
path planning space, where the origin is the center of the
obstacle, and R � (x, y, z) is taken as the position of the
unmanned aerial vehicle relative to the obstacle. Suppose the
parametric equations of the obstacle’s space curved surface
as follows:

f(u, v) �

x � x(u, v),

y � y(u, v),

z � z(u, v),

⎧⎪⎪⎨

⎪⎪⎩
(1)

where u ∈ [a, b] and v ∈ [c, d]. Assuming that Q(u, v) is any
point on the parametric surface (1), R � (x, y, z) is

transformed as R � R(u, v), then the normal vector at point
Q(u, v) is

nq � fu × fv, (2)

where fu and fv are the partial derivatives of f(u, v) on u

and v. Obviously, in order to get the minimum distance
between R � R(u, v) and Q(u, v), RQ

��→
should be parallel to

the normal vector nq, that is to say,

RQ
��→

× nq � 0. (3)

Equation (3) can be written as follows:
f1(u, v) � 0,

f2(u, v) � 0,

f3(u, v) � 0,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where f1, f2, andf3 are the nonlinear equations. 'en,
equation (4) can be written as follows:

F(u, v) �

f1(u, v)

f2(u, v)

f3(u, v)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0. (5)

'e derivative matrix of equation (5) can be written as
the following form:

F′(u, v) �

zf1(u, v)

zu

zf1(u, v)

zv

zf2(u, v)

zu

zf2(u, v)

zv

zf3(u, v)

zu

zf3(u, v)

zv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0. (6)

Equation (6) is a first-order partial differential equation,
and we can directly find its analytical solution or use the
toolbox in MATLAB to get its analytical solution. We as-
sume that X∗(u∗, v∗) is the analytical solution of equation
(6), then the following results can be obtained by using the
Taylor formula of multivariate functions:

fi(u, v) � fi X
∗

(  + Δu
z

zu
+ Δv

z

zv
 fi X

∗
( 

+
1
2

zΔ u

zu
+

zΔ v

zv
 

2

fi(M),

(7)

where i � 1, 2, 3 and Δu � u − u∗, Δv � v − v∗, and M is the
point within the line segment between X and X∗. In order to
calculate quickly, the linear part of equation (7) is considered
instead of equation (7):

fi X
∗

(  + Δu
z

zu
+ Δv

z

zv
 fi X

∗
(  � 0, i � 1, 2, 3. (8)

'e solution of equation (8) Xk can be seen as an ap-
proximate solution of X∗. 'en, equation (11) can be
transformed into the form of a matrix equation:
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F X
∗

(  + F′ X
∗

(  Xk − X
∗

(  � 0. (9)

'us, the least square solution of X∗ can be obtained as
follows:

X
∗

� Xk + F′ X
∗

( ( 
T
F′ X
∗

(  
− 1

F′ X
∗

( ( 
T
F X
∗

( . (10)

'erefore, the point Q∗(u, v) on the obstacle’s space
curved surface minimizes the distance between the un-
manned aerial vehicle and the obstacle.'e shortest distance
between the unmanned aerial vehicle to the obstacle is

D∗(u, v) � |RQ
∗���→
|, where |·| represents the modular of the

vector from R(u, v) to Q∗(u, v).

3. 3D Path Planning Based on the Artificial
Fluid Method

Based on the description in Section 2, the procedure for 3D
path planning is as follows. First, the perturbation matrix
P(u, v) is calculated [17]. Next, we calculate the disturbed
fluid velocity vd by modifying the target velocity vT. 'en,
the planned path is obtained by the recursive integration of
vd. Finally, constant thrust collision avoidance maneuver is
studied and the switching control scheme based on the
isochronous interpolation method is given. To describe the
influence of the obstacle on the original flow, the pertur-
bation matrix P(u, v) is defined as follows:

P(u, v) � I −
nqnT

q

D∗(u, v)ρ(u,v) nq

�����

�����
2 +

λ(u, v)funT
q

D∗(u, v)σ(u,v) fu

����
���� nq

�����

�����
,

(11)

where I is a 2 × 2 identity matrix, nq is a column vector given
by equation (2), fu is a tangential vector (the partial de-
rivative of f(u, v) on u) at the point Q(u, v), λ(u, v) is a

saturation function defining the orientation of tangential
velocity, ‖·‖ is the 2-norm of a vector or a matrix, and ρ(u, v)

and σ(u, v) are defined as the weight of nq and tq,
respectively:

ρ(u, v) � ρ0 exp
1

D0 − D∗(u, v)
 , (12)

σ(u, v) � σ0 exp
1

D0 − D∗(u, v)
 , (13)

λ(u, v) �

1, vT
TfunT

q vT > λ0,

vT
TfunT

q vT

λ0
, − λ0 ≤ vT

TfunT
q vT ≤ λ0,

− 1, vT
TfunT

q vT < − λ0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where ρ0 is the repulsive parameter, σ0 is the tangential
parameter, D0 is the maximum radius of the unmanned
aerial vehicle, and λ0 is a small positive threshold of the
saturation function λ(u, v).'en, the disturbed fluid velocity
vd can be calculated by

vd � P(u, v)vT. (15)

3.1. 'e Planned Path Can Avoid Obstacles Safely. To avoid
possible collisions, an unmanned aerial vehicle cannot ap-
proach obstacles indefinitely, so we introduce the maximum
radius of the unmanned aerial vehicle D0, i.e., the distance
between the boundary of the unmanned aerial vehicle and
the obstacle should be greater than D0. Suppose that
D∗(u, v) � D0 + δ(u, v) and δ(u, v) is a monotonically de-
creasing function:

D
∗
(u, v)

ρ(u,v)
� D0 + δ(u, v)( 

ρ0e−(1/δ(u,v))

� D
ρ0e− (1/δ(u,v))

0 1 +
δ(u, v)

D0
 

D0/δ(u,v)( )
⎡⎢⎢⎣ ⎤⎥⎥⎦

δ(u,v)/D0( )ρ0e−(1/δ(u,v))

. (16)

It can be inferred that δ(u, v)⟶ 0+, then D
ρ0e− (1/δ(u,v))

0
⟶ 0, (1 + (δ(u, v)/D0))

D0/δ(u,v)⟶ e and δ(u, v)/
D0ρ0e− (1/δ(u,v))⟶ 0; therefore, D∗(u, v)ρ(u,v)⟶ 1.
P(u, v) can be simplified as

P(u, v) � I −
nqnT

q

nq

�����

�����
2 +

λ(u, v)funT
q

fu

����
���� nq

�����

�����
, (17)

n
T
q vd � n

T
q P(u, v)vT � n

T
q I −

nqnT
q

nq

�����

�����
2 +

λ(u, v)funT
q

fu

����
���� nq

�����

�����

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠vT

� n
T
q − n

T
q +

λ(u, v)nT
q funT

q

fu

����
���� nq

�����

�����

⎛⎝ ⎞⎠vT.

(18)

Because vectors nq and fu are perpendicular exactly, i.e.,
nT

q fu � 0, and the equation nT
q fu � 0 means that nT

q vd � 0,
the path is outside of the minimum permitted distance and
there is no collision.

3.2. 'e Planned Path Can Reach the Destination Eventually.
Because the goal of the path planning is to make the un-
manned aerial vehicle reach the destination safely, the ve-
locity of the unmanned aerial vehicle should have a
component in the direction of the target velocity, i.e., ve-
locity vT and vd should satisfy vT

Tvd ≥ 0, and the planned path
will converge to the target point. Besides, vd ≈ vT should be
satisfied if the unmanned aerial vehicle is near to the des-
tination ξT � (xT, yT, zT):

Discrete Dynamics in Nature and Society 3



v
T
Tvd � v

T
TP(u, v)vT � v

T
T I −

nqnT
q

D∗(u, v)ρ(u,v) nq

�����

�����
2 +

λ(u, v)funT
q

D∗(u, v)σ(u,v) fu

����
���� nq

�����

�����

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠vT

� vT

����
����
2

−
vT

TnqnT
q vT

D∗(u, v)ρ(u,v) nq

�����

�����
2 +

λ(u, v)vT
TfunT

q vT

D∗(u, v)σ(u,v) fu

����
���� nq

�����

�����

� vT

����
����
2

−
vT · nq  · nq · vT  

D∗(u, v)ρ(u,v) nq

�����

�����
2 +

λ(u, v)vT
TfunT

q vT

D∗(u, v)σ(u,v) fu

����
���� nq

�����

�����

� vT

����
����
2

−
vT

����
����
2cos2〈vT, nq〉

D∗(u, v)ρ(u,v)
+

λ(u, v)vT
TfunT

q vT

D∗(u, v)σ(u,v) fu

����
���� nq

�����

�����

� vT

����
����
2 1 −

cos2〈vT, nq〉

D∗(u, v)ρ(u,v)
  +

λ(u, v)vT
TfunT

q vT

D∗(u, v)σ(u,v) fu

����
���� nq

�����

�����
,

(19)

where (·) is the inner product of vectors, where 〈vT, nq〉

denotes the angle between vT and nq. It is obvious that when
the unmanned aerial vehicle approaches the destination,
then D∗(u, v)⟶ 0+:

lim
D∗(u,v)⟶ 0+

D
∗
(u, v)

ρ(u,v)

� lim
D∗(u,v)⟶ 0+

D
∗
(u, v)( 

ρ0 exp 1/D0− D∗(u,v)( ) � +∞.

(20)

As D∗(u, v)ρ(u,v)⟶ +∞ and cos2〈vT, nq〉≤ 1 hold, we
infer 1 − (cos2〈vT, nq〉/D∗(u, v)ρ(u,v))≥ 0. From equation
(14), we infer λ(u, v)vT

TfunT
q vT ≥ 0.'erefore, vT

Tvd ≥ 0 holds.
When the unmanned aerial vehicle approaches the

destination, thus D∗(u, v)ρ(u,v)⟶ +∞ and D∗(u, v)σ(u,v)

⟶ +∞. From equation (11), it can be inferred that
P(u, v)⟶ I. 'erefore, vd ≈ vT holds.

3.3. Analysis of the Disturbed Fluid Velocity vd. 'emodified
velocity vd defined by equation (15) can be expressed as

vd � P(u, v)vT � vT −
nT

q vT

D∗(u, v)ρ(u,v) nq

�����

�����
2nq

+
λ(u, v)nT

q vT

D∗(u, v)σ(u,v) fu

����
���� nq

�����

�����
fu.

(21)

It can be seen from equation (20) that vd consists three
parts: vT can be called the target velocity;
(nT

q vT/D∗(u, v)ρ(u,v)‖nq‖2)nq is taken as the repulsive ve-
locity; (λ(u, v)nT

q vT/D∗(u, v)σ(u,v)‖fu‖‖nq‖)fu can be called
the tangential velocity. Similarly, the perturbation matrix
P(u, v) can be divided into three parts: attractive matrix I,
repulsive matrix nqnT

q /D
∗(u, v)ρ(u,v)‖nq‖2, and tangential

matrix +(λ(u, v)funT
q /D
∗(u, v)σ(u,v)‖fu‖‖nq‖). It can be

analyzed that the magnitudes of repulsive and tangential
velocities increase with ρ(u, v) and σ(u, v), respectively.

'erefore, we can readjust the shape of the path by changing
parameters ρ(u, v) and σ(u, v). 'is method is similar to the
virtual force method or then the artificial potential field
method to some degree. However, the perturbation matrix
by this method can describe the effect of obstacles on path
more objectively, considering the shape of obstacles and the
position of the unmanned aerial vehicle.

4. Constant Thrust Collision
Avoidance Maneuver

Suppose that the time of the unmanned aerial vehicle’s
collision avoidance maneuver is T and the shortest switching
time interval is ΔT. 'ere are M shortest switching time
intervals and N target maneuver positions, and Ti represents
the time of the i-th thrust arc. 'e process of collision
avoidance maneuver can be considered as the system state
variables change from a nonzero initial state x(0) to a
desired state x(T) � 0:

T � MΔT,

Ti � MiΔT,

M � M1 + · · · + MN,

i ∈ 1, 2, . . . N{ }.

(22)

Suppose that the actual constant thrusts of the un-
manned aerial vehicle is F, the maximum thrusts is F, and
the theoretical continuous thrusts is F∗. 'e thrusters can
provide different sizes of constant thrust to meet different
thrust requirements. 'ere are N different sizes of constant
thrust which can be denoted as follows:

F

N
,
2F

N
,
3F

N
, . . . ,

(N − 1)F

N
, F. (23)

'e size of the constant thrust is calculated as follows:
there are N + 1 thrust levels which can be selected;
LF/N, L � (0, 1, 2, . . . , N), and the level of the constant
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thrust can be calculated as follows, taking the i-th thrust arc
as example:

L �

N 
Ti+ΔT

Ti

F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (24)

where [] means bracket function and |F∗(t)| means the
absolute value of F∗(t).

4.1. Constant 'rust Fitting through the Impulse
Compensation. 'e constant thrust fitting should be dis-
cussed in several categories; for convenience, let us take the
i-th thrust arc as example.

Case 1. If the theoretical working time in the i-th thrust arc
t∗ � 0, then the actual constant thrust is F � F∗ � 0.

Case 2. If the theoretical working time in the i-th thrust arc
ΔT≤ t∗ ≤Ti � MiΔT, then the constant thrust fitting should
be discussed in several subcategories.

Case 3. If the theoretical working time in the i-th thrust arc
t∗ � ΔT<Ti and t∗ can be any one of the Mi shortest
switching time interval in the i-th thrust arc; without loss of
generality, we suppose that t∗ is the first shortest switching
time interval, and the impulse error in the i-th thrust arc ΔIi

can be calculated. Suppose that there are N + 1 thrust levels
which can be selected: LF/N, L � (0, 1, 2, . . . , N), and the
level of the constant thrust can be calculated as follows:

L �

N 
Ti+ΔT

Ti

F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where [] means bracket function and |F∗(t)| means the
absolute value of F∗(t). 'en, the impulse error can be
calculated as follows:

ΔIi � sgn F
∗
(t)(  

Ti+ΔT

Ti

F
∗
(t)


dt −

LFΔT
N





� sgn F
∗
(t)(  

Ti+ΔT

Ti

F
∗
(t)


dt −

FΔT
N

N 
Ti+ΔT

Ti

F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦





.

(26)

Suppose that the value of the impulse compensation
threshold is a positive constant c> 0:

(1) If the impulse error ΔIi satisfies the following
condition:


Ti+ΔT

Ti

F
∗
(t)


dt −

FΔT
z

N 
Ti+ΔT

Ti

F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦





≤ c,

(27)

and the actual constant thrust of the unmanned aerial
vehicle can be calculated as follows:

F � sgn F
∗
(t)( 

FΔT
N

N 
Ti+ΔT

Ti

F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (28)

then the unmanned aerial vehicle will not carry out
impulse compensation.

(2) If the impulse error ΔIi satisfies the following
condition:

c< 
Ti+ΔT

Ti

F
∗
(t)


dt −

FΔT
N

N 
Ti+ΔT

Ti

F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦





≤ FΔT,

(29)

then the unmanned aerial vehicle should carry out
impulse compensation, and the size of the constant
thrust impulse compensation can be calculated as
follows:

ΔIi � FΔT �
FΔT
N

, F
∗
(t)< 0,

ΔIi � FΔT � −
FΔT
N

, F
∗
(t)> 0.

(30)

Case 4. If the theoretical working time in the i-th thrust arc
t∗ � MiΔT, then the impulse error in the i-th thrust arc ΔIi

can be calculated as follows:

ΔIi � 

Mi

j�0


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t) − sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt. (31)
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Furthermore, if there exist n1 shortest switching time
intervals satisfying the following conditions, without loss of
generality, we suppose that these time intervals are the first
n1 shortest switching time intervals, taking the j-th shortest
switching time interval as an example:


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)dt




≤ c, (32)

then the size of the impulse compensation can be calculated
as follows:

(1) If the impulse error ΔIi satisfies the following
condition:



Mi

j�0


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t) − sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





≤ c, (33)

and the actual constant thrust of the unmanned aerial
vehicle can be calculated as follows, taking the j-th
shortest switching time interval as an example:

F � 
Ti+(j+1)ΔT

Ti+jΔT
sgn F

∗
(t)( dt

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j � 0, 1, . . . , Mi , (34)

then the unmanned aerial vehicle will not carry out
impulse compensation.

(2) Suppose that


Ti+MiΔT

Ti

F∗(t)Nz

FΔT
dt − 

Ti+MiΔT

Ti+ n1+1( )ΔT

sgn F∗(t)( )

ΔT

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� n2. (35)

Furthermore, if the impulse error ΔIzi satisfies the
following condition:


Ti+MiΔT

Ti

F
∗
(t)dt − 

Ti+MiΔT

Ti+ n1+1( )ΔT
sgn F

∗
(t)( 

F

Nz

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





≤ c, (36)

and the actual constant thrust of the unmanned aerial
vehicle can be calculated as follows:

F � 
Ti+MiΔT

Ti+ n1+1( )ΔT
sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dt, j � n1 + 1, . . . , Mi , (37)
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then the unmanned aerial vehicle will not carry out
impulse compensation.

(3) If the impulse error ΔIzi satisfies the following
condition:


Ti+MiΔT

Ti

F
∗
(t)dt − 

Ti+MiΔT

Ti+ n1+1( )ΔT
sgn F

∗
(t)( 

F

N

N 
Ti+(j+1))ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





> c, (38)

then the unmanned aerial vehicle should carry out
impulse compensation, and the size of the constant
thrust impulse compensation can be calculated as
follows:

ΔIi � Fn2ΔT �
n2

FΔT
N

, F
∗
(t)< 0,

ΔIi � Fn2ΔT � −
n2

FΔT
N

, F
∗
(t)> 0.

(39)

Case 5. If the theoretical working time in the i-th thrust arc
t∗ � m1ΔT, 1<M1 <Mi and t∗ can be any M1 shortest
switching time interval in the i-th thrust arc; without loss of
generality, we suppose that t∗ is the first m1 shortest
switching time interval, and the impulse error in the i-th
thrust arc ΔIi can be calculated as follows:

ΔIi � 

M1

j�0


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t) − sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt. (40)

Furthermore, if there exist m1 shortest switching time
intervals satisfying the following conditions, without loss of
generality, we suppose that these time intervals are the first
m1 shortest switching time interval, taking the j-th shortest
switching time interval as an example:


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)dt




≤ c. (41)

'en, the size of the impulse compensation can be
calculated as follows:

(1) If the impulse error ΔIi satisfies the following
condition:



M1

j�0


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t) − sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





≤ c, (42)

and the actual constant thrust of the unmanned aerial
vehicle can be calculated as follows, taking the j-th
shortest switching time interval as an example:

F � 
Ti+(j+1)ΔT

Ti+jΔT
sgn F

∗
(t)( dt

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j � 0, 1, . . . , M1 , (43)
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then the unmanned aerial vehicle will not carry out
impulse compensation.

(2) Suppose that


Ti+M1ΔT

Ti

F∗(t)N

FΔT
dt − 

Ti+M1ΔT

Ti+ m1+1( )ΔT

sgn F∗(t)( )

ΔT

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� m2. (44)

Furthermore, if the impulse error ΔIi satisfies the
following condition:


Ti+M1ΔT

Ti

F
∗
(t)dt − 

Ti+M1ΔT

Ti+ m1+1( )ΔT
sgn F

∗
(t)( 

F

N

N 
Ti+(j+1))ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





≤ c, (45)

and the actual constant thrust of the unmanned aerial
vehicle can be calculated as follows:

F � 
Ti+M1ΔT

Ti+ m1+1( )ΔT
sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dt,

(46)

then the unmanned aerial vehicle will not carry out
impulse compensation.

(3) If the impulse error ΔIi satisfies the following
condition:


Ti+M1ΔT

Ti

F
∗
(t)dt − 

Ti+M1ΔT

Ti+ m1+1( )ΔT
sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





> c, (47)

then the unmanned aerial vehicle should carry out
impulse compensation, and the size of the constant
thrust impulse compensation can be calculated as
follows:

ΔIi � Fm2ΔT �
m2

FΔT
N

, F
∗
(t)< 0,

ΔIi � Fm2ΔT � −
m2

FΔT
N

, F
∗
(t)> 0.

(48)

4.2. Compare Fuel Consumption and Design Switch Control
Laws. 'e fuel consumption under the theoretical contin-
uous thrust and under the actual constant thrust is com-
pared from the perspective of impulse compensation. We
have already calculated the different impulse compensation
according to the different conditions in Section 4, then the
fuel savings under the actual constant thrust can be cal-
culated as follows. Without loss of generality, taking the fuel
savings in Case 5 as an example, we suppose that the mass
flow rate of the propellant of the unmanned aerial vehicle’s
thruster is assumed to be p0g/s. Since the impulse error ΔIzi

is as follows:

ΔIi � 

M1

j�0


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t) − sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt, (49)
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then the fuel savings in the i-th thrust arc ΔPi can be cal-
culated as follows:

ΔPi � 

M1

j�0


Ti+(j+1)ΔT

Ti+jΔT

m0N F∗t| |

F
− sgn F

∗
(t)( p0

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt. (50)

'ere are three types of time intervals in each thrust arc:
the accelerating time intervals, the zero-thrust time intervals,
and the decelerating time intervals. 'e task of the un-
manned aerial vehicle collision avoidance maneuver is
converted into the calculation of the number and sequence
of three types of time intervals, respectively. In this section,
the fuel consumption under the theoretical continuous

thrust and the actual constant thrust is calculated and
compared by using the method proposed in this paper. At
last, the actual constant thrust switch control laws are ob-
tained through the isochronous interpolation method,
without loss of generality and taking Case 5 as an example. If
the impulse error ΔIi satisfies the following condition:



M1

j�0


Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t) − sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt







≤ c, (51)

then the total number of the accelerating time intervals and
the decelerating time intervals is M1 and the number of
zero-thrust time intervals is Mi − M1. 'e position of the

three types of time intervals is decided by the curve of the
theoretical continuous thrust F∗(t).

If the impulse error ΔIi satisfies the following condition:


Ti+M1ΔT

Ti

F
∗
(t)dt − 

Ti+M1ΔT

Ti+ m1+1( )ΔT
sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





≤ c, (52)

then the total number of the accelerating time intervals and
the decelerating time intervals is M1 − m1 and the number of
zero-thrust time intervals is Mi − M1 + m1. 'e position of

the three types of time intervals is decided by the curve of the
theoretical continuous thrust F∗(t).

If the impulse error ΔIi satisfies the following condition:


Ti+M1ΔT

Ti

F
∗
(t)dt − 

Ti+M1ΔT

Ti+ m1+1( )ΔT
sgn F

∗
(t)( 

F

N

N 
Ti+(j+1)ΔT

Ti+jΔT
F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt





> c, (53)

then the total number of the accelerating time intervals and
the decelerating time intervals is M1 − m1 + m2 and the
number of zero-thrust time intervals is Mi − M1 + m1 − m2.
'e position of the three types of time intervals is decided by
the curve of the theoretical continuous thrust F∗(t).

At last, the switch control laws for the collision avoid-
ance maneuver can be given. For convenience, let us take the
time intervals in the i-th thrust arc for an example:

Si � Ti + jΔT, sgn F
∗
(t)( 

FΔT
N

N 
Ti+ΔT

Ti

F
∗
(t)


dt

FΔT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, j � 1, 2, . . . , Mi . (54)
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5. Simulations

In order to present some of the results of the algorithms
presented, we evaluated them in some nontrivial simulation
scenarios. Suppose that ξ � (x, y, z) is anunmanned aerial
vehicle position and obstacle centers are ξ0 � (x0, y0, z0),
with axis lengths a, b, and c and index parametersd, e, and f.
'en, we can construct the function as follows [17]:

F(ξ) �
x − x0

a
 

2d

+
y − y0

b
 

2e

+
z − z0

c
 

2f

, (55)

where parameters a, b, c, d, e, and f determine the shape and
size of the obstacle: if a � b � c and d � e � f � 1, the
obstacle is a sphere; if a � b and d � e � 1, 0<f< 1, the
obstacle is regarded as a cone; if a and b are variables meeting
the condition a � b � R1 + (R2 − R1)z/c and d � e � 1, f> 1
holds, the obstacle is a circular truncated cone approxi-
mately, where R1 andR2 are the radii of the two bases.

Suppose that there are seven obstacles in flight space as
shown in Table 1 and ρ0(ξ) � 1 and σ0(ξ) � 1. 'e starting
position of the unmanned aerial vehicle is [0, 0, 0.5], and the
target position is [40, 40, 6].

It can be seen from Table 1 that there are seven obstacles
in the environment, of which four obstacles can be simplified
as spheres, two obstacles can be simplified as cones, and one
obstacle can be simplified as a cylinder.

It can be seen from Figure 1 that there are two planned
paths for the unmanned aerial vehicle. 'e blue color curve
is the planned path of the original algorithm, and the path
length is 65.98288.'e red color curve is the planned path of
the improved algorithm, and the path length is 64.38021.
Both planned paths of the two algorithms can avoid all
obstacles and reach the target position smoothly. For the
obstacle 3, the planned path by the original algorithm is to
pass from the side of obstacle 3, but the planned path by the
improved algorithm is to fly over the obstacle 3; this is
because the tangential vector t(ξ) of the improved algorithm
is parallel to the plane o − xy, so the length of the planned
path is shorter.

It can be seen from Figure 2 that there are two flying
height curves for the unmanned aerial vehicle.'e blue color
curve is the flying height curve of the original algorithm, and
the red color curve is the flying height curve of the improved
algorithm. 'e flying height of the improved algorithm is
higher than the original algorithm, and the highest point is
6.97 at (24.23, 15.97, 6.97). It shows that the improved al-
gorithm has better climbing performance.

5.1. Unmanned Aerial Vehicle Flying Away from the Trap
Area. Suppose the starting point of the drone is [0, 0, 0.5],
and the destination is [40, 40, 0.5]. Set seven obstacles in the
flight space, and their information is listed in Table 2.
ρ0(ξ) � 1 and σ0(ξ) � 1 for each obstacle.

It can be seen from Figure 3 that there are two flying
height curves for an unmanned aerial vehicle. 'e blue
color curve is the flying height curve of the original al-
gorithm, and the red color curve is the flying height curve
of the improved algorithm. 'e planned path by the

original algorithm can be stuck in the trap area formed by
obstacles 3 and 4, but the unmanned aerial vehicle can fly
over the trap area based on the improved algorithm. 'is

Table 1: 'e shape parameters of each obstacle.

Obstacle Shape a b c d e f
Center of the

obstacle
1 Sphere 5.0 5.0 5.0 1 1 1 (6,9,0)
2 Sphere 4.5 4.5 4.5 1 1 1 (28,9,0)
3 Sphere 5.0 5.0 5.0 1 1 1 (22,17,0)
4 Sphere 6.0 6.0 6.0 1 1 1 (20,20,0)
5 Cone 4.0 3.0 6.0 1 1 0.3 (15,10,0)
6 Cone 3.0 3.0 6.0 1 1 0.4 (30,35,0)
7 Cylinder 3.8 3.8 8.0 1 1 10 (28,30,0)
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Figure 1: Two height curves of the original algorithm and the
improved algorithm.
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Figure 2: Two height curves of the original algorithm and the
improved algorithm.
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is because the improved algorithm takes the unmanned
aerial vehicle’s climbing ability into account. When the
unmanned aerial vehicle encounters a trap area, it does
not need to leave the trap area horizontally.'is avoids the
selection of the virtual target and simplifies the calculation
process, resulting in greater flexibility.

5.2. Comparison of Different Saturation λ. In the process of
unmanned aerial vehicle 3D path planning, with the change
of saturation λ, different paths will be planned.'erefore, we
need to design a reasonable saturation and give an optimal
three-dimensional path. 'e different saturation λ are given
in Table 3.

It can be seen from Figure 4 that there are four planned
paths according to different saturation λ, and all four paths
can bypass obstacles to reach the destination. It can be found
that each path facing obstacles is different in the climbing
height and the deflection angle. Further, the number of
iterations, the length, and the highest point of each planned
path are calculated and given in Table 4.

Path 1 tends to bypass obstacles horizontally. 'e
maximum height of the unmanned aerial vehicle is only 4.71,
but the path length is the longest. As the threshold value
gradually decreases, the lengths of path 2 and path 3 are
gradually shortened, and the maximum height of the cor-
responding unmanned aerial vehicle gradually increases,
reaching 5.41 and 6.43, respectively. In path 4, the threshold
is set to 0, which means that path 4 will tend to the shortest

distance indefinitely, avoiding all obstacles and reaching the
destination, but the rate of the climb drops a lot.

Figure 5 shows the flight height curves of the above four
planned paths. For path 1, path 2, and path 3, the unmanned
aerial vehicle reaches the highest flying height near the
obstacle 3. For path 4, the unmanned aerial vehicle reaches
the highest flying height near the obstacle 1. 'erefore, we
need to find a suitable threshold to make the unmanned
aerial vehicle not only to have the ability to climb, but also to
make the path as short as possible to ensures efficiency and
safety of the planned path.

'e results in Figure 6 show the constant thrust fitting of
F. According to the proposed criterion of this article, the
unmanned aerial vehicle should carry out impulse com-
pensation and the size of the constant thrust impulse
compensation is the same, but the time of the constant thrust
impulse compensation is different. 'e switch control laws
can be given according to the sizes and the directions of the
thrust accelerations of the unmanned aerial vehicle. 'e
switch control law is given as follows:

S � [0, 0, 0.5]; [40, 40, 0.5]; (ΔT, 12N); . . . ;{

· (2ΔT, 13N); . . . ; (29ΔT, 81N); . . . ; (66ΔT, 1N)}.

(56)
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Figure 3: Unmanned aerial vehicle flying away from the trap area
based on the improved algorithm.

Table 3: 'e different saturation λ.

Path Path 1 Path 2 Path 3 Path 4
λ 1/5 1/10 1/30 0

Table 2: 'e shape parameters of each obstacle.

Obstacle Shape a b c d e f
Center of the

obstacle
1 Sphere 4.5 4.5 4.5 1 1 1 (10,10,0)
2 Sphere 4.5 4.5 4.5 1 1 1 (10,15,0)
3 Sphere 4.5 4.5 4.5 1 1 1 (20,18,0)
4 Sphere 6.0 6.0 6.0 1 1 1 (25,10,0)
5 Cone 4.0 4.0 6.0 1 1 0.3 (18,25,0)
6 Cone 3.5 3.5 6.5 1 1 0.4 (30,35,0)
7 Cylinder 5.3 5.3 8.5 1 1 10 (30,23,0)
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Figure 4: 'e planned path according to different saturation λ.

Table 4: 'e different saturation λ.

Iterations Length Highest point
Path 1 64 64.64509 (21.97, 16.48, 4.71)

Path 2 63 63.72736 (21.04, 16.35, 5.41)

Path 3 62 63.10283 (20.53, 17.43, 6.43)

Path 4 61 62.15876 (11.82, 9.55, 7.48)
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6. Conclusions

'is paper deals with the three-dimensional path planning
problem of the unmanned aerial vehicle under constant
thrust. 'e tangential vector and the disturbance matrix of
the artificial fluid method are improved. A novel algorithm
of constant thrust fitting is proposed through the impulse
compensation, and then the constant thrust switching
control scheme based on the isochronous interpolation
method is given. It is proved that the planned path can avoid
all obstacles smoothly and swiftly and reach the destination
eventually. 'e simulation results show that the switch
control laws can effectively guarantee the unmanned aerial
vehicle moving along the planned path.
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