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)e similarity graphs of most spectral clustering algorithms carry lots of wrong community information. In this paper, we propose
a probability matrix and a novel improved spectral clustering algorithm based on the probability matrix for community detection.
First, the Markov chain is used to calculate the transition probability between nodes, and the probability matrix is constructed by
the transition probability. )en, the similarity graph is constructed with the mean probability matrix. Finally, community
detection is achieved by optimizing the NCut objective function. )e proposed algorithm is compared with SC, WT, FG, FluidC,
and SCRW on artificial networks and real networks. Experimental results show that the proposed algorithm can detect com-
munities more accurately and has better clustering performance.

1. Introduction

With the development of information technology, the inter-
actions among the complex systems of biology, sociology, and
other fields are getting closer and closer. It is of great theo-
retical significance and practical value to obtain relevant in-
formation from real complex systems. According to graph
theory, most real complex systems where their internal entities
have rich associations can be abstracted into complex net-
works, such as neural networks, power networks, and social
networks. In addition to the small-world and scale-free
properties, complex networks have an extremely important
community structure [1]. Community is a mesoscopic
structure in which nodes from the same community are closely
connected to each other, but nodes from different commu-
nities are sparsely connected. It is playing an important role in
revealing the topological structure and functional features of
complex networks. In recent years, community detection has
been a popular research field for searching information,
analysing function, and forecasting behaviour.

Community detection is a process of dividing a network
into many clusters according to certain relationships among
nodes. Moreover, community detection can classify nodes
based on the topological structure of the network. It can

reveal the hidden hierarchical structure of the real network
and improve the performance and efficiency of storing,
processing, and analysing network data. So far, there are
many methods for community detection, such as spectral
bisection algorithm [2], graph segmentation algorithm [3],
heuristic algorithm [4], and objective optimization algo-
rithm [5].

2. Related Work

Community detection is an important branch of complex
networks. Among the traditional community detection al-
gorithms, the most famous algorithm is the spectral analysis
algorithm based on network topology, which is referred to as
spectral clustering [2] in the following. Its main idea is eigen-
decomposing the similarity matrix of the network to obtain
the main eigenvectors for finding communities. Not only is
the spectral clustering algorithm applicable for a variety of
data structures but also it utilizes dimensionality reduction
to reduce computational complexity. Consequently, scholars
began to research spectral clustering and optimize and
expand on it.

Qin et al. [6] proposed a multisimilarity spectral method
for clustering dynamic networks. It detects communities by
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bootstrapping the clustering of different similarity measures.
Ulzii and Sanggil [7] designed an agglomerative spectral
clustering method with conductance and edge weights. )e
most similar nodes are agglomerated based on eigenvector
space and edge weights. Ding et al. [8] explored the
equivalence relation between the nonnegative matrix fac-
torization and spectral clustering and developed a semi-
supervised spectral clustering algorithm.

Spectral clustering typically constructs a similarity ma-
trix with Euclidean distance between nodes. However, the
Euclidean distance may lose the hidden relationship among
nodes. As a result, the similarity matrices cannot contain
complete community information. Clustering performance
is not satisfied. If the constructed similarity matrix can
approach the ideal matrix, the spectral clustering algorithm
will have better clustering performance. Hence, constructing
an excellent similarity matrix is the key to the spectral
clustering community detection algorithm.

Nataliani and Yang [9] proposed a new affinity matrix
generation method by using neighbour relation propagation
principle. )e method can increase the similarity of point
pairs that should be in the same cluster. But the distance
threshold is easily affected by outside points or noise points.
Beauchemin [10] presented a method to build affinity ma-
trices from a density estimator relying on K-means with
subbagging procedure. However, this method would not
work well when manifold proximity exists. Zhang and You
[11] developed an approach based on a random walk to
process the similarity matrix. )e pairwise similarity is not
only related to the two points but also related to their
neighbours. However, the threshold of neighbouring nodes
is set manually, and the stability of clustering is bad.

Although many community detection algorithms based
on optimizing a similarity graph have been proposed, how to
construct the similarity graph that can correctly reflect the
community structure has not been solved. Consequently,
this paper focuses on the transition probability between
nodes to calculate the similarity, presents the concept of
probability matrix, and proposes an improved spectral
clustering community detection algorithm based on the
probability matrix.

3. Improved Spectral Clustering Algorithm

3.1. Constructing a Similarity Graph by Probability Matrix.
)e similarity graph of spectral clustering is constructed by
calculating the similarity between nodes. In this section, the
similarity between nodes is calculated by the transition
probability among nodes. And the related concepts of
probability matrix and mean probability matrix are intro-
duced.)en, the similarity graph is constructed based on the
mean probability matrix.

3.1.1. Transition Probability. A Markov chain is a stochastic
process of variables with Markov property, describing a
sequence of states. )e state changes over time, and the next
state of the sequence depends on the current state [12]. )e

possibility of transition between states is called the transition
probability.

Given a network N, the number of nodes is n, the ad-
jacency matrix of N isW. )e probability that node i reaches
to node j after one step is the 1st transition probability,
which can be defined as

prij �
wij

􏽐
n−1
j�0wij

. (1)

)e 1st transition matrix Pr is a matrix composed of
entry prij, then Pr�DW

−1·W, where DW � diag(dW0, dW1, . . .,
dWn−1), dWi � 􏽐

n−1
j�0wij.

)e probability that node i reaches to node j after l steps
is the l-th transition probability. And the matrix formed by l-
th transition probability is called the l-th transition matrix
Prl. According to the properties of the Markov chain, we can
get

Prl � Pr
l
. (2)

Prl denotes that Pr is multiplied by l times.

3.1.2. Probability Matrix

Definition 1. Given a network N(V, E), considering that the
transition probability from node i to node j is pij, then the
probability matrix of N is a V×V matrix composed of pij.
)e probability matrix can be referred to as P, P� (pij).

)e probability matrix describes the transition proba-
bility between nodes in the network. )e 1st transition
probability can reflect the most direct relationship between
the node and its adjacent nodes, but there is a lack of hidden
relationship with the nonadjacent nodes. )e multistep
transition probability can include more neighbour nodes,
reflecting the multiple complex associations among nodes.
However, the multistep walk may fail to reach the adjacent
nodes, which could weaken the relationship with the ad-
jacency nodes. Consequently, we propose a method for
constructing the probability matrix based on the accumu-
lation of weighted multiorder transition matrices, and P can
be defined as

P � 􏽘
t

i�1
wiPri, (3)

where i denotes that the current state of the Markov chain is
at time i, t refers to the size of the Markov chain, called time
scale, Pri is the i-th transition matrix, and wi represents the
weight of Pri, i ∈ [2, t], wi ∈ [0, 1], 􏽐

t
i�0 wi � 1.

3.1.3. Mean Probability Matrix. )e time scale is the key to
calculating the similarity of nodes. But the optimal time scale
of different networks is not necessarily the same. )ere will
be mistakes in using a fixed time scale. In order to reduce the
influence of parameters t and w, the mean probability matrix
obtained from the mean values of Pwith different time scales
is proposed.
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Definition 2. Given a network N(V, E), considering that its
probability matrix is P and the time scale is t, then the mean
probability matrix is aV×Vmatrix composed of the average
of P1, P2, . . ., Pt. According to equations (2) and (3), the
mean probability matrix can be referred to as PM:

PM �
􏽐

t
i�1 Pi

t
�

􏽐
t
i�1 􏽐

i
j�1 Prj

t
. (4)

Not only does the time scale t of PM provide the size of
time scale for each P, but more importantly, it specifies the
number of summing probability matrices. It could take
different P to average the error caused by t and w. )e mean
would reduce mistakes, and the different value of t does not
cause a great error. As a result, the value of t can be randomly
chosen, but in order to reduce the computational com-
plexity, we set t to be [5, 13].

)e weight wj also represents the weight of the j-th
transition matrix. According to Definition 2, we can get that
i gradually changes, and the number of corresponding
weights wj also gradually changes. To satisfy the constraint,
wj is defined as

wj �
wsj

􏽐
t
h�1 wsh

, (5)

where ws is a set of weights of size t, and it is artificially set,
satisfying ws1>ws2≥ . . .≥wst.

3.2. Improved Spectral Clustering Algorithm Based on Mean
Probability Matrix

3.2.1. Constructing the New Similarity Graph. )e similarity
matrixWP is constructed by themean probability matrix PM.
Given a network N, the mean probability matrix of N is PM;
then, the similarity between node i and j can be defined as

wPij
�

pMij
for i≠ j,

0 for i � j,

⎧⎨

⎩ (6)

where wPij denotes the i, j-th entry ofWP, and pMij refers to
the i, j-th entry of PM.

)e similarity matrix of the traditional spectral clus-
tering is a symmetric matrix, which is beneficial to calculate
the Laplacian matrix L. Although WP is not a symmetric
matrix, WP has special properties and can also construct L.
)e properties of WP are as follows:

LW �D−WP, where D is a diagonal matrix,
Dii � 􏽐

n
j�1 wPij, the entries on the diagonal are positive,

WP is a matrix with nonnegative entries, its diagonal
entries are all 0, and each row of entries is not all 0. To
sum up, it turns out that LW is a matrix where all the
diagonal elements are positive, and the other elements
are negative. )en, we obtain that LW is invertible.
For any vector f, LW can satisfy

f
T
LWf � f

T
Df − f

T
WPf � 􏽘

n

i�1
dif

2
i − 􏽘

n

i,j�1
wPijfifj,

�
1
2

􏽘
n

i�1
dif

2
i − 2 􏽘

n

i,j�1
wPijfifj + 􏽘

n

j�1
djf

2
j
⎞⎠, �

1
2

􏽘
n

i,j�1
wPij fi − fj􏼐 􏼑

2
.⎛⎝

(7)

As a result, LW is a Laplacian matrix, and WP can
construct a similar graph of spectral clustering.

3.2.2. NCut Objective Function. Spectral clustering has
many different objective functions. )e purpose of the
objective functions is to find a partition of the network such
that the edges between different communities have lower
weight and the edges within the same community have a
higher weight. In other words, nodes in different clusters are
dissimilar from each other, and nodes within the same
cluster are similar to each other.

)e more popular functions are RatioCut [13] and NCut
[14]. RatioCut focuses on maximizing the number of nodes
in the community, while NCut pays attention to maximizing
the weights in the community. Given a networkN(V,E), they
can be defined as

RatioCut C1, C2, . . . , CK( 􏼁 �
1
2

􏽘

K

k�1

W Ck, Ck( 􏼁

Ck

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

NCut C1, C2, . . . , CK( 􏼁 �
1
2

􏽘

K

k�1

W Ck, Ck( 􏼁

vol Ck( 􏼁
,

(8)

where Ck denotes the set of nodes in the community k,
Ca ∩ C b �∅, C1 ∪C2 . . .∪CK � V, a≠b, a,b ∈ 1,2, . . . ,K{ }, K
represents the number of communities, Ck refers to the
complement of Ck, Ck � V − Ck, W(Ck,Ck) � 􏽐i∈Ck,j∉Ck

WPij, |Ck| is the number of nodes in Ck, and vol(Ck) is the
sum of the weights of edges in Ck, vol(Ck) � 􏽐i∈Ck

􏽐
|V|
j�1wPij.

)e number of nodes in the community does not mean
that the weight in the community is high. In comparison,
NCut is more consistent with the clustering strategy of
spectral clustering. )erefore, we choose NCut as the ob-
jective function of the proposed algorithm. Combined with
equation (6), the objective function can be optimized as

argmin
􏽼√√√􏽻􏽺√√√􏽽

F

tr F
T
D

−1/2
LWD

− 1/2
F􏼐 􏼑s.t. F

T
F � I. (9)

F is a matrix composed of vectors f, and I is the identity
matrix. F can be obtained by solving the first K smallest
eigenvectors of D−1/2 · LW ·D−1/2. However, a little infor-
mation is missing due to dimension reduction, resulting in
the fact that F cannot fully indicate the attributes of nodes.
)erefore, taking a traditional clustering on F, such as K-
means, can divide the network into K communities more
accurately in the end.
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3.2.3. 6e Main Steps of the Algorithm. )emain steps of the
improved spectral clustering algorithm is given in Algorithm 1.

4. Experiments and Analyses

)e experimental data includes artificially generated net-
works and real networks. On the one hand, we use the LFR
benchmark network [15] to generate the networks and
evaluate the quality of community detection by normalized

mutual information (NMI) [16]. On the other hand, we
adopt several real networks and take the modularity (Q) [17]
as the evaluation index.

In order to show the performance of the improved
spectral clustering algorithm (ISCP), ISCP is compared with
SC [2], WT [18], FG [19], FluidC [20], and SCRW [11]. )e
experimental environment includes Intel 2.5Hz i7-4710MQ
CPU and 8G RAM. )e software platform is PyCharm
2018.1.2 (Community Edition) in Windows 10× 64.

Input network N, adjacency matrix W, community number K, time scale t, and a set of weights ws
Output K communities
(1) Compute the 1st transition matrix Pr according to equation (1)
(2) Compute the mean probability matrix P according to equation (4)
(3) Construct the similarity matrix WP according to equation (6)
(4) Construct the unnormalised Laplacian matrix LW according to the property 1 of WP in Section 3.2.1
(5) Construct the normalized Laplacian matrix Ln with Ln �D−1/2·LW·D−1/2

(6) Compute the first K eigenvectors of Ln, referred to as U
(7) Consider the rows of U as nodes, and use K-means to cluster them into K communities

ALGORITHM 1: Improved spectral clustering algorithm based on the probability matrix.
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Figure 1: Performance in NMI of six algorithms with various μ. In the experiments, the network size is 2760, the initial value of μ is 0.2, the
step length of μ is 0.002, and the number of iterations is 101.

Table 1: )e hyperparameters of the LFR benchmark.

Parameter Description Value
β Power-law index of the degree distribution 3
c Power-law index of community size 1.5
ave_deg Average degree of each node 10
min_com Minimum number of nodes in any community 30
seed Seed number of random number generator 10
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4.1. LFR Benchmark Networks. )e LFR benchmark net-
works are computer-generated networks, and they can
produce different features of networks by adjusting some
parameters.)e experiments mainly use mixing parameter μ
(μ denotes the average rate of edges connected with other
communities, 0≤ μ≤1) and network size N to evaluate
performance. To guarantee consistency, the detailed de-
scriptions and values of other parameters are shown in
Table 1.

Figure 1 shows the performance of the six algorithms on
μ. From Figure 1, we can get that the NMI trend of ISCP is
smoother than other algorithms, and the NMI of ISCP is
significantly higher than the other five algorithms. In [16],
we can obtain that the larger the NMI is, the better the
quality of community detection is. Overall, the clustering
effect of ISCP is significantly better than the other five al-
gorithms. In general, ISCP is more stable, and its conver-
gence speed is faster.

Figure 2 demonstrates that the performance of the six
algorithms on different network sizes N. As seen in Figure 2,
the NMI of ISCP is higher than the other five algorithms. And
as network size increases, its NMI increases. When the
network size reaches 5000 or more, its NMI tends to be stable
and stays around 0.9. )erefore, whether the order of mag-
nitude of the network size is 1000 or 10,000, the clustering
performance of ISCP is better than the other five algorithms.

4.2. Real-World Networks. )e real-world networks have
different topologies from the benchmark networks. To
further evaluate the performance of the algorithms, 8 real-
world networks are taken to do experiments. Moreover, it is
necessary to normalize some real-world networks, such as
eliminating self-loops and constructing a connected net-
work. )e detailed information of these networks is shown
in Table 2.
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Figure 2: Performance in NMI of the six algorithms with different network sizes N. )e network sizes are 324, 736, 1654, 3102, 6458, and
14987, respectively. In (a), the six algorithms are evaluated with μ� 0.3. Already in (b) μ is set to 0.35.
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Figure 3: Performance in Q of the six algorithms with eight real-
world networks. For each network,Q is the mean value obtained by
clustering the same network for different community numbers K.K
is from 20 to 100, the step length of K is 10, and the number of
iterations is 9. ()e two yellow reference lines are 0.3 and 0.7
respectively.)

Table 2: )e hyperparameters of the LFR benchmark.

No. Networks Nodes Edges
1 US airlines 332 2126
2 Erdos991 454 1421
3 Roget 1010 3656
4 Science 1461 3009
5 SCiNet 2729 10419
6 US power grid 4941 6594
7 Erdos992 6094 9949
8 PGP 10680 24316
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)e experiments take modularity Q to evaluate the
clustering performance of the six algorithms. )e range of Q
is from −0.5 to 1. )e larger Q is, the better the community
detection performance will be. Q generally falls in about 0.3
to 0.7 in practice [17].

Figure 3 shows the performance of the six algorithms for
clustering real-world networks. As shown in Figure 3, Q of
ISCP is almost all above 0.3 and is larger than Q of the other
algorithms. Although ISCP is not the best community de-
tection algorithm for network 1 and network 7, its perfor-
mance is very close to the best algorithm. Generally
speaking, ISCP has excellent clustering performance and can
cluster real-world networks more accurately.

5. Conclusions

Spectral clustering plays an important role in the field of
community detection. It is an excellent community detec-
tion algorithm, but the traditional similarity graphs contain
lots of incorrect information about the community struc-
ture. As a result, the performance of community detection is
bad. Hence, this paper presents the probability matrix and
proposes an improved spectral clustering community de-
tection algorithm ISCP. A large number of experiments on
benchmark networks and real-world networks show that
ISCP is better than most traditional community detection
algorithms and can more accurately cluster complex
networks.

However, the ISCP will cost lots of time and space. Given
a networkN, the number of nodes is n, and the time scale is t.
ISCP needs to multiply the transition probability matrix by t
times to construct the similarity matrix. Even with the Fast
Power algorithm, the time complexity of the algorithm will
reach O(n3lbt). As the size of the network is larger, com-
puting the similarity matrix will take more time and space.
Moreover, ISCP is only applied to nonoverlapping complex
networks. So the next step is to research how to optimize the
computational complexity of the algorithm and how to
cluster overlapping networks.

Data Availability

)e data cannot be released for the time being. When the
relevant research is finished, we will release detailed research
results.
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