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In this paper, a mathematical model with time-delay-related parameters and media coverage to describe the diffusion process of
new products is proposed, in which the time-delay-related parameters denote the stage in which potential customers decide
whether to adopt a new product. .en, the stability and the Hopf bifurcation of the proposed model are analyzed in detail. .e
center manifold theorem and the normal form theory are used to investigate the stability of the bifurcating periodic solution.
Moreover, a numerical simulation is conducted to investigate the difference between the model with delay-dependent parameters
and that with delay-independent parameters. .e results show that there is significant difference between the two models.

1. Introduction

.e diffusion of a product innovation has traditionally been
defined as a process of communication among members of a
social system overtime in a certain way, consisting of inno-
vation, communication channels, time, and social systems.
With the high-pace growth of the launch of new products,
decision makers need to pay much attention to how to push
these new products into market successfully. Fourt and
Woodlock [1] proposed the first purchase model to describe
the diffusion process, which is the earliest and quite popular.
Bass [2] tried to establishmathematical models to describe the
penetration and saturation of the diffusion process of a new
product. .e Bass model is the main driving force of the
diffusion research and is expressed as follows:

dN(t)

dt
� p[m − N(t)] +

q

m
N[m − N(t)], (1)

where N(t) is the total number of adopters of a product for
time t, m stands for the total number of potential future
customers, and p and q denote coefficients of innovation and
imitation, respectively..e first term in themodel represents
the adoption by innovators, while the latter represents the
adoption by imitators.

In the past several years, a number of modifications to the
Bass model have been proposed and studied, and the Bass
model has become more generalized [3–10]. In [6], Kalish
investigated a method for maximizing the firm profit cash
flow and proposed the optimal advertising strategy, which has
issues in innovation. Robinson and Lakhani [7] also con-
sidered the impact of the product price in the proposed
model. Other variable models were incorporated by Kalish
and Lilien [11] in their study of advertising strategies. We
refer readers to [12–15] for some other related works.

Note that none of the abovementioned models con-
sidered the factor of delay. In fact, for a new product, a
person usually takes some time to consider accepting or
rejecting it. For this reason, Fanelli and Maddalena [16]
proposed a model with time-delay parameters to describe
the diffusion process of a new product:

dA(t)

dt
� [h + αA(t − τ)][C − A(t − τ)]e

− ρτ
− δA(t)

− cA(t)A(t − τ),

(2)

where A(t) is the total population of adopters at time t, C

stands for the total number of potential adopters, and
h � eη(i− c), in which i> 0 can be used as a governing

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 4716064, 13 pages
https://doi.org/10.1155/2020/4716064

mailto:crli1976@126.com
https://orcid.org/0000-0003-0381-7262
https://orcid.org/0000-0002-7120-9106
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4716064


incentive, c> 0 is the cost of production, and η is a positive
constant. α> 0 denotes the valid communication between
the adopters and potential adopters, δ > 0 is used to describe
the dismissal rate of the adopters of a product, and c> 0
stands for the rate of valid contact between the adopters at
time t and those at time t − τ. kτ � e− ρτ , where ρ> 0 denotes
the percentage of potential individuals who do not adopt the
product after they have evaluated it. .e stability of the
equilibrium point was also researched by the authors. .en,
Ballestra et al. [17] studied stability switches and Hopf bi-
furcations of the model (2).

On the contrary, with the rapid development of com-
munication technology, as the representative of new media,
microblogs and WeChat have become the new means of
information dissemination. New e-commerce has come
under a high degree of concern, with the proliferation of
innovative products increasing more and more with new
media for marketing communication. .e main difference
between new media and traditional media is the carrier of
communication, which determines the method of infor-
mation dissemination and whether the user will accept the
information in a different state. New media use digital
technology, wireless communication network satellite
channels, and mobile terminals, to provide users with the
dissemination of information and service patterns. Re-
garding new media as a third channel for the dissemination
of product information, the classic model is not considered
when assessing what role new media plays in the product
information dissemination process and how much of its
impact is worth exploring.

Joydip Dhar et al. [18] proposed the following model to
examine the effect of a media report on the spreading of a
product:

dN

dt
� r − d1N − β1 +

β2A
m + A

 NA + δR,

dA

dt
� β1 +

β2A
m + A

 NA − d1 + ]( A,

dR

dt
� ]A − d1 + δ( R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where N(t), A(t), and R(t) denote the nonadopter class,
adopter class, and frustrated class, respectively. β1 is the
contact rate before the media alert, and
β(A) � β1 + (β2A/m + A) is the contact rate after the media
alert. .eir results show that the media has a great effect on
the dynamics of the model.

.erefore, in this paper, based on the works of [16, 18], a
model with time-delay parameters and the media effect is
proposed to investigate the impacts of the media on inno-
vation diffusion.

.e remainder of this paper is presented as follows. In
Section 2, we have developed and analyzed a model to in-
corporate the media impact considering two classes of
population, namely, potential adopter and adopter. In
Section 3, the local stability is investigated, and the existence

of Hopf bifurcation is studied. In Section 4, a formula is
established and used to determine the direction and stability
of bifurcation. Finally, numerical simulations are provided
to verify the theoretical predictions in the analysis presented
in Sections 3 and 4.

2. Mathematical Model

.is section describes a delayedmathematical model for new
product innovation diffusion. Our goal is to create a realistic
model that can provide wide insights into the diffusion of a
product innovation.

Generally, a social system consists of many people who
may not adopt a new product. We divide these people into
two classes depending on their different states: one is the
potential adopter class, and the other is the adopter class,
denoted by P(t) and A(t), respectively, at time t. To model
the impact of the new product innovation diffusion on a
social system, the following assumptions are imposed:

(i) In a social system, not everyone knows about the
product; hence, only those who know the product
information can become potential adopters.
.erefore, we consider that the recruitment rate of
the population that will join the nonadopter class is
a constant r.

(ii) In a social system, when the potential adopters make
contact with the adopters, they usually need some
time to consider accepting or rejecting the new
product; that is, there exists a delay τ. ρ denotes the
percentage of persons who decide not to adopt the
technology after they have evaluated it, and e− ρτ

denotes the individuals who remain interested but
make no decision.

(iii) We assume that the adopters at time t are also
affected by the adopters at time t − τ. Let α denote
the rate of valid contacts between the adopters at
time t and those at time t − τ.

(iv) We assume that the acceptance of new products by
people is affected by media reports. Here, we use β1
and β(A) � β1 + (β2A/m + A) to represent the
contact rate before and after media reports, re-
spectively. .e function (β2A/m + A) is adopted to
model the media reports and is used to describe the
transmission rate when adopters appear and are
reported. Obviously, when A⟶∞, the function
(β2A/m + A) approaches the maximum value β2,
and when the reported adopter arrives at m, the
function (β2A/m + A) equals to half the maximum
β2.

(v) Both classes have a death rate δ, which is propor-
tional to the existing population. Indeed, if a po-
tential user is not interested in the product, or a
person who has adopted the product, after a period
of time, he will never use the product.

.erefore, the model is governed by the following system
of equations:
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dP

dt
� r + αAA(t − τ) − β1 +

β2A
m + A

 PAe
− ρτ

− δP,

dA

dt
� β1 +

β2A
m + A

 PAe
− ρτ

− αAA(t − τ) − δA,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where r, α, β1, β2, and δ are all positive constants. Sum-
marising, the meaning of the parameters is shown in Table 1.

In the following, we study the stability and Hopf bifur-
cation for system (4) with delay τ as the bifurcation parameter.

3. Stability and Hopf Bifurcation

In the following, we consider the stability and Hopf bifur-
cation of the equilibria of system (4). First, we find all
possible equilibria of system (4). According to system (4),
the equilibria should satisfy

r + αA
2

− β1 +
β2A

m + A
 PAe

− ρτ
− δP � 0,

β1 +
β2A

m + A
 PAe

− ρτ
− αA

2
− δA � 0.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

Obviously, E0 � (r/δ, 0) is an equilibrium of system (4).
For other equilibria, adding the two equations of (5) yields

A �
r − δP

δ
. (6)

Substituting equation (6) into the first equation of (5), we
obtain

B1(τ)P
3

+ B2(τ)P
2

+ B3(τ)P + B4(τ) � 0, (7)

where

B1(τ) � δ3δ + β1δ
2
e

− ρτ
+ β2δ

3
e

− ρτ
,

B2(τ) � − 3δ2αr − δ3αm − 2β1δ
2
re

− ρτ
− 2β2δ

2
re

− ρτ

− β1δ
3
me

− ρτ
,

B3(τ) � δ3r + 3δαr
2

+ β1δe
− ρτ

r
2

+ β2δe
− ρτ

r
2

+ 2δ2αmr + β1δ
2
e

− ρτ
mr,

B4(τ) � − md
3
2r − δ2r2 − αmδr

2
− αr

3
.

(8)

Obviously, B1(τ)> 0 and B4(τ)< 0. .erefore, equation
(7) has at least a positive solution P∗. If r − δP∗ > 0, then
system (4) has at least a positive equilibrium E∗ � (P∗, A∗).

In the following, we consider the stability of the equi-
libria of system (4) by analyzing the corresponding char-
acteristic equations. First, we assume the following:

H1( δ2 > β1 + β2( re
− ρτ

. (9)

Theorem 1. If (H1) holds, then the equilibrium E0 is globally
asymptotically stable.

Proof. For E0, the characteristic equation becomes

(λ + δ) λ −
r

δ
β1e

− ρτ
+ δ  � 0. (10)

Obviously, λ1 � − δ < 0 and λ2 � (r/δ)β1e− ρτ − δ.
.erefore, if δ2 > β1re− ρτ , then λ2 < 0. .us, the equilibrium
E0 is locally asymptotically stable.

Adding the two equations in model (4), we have

d(P + A)

dt
� r − δ(P + A). (11)

.erefore, one obtained that P + A≤ (r/δ), which im-
plies that P≤ (r/δ) − A.

On the contrary, from the second equation of system (4),
we obtain

dA

dt
� β1 +

β2A
m + A

 PAe
− ρτ

− αAA(t − τ) − δA

≤ β1 + β2( 
r

δ
− A Ae

− ρτ
− αAA(t − τ) − δA

≤A β1 + β2( 
r

δ
e

− ρτ
− β1 + β2( Ae

− ρτ
− αA(t − τ) − δ .

(12)

Because (H1) holds, by comparison principle, we have
A(t)⟶ 0(t⟶∞)..erefore, for an arbitrary ε> 0, there
exists t1(> τ) such that, for any t> t1, A(t)< ε.

From the first equation of system (4), there exists a t2 > t1
such that

dP

dt
� r + αAA(t − τ) − β1 +

β2A
m + A

 PAe
− ρτ

− δP≤ r + ε2 − δP.

(13)

Again by the comparison principle, we have
P(t)⟶ (r/δ)(t⟶∞). Based on the above discussions,
we find that if (H1) holds, then the boundary equilibrium is
globally asymptotically stable. □

Remark 1. Obviously, if τ⟶∞, then the term e− ρτ⟶ 0.
Hence, the condition (H1) must hold so that the solution of
system (4) converges to equilibrium E0. .is means that
when the period of evaluation of new product adoption
becomes very long, the number of adopters decreases since
they no longer adopt the product.

Now, we discuss the stability of the positive equilibrium
E∗. .e linearization of (4) at a constant solution E∗ can be
expressed by

dP

dt
� c1P + − β2P

∗
e

− ρτ
c2 + c3( A + αA

∗
A(t − τ),

dP

dt
� c4P + β2P

∗
e

− ρτ
c2A − αA

∗
A(t − τ),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

where
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c1 � −
r + αA

∗ 2

P
∗ ,

c2 �
Am

m + A
∗

( 
2,

c3 �
δP
∗

− r

A
∗ ,

c4 �
αA
∗ 2

+ d2A
∗

P
∗ .

(15)

.e characteristic equation associated with system (14) is

R(λ, τ) + Q(λ, τ)e
− λτ

� 0, (16)

where

R(λ, τ) � λ2 + a(τ)λ + c(τ),

Q(λ, τ) � b(τ)λ + d(τ),
(17)

and a(τ), b(τ), c(τ), and d(τ) are defined as follows:

a(τ) � − c1 − β2P
∗
e

− ρτ
c2,

b(τ) � αA
∗
,

c(τ) � β2P
∗
e

− ρτ
c2 c4 + c1(  − c4c3,

d(τ) � − αA
∗

c1 + c4( .

(18)

When τ � 0, equation (16) becomes

λ2 +(a(0) + b(0))λ + c(0) + d(0) � 0. (19)

We make the following assumptions:

H2(  β2P
∗
c2 < αA

∗
, d2A
∗ > r,

· H3(  δ r + A
∗β2P
∗
e

− ρτ
c2 + αA

∗2
 

− δαA
∗
P
∗

− rβ2P
∗
e

− ρτ
c2 < 0.

(20)

Lemma 1. If (H2) holds, then the positive equilibrium of
system (4) is locally asymptotically stable with τ � 0.

Proof. Let λ1 and λ2 be two roots of equation (19). If (H2)

holds, then we have

λ1 + λ2 � − (a(0) + b(0)) � c1 − αA
∗

+ β2P
∗
c2 < 0,

λ1λ2 � c(0) + d(0) � c4 + c1(  β2P
∗
c2 − αA

∗
(  − c4c3 > 0.

(21)

.is means that all the roots of equation (19) have
negative real parts. .us, equilibrium E∗ of system (4) with
τ � 0 is locally asymptotically stable. □

Remark 2. (H2) implies that only when A∗ is larger than a
threshold value, the positive equilibrium of system (4) is
locally asymptotic stable with τ � 0.

If τ > 0, then R(λ, τ) and Q(λ, τ) are delay dependent.
Based on the above analysis, a necessary condition for the
local stability switch of E∗ is that equation (16) has purely
imaginary solutions. Assume that iω(ω> 0) is a root of
equation (16). .en, ω should satisfy the following equation:

− ω2
+ ia(τ)ω + c(τ) +(ib(τ)ω + d(τ))(cos(ωτ) − i sin(ωτ)) � 0,

(22)

which implies that

ω2
− c(τ) � d(τ)cos(ωτ) + b(τ)ω sin(ωτ),

a(τ)ω � − b(τ)(τ)ω cos(ωτ) + d(τ)sin(ωτ).

⎛⎝ ⎞⎠ (23)

It follows that

sin(ωτ) �
ω2

− c(τ) b(τ)ω + a(τ)d(τ)ω

ω2
b
2
(τ) + d

2
(τ)

,

cos(ωτ) �
ω2

− c(τ) d(τ) − ω2
a(τ)b(τ)

ω2
b
2
(τ) + d

2
(τ)

.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

As we know, cos2(ωτ) + sin2(ωτ) � 1; thus, we obtain

ω4
+ a

2
(τ) − 2c(τ) − b

2
(τ) ω2

+ c
2
(τ) − d

2
(τ) � 0.

(25)

where a(τ), b(τ), c(τ), and d(τ) are as defined in (18).
Obviously, we have the following Lemma.

Lemma 2. If (H2) and (H3) hold, then equation (25) has a
unique root.

According to equation (25), (26) has a unique root
denoted by ω0, where

ω2
0 �

1
2

b
2
(τ) + 2c(τ) − a

2
(τ)  + Δ1/2 , (26)

Δ � b
2
(τ) + 2c(τ) − a

2
(τ) 

2
− 4 c

2
(τ) − d

2
(τ) . (27)

By equation (23), we have

Table 1: Meaning of the parameters.

Parameters Meaning
r Recruitment rate of the population that will join the nonadopter class
τ Potential adopters need some time to consider accepting or rejecting the new product
α Rate of valid contacts between the adopters at time t and those at time t − τ
β1, β2 Contact rate
m Half saturation coefficient
δ Death rate
ρ Percentage of persons who decide not to adopt the technology after they have evaluated it
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cos ω0τ(  �
w

2
0 − c(τ) d(τ) − a(τ)b(τ)w

2
0

b
2
(τ)w

2
0 + d

2
(τ)

. (28)

.us, if we denote

τj(τ) �
1
ω0

arccos
w

2
0 − c(τ) d(τ) − a(τ)b(τ)w

2
0

b
2
(τ)w

2
0 + d

2
(τ)

⎛⎝ ⎞⎠ + 2jπ⎛⎝ ⎞⎠,

j � 0, 1, 2, . . . ,

(29)

then ±iω0 is a pair of purely imaginary roots of (16) with
τ � τj(τ). In addition, the stability switches take place at the
zeros of the functions:

Sj(τ) ≔ τ − τj(τ), for some j ∈ N0. (30)

Recently, Beretta and Kuang [19] studied the stability
switches of some delay differential systems with delay-de-
pendent parameters and established a geometrical criterion
that reveals the existence of purely imaginary roots for a
characteristic equation with delay-dependent coefficients.
.erefore, according to [19], one has the following results.

Lemma 3. 9e characteristic equation (16) admits a pair of
simple conjugate pure imaginary roots λ � ±ω0(τj) and
(ω0(τj)> 0) if Sj(τ) � 0 for some j ∈ N0. If Sj(τ) � 0, this
pair of simple conjugate pure imaginary roots crosses the
imaginary axis from left to right (as τ increases) if δj(τ)> 0
and from right to left if δj(τ)< 0. 9e crossing direction of the
pair of simple conjugate pure imaginary roots through the
imaginary axis is determined by

δ τj  ≔ sign
dReλ

dτ
|λ�iω0 τj(   � − sign

dSj(τ)

dτ
|τ�τj

 .

(31)

Based on the above discussions, we have the following
results.

Theorem 2. If (H2) and (H3) hold, assume further that
Sj(τ) � 0 and δ(τj)> 0. 9en, when τ � τj, the Hopf bi-
furcation occurs. 9at is, system (4) has a branch of periodic
solutions bifurcating from E∗ near τ � τj.

Remark 3. If the function Sj(τ) � 0 has two or more roots,
then a stability switch may occur in system (4).

4. Stability and Direction of the
Hopf Bifurcation

In this section, we investigate the direction and stability of
period solutions bifurcating from the positive equilibrium
E∗ by applying the center manifold theorem and normal
form theory developed in [20].

Denote τj by τ∗ and introduce the new parameter
μ � τ − τ∗. .en, normalize the delay τ by the time-scaling
t⟶ t/τ. .us, system (4) can be rewritten as

dU(t)

dt
� L τ∗(  Ut(  + F Ut, μ( , (32)

where

L(μ)(φ) � μ
c1φ1(0) + c3 − β2P

∗
e

− ρτ∗
c2 φ2(0) + αφ2(− 1)

c4φ1(0) + β2P
∗
e

− ρτ∗
c2φ2(0) − αφ2(− 1)

⎛⎜⎜⎝ ⎞⎟⎟⎠,

F(φ, μ) � L(μ)φ + f(φ, μ),

f(φ, μ) � τ∗ + μ( 
− e

− ρτ∗ β1 + β2c5( φ1(0)φ2(0) − β2P
∗
e

− ρτ∗
c6φ

2
2(0) + αφ2(0)φ2(− 1)

e
− ρτ∗ β1 + β2c5( φ1(0)φ2(0) + β2P

∗
e

− ρτ∗
c6φ

2
2(0) − αφ2(0)φ2(− 1)

⎛⎜⎝ ⎞⎟⎠ + h.o.t.

c5 �
2A(m + A) − A

2

m + A
,

c6 �
2m

2

(m + A)
3,

(33)

for φ � (φ1,φ2)
T ∈ C.

.en, the linearized equation of (32) at the origin (0, 0) is

dU(t)

dt
� L τ∗(  Ut( . (34)

Let C ≔ C([− 1, 0],R2). Consider the following FDE on
C:

_z � L τ∗(  zt( , (35)

where L(τ∗) is a continuous linear function mapping
C([− 1, 0],R2) to R2. By the Riesz representation theorem,
there is a 2 × 2 matrix function η(θ, τ) (− 1≤ θ≤ 0) whose
elements are of bounded variation such that

L τ∗( (φ) � 
0

− 1
dη θ, τ∗(  φ(θ), forφ ∈ C. (36)
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Actually, we can choose

η θ, τ∗(  � τ∗
c1 c3 − β2P

∗
e

− ρτ∗
c2

c4 β2P
∗
e

− ρτ∗
c2

⎛⎝ ⎞⎠δ(θ)

− τ∗
0 α

0 − α
 δ(θ + 1),

(37)

where δ is the Dirac delta function.
Let A(τ∗) represent the infinitesimal generator of the

semigroup induced by the solutions of (35) and A∗ be the
formal adjoint of A(τ∗) under the bilinear pairing

(ψ, ϕ) � (ψ(0), ϕ(0)) − 
0

− 1

θ

ξ�0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ

� (ψ(0), ϕ(0)) + τ∗ 
0

− 1
ψ(θ + 1)

0 α

0 − α
 ϕ(θ)dθ

(38)

for ϕ ∈ C,ψ ∈ C∗ � C([0, 1], R2). .en, A(τ∗) and A∗ are a
pair of adjoint operators. It is easily obtained that A(τ∗) has
a pair of simple purely imaginary eigenvalues ±iω0τ∗. A(τ∗)
and A∗ are a pair of adjoint operators, so they are also
eigenvalues of A∗.

Let P and P∗ be the center spaces. .en, P∗ is the adjoint
space of P and dimP � dimP∗ � 2.

Lemma 4. Let

σ �
iω0 − c1

c3 − β2P
∗
c2e

− ρτ
+ αe

− ω0τ ,

σ∗ �
iω − c1

ω4
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

.en, for − 1≤ θ≤ 0,

r1(θ) � (1, σ)
T
e

iω0τ∗θ,

r2(θ) � r1(θ),
(40)

are a basis of P associated with Λ0, and for 0≤ s≤ 1,

q1(s) � e
− iω0τ∗s 1, σ∗( ,

q2(s) � q1(s),
(41)

are a basis of Q associated with Λ0.
Let Φ � (Φ1,Φ2) and Ψ∗ � (Ψ∗1 ,Ψ∗2 )T with

Φ1(θ) �
r1(θ) + r2(θ)

2
�

Re e
iω0τ∗θ 

Re σe
iω0τ∗θ 

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

�

cosω0τ
∗θ

L1 cos ω0τ
∗θ(  + L2ω sin ω0τ

∗θ( 

h
2
1 + α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(42)

where

h1 � c3 − β2P
∗
c2e

− ρτ
+ α cos(ωτ),

L1 � − h1c1 − αω sin(ωτ),

L2 � − h1ω + αc1 sin(ωτ),

Φ2(θ) �
r1(θ) − r2(θ)

2i
�

Im e
iω0τ∗θ 

Im σ∗eiω0τ∗θ 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

�

sinω0τ
∗θ

L3 cos ω0τ
∗θ(  + L4 sin ω0τ

∗θ( 

h
2
1 + α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(43)

where

L3 � h1ω − αc1 sin(ωτ),

L4 � − h1c1 − ω sin(ωτ),
(44)

for θ ∈ [− 1, 0] and

Ψ∗1(s) �
q1(s) + q2(s)

2
�

Re e
− iω0τ∗s 

Re σ∗e− iω0τ∗s 

⎛⎜⎝ ⎞⎟⎠

�

cosω0τ
∗
s

−
ω sin ωτ∗s(  − c1 cos ωτ∗s( 

c4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Ψ∗2(s) �
q1(s) − q2(s)

2i
�

Im e
− iω0τ∗s 

Im σ∗e− iω0τ∗s 

⎛⎜⎝ ⎞⎟⎠

�

− sinω0τ
∗
s

c1 sin ω0τ
∗
s(  + ω0 cos ω0τ

∗
s( 

c4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(45)

for s ∈ [0, 1]. According to (38), we get (Ψ∗1 ,Φ1) and
(Ψ∗1 ,Φ2). It is noted that

q1, r1(  � Ψ∗1 ,Φ1(  − Ψ∗2 ,Φ2(  + i Ψ∗1 ,Φ2(  + Ψ∗2 ,Φ1(  ,

q1, r1(  � 1 + σσ∗ + στ∗α 1 − σ∗( e
− iω0τ∗ ≔W

∗
.

(46)

Consequently, we obtain

Ψ∗1 ,Φ1(  − Ψ∗2 ,Φ2(  � Re W
∗

 ,

Ψ∗1 ,Φ2(  + Ψ∗2 ,Φ1(  � Im W
∗

 .
(47)

Let (Ψ∗ ,Φ) � (Ψ∗j ,Φk)(j, k � 1, 2). Clearly,

Ψ � Ψ1,Ψ2( 
T

� Ψ∗,Φ( 
− 1Ψ∗ (48)

is a new basis ψ of Q.
Furthermore, we define f0 � (ξ10, ξ

2
0), where

ξ10 �
1
0 ,

ξ20 �
0
1 .

(49)
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Let c · f0 be defined by

c · f0 � c1ξ
1
0 + c2ξ

2
0, (50)

for c � (c1, c2)
T, cj ∈ R(j � 1, 2).

.en, the center space of equation (34) is given by PCNC,
where

PCNφ � Φ Ψ, 〈φ, f0〉(  · f0, φ ∈ c, (51)

and C � PCNC ⊕ PSC, where PSC represents the com-
plementary subspace of PCNC.

Assume Aτ∗ is defined as follows:

Aτ∗φ(θ) � φ
.
(θ) + X0(θ) L τ∗( (φ(θ)) − φ

.
(0) , φ ∈ BC,

(52)

where X0: [− 1, 0]⟶ B(X, X) is given by

X0(θ) �
0, − 1≤ θ< 0,

I, θ � 0.
 (53)

.erefore, the solutions of (32) and (34) induce the
infinitesimal generator Aτ∗ , and it can be described by the
following equation:

Ut

.

� Aτ∗Ut + X0F Ut, μ( . (54)

ByC � PCNC⊕PSC and (51), the solution of (32) can be
described as

Ut � Φ x1(t), x2(t)( 
T

· f0 + h x1, x2, μ( , (55)

where

x1(t), x2(t)( 
T

� Ψ, 〈Ut, f0〉( ,

h x1, x2, μ(  ∈ Psc,
(56)

and h(0, 0, 0) � Dh(0, 0, 0) � 0. Particularly, on the center
manifold, the solution of (32) is as follows:

U
∗
t � h x1, x2, 0(  +Φ x1(t), x2(t)( 

T
· f0. (57)

Let z � x1 − ix2. By r1 � Φ1 + iΦ2, then (57) is rewritten
as

U
∗
t � W(z, z) +

1
2

r1z + r1z(  · f0, (58)

where W(z, z) � h(z + z/2, − z − z/2i, 0). In addition, z

satisfies the following equation:

_z � iω0τ
∗
z + g(z, z), (59)

g(z, z) � Ψ1(0) − iΨ2(0)( 〈F U
∗
t , 0( , f0〉. (60)

Denote

W(z, z) � W20
z
2

2
+ W11zz + W02

z
2

2
+ · · · , (61)

g(z, z) � g20
z
2

2
+ g11zz + g02

z
2

2
+ · · · . (62)

By (58), we get

〈F U
∗
t , 0( , f0〉 �

τ∗z2

4

− e
− ρτ∗ β1 + β2c5(  − β2P

∗
e

− ρτ∗
c6σ

2
+ ασ2e− iωτ∗

e
− ρτ∗ β1 + β2c5(  + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2e− iωτ∗

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

+
τ∗zz

4

− e
− ρτ∗ β1 + β2c5( (σ + σ) − 2β2P

∗
e

− ρτ∗
c6σσ + ασσ e

− iωτ∗
+ e

iωτ∗
 

e
− ρτ∗ β1 + β2c5( (σ + σ) + 2β2P

∗
e

− ρτ∗
c6σσ − ασσ e

− iωτ∗
+ e

iωτ∗
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
τ∗z2

4

− e
− ρτ∗ β1 + β2c5( σ − β2P

∗
e

− ρτ∗
c6σ

2
+ ασ2eiωτ∗

e
− ρτ∗ β1 + β2c5( σ + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2eiωτ∗

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

+
τ∗

4

− e
− ρτ∗ β1 + β2c5(  2w

(2)
11 (0) + w

(2)
20 (0) + 2σw

(1)
11 (0) + σw

(1)
20 (0) − β2P

∗
e

− ρτ∗
c6(2σ)w

(2)
20 (0) 

+4σw
(2)
11 (0) + α 2σw

(2)
11 (− 1) + σw

(2)
20 (− 1) + 2σw

(2)
11 (0)e

− iωτ∗
+ σe

iωτ∗
w

(1)
20 (0) , 1〉

〈e
− ρτ∗ β1 + β2c5(  2w

(2)
11 (0) + w

(2)
20 (0) + 2σw

(1)
11 (0) + σw

(1)
20 (0) + β2P

∗
e

− ρτ∗
c6(2σ)w

(2)
20 (0)

+4σw
(2)
11 (0) − α 2σw

(2)
11 (− 1) + σw

(2)
20 (− 1) + 2σw

(2)
11 (0)e

− iωτ∗
+ σe

iωτ∗
w

(1)
20 (0) , 1〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z
2
z + · · ·

<W
n
ij(θ), 1> �

1
π


π

0
W

n
ij(θ)(x)dx.

(63)
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Let (ψ1,ψ2,ψ3) � Ψ1(0) − iΨ2(0). .us, by (60)–(62),
we can obtain the following quantities:

g20 �
τ∗

2
− e

− ρτ∗ β1 + β2c5(  − β2P
∗
e

− ρτ∗
c6σ

2
+ ασ2e− iωτ∗

 ψ1 + e
− ρτ∗ β1 + β2c5(  + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2e− iωτ∗

 ψ2 ,

g11 �
τ∗

4
− e

− ρτ∗ β1 + β2c5( (σ + σ) − 2β2P
∗
e

− ρτ∗
c6σσ + ασσ e

− iωτ∗
+ e

iωτ∗
  ψ1

+ e
− ρτ∗ β1 + β2c5( (σ + σ) + 2β2P

∗
e

− ρτ∗
c6σσ − ασσ e

− iωτ∗
+ e

iωτ∗
 e

− ρτ∗ β1 + β2c5( (σ + σ)

+ 2β2P
∗
e

− ρτ∗
c6σσ − ασσ e

− iωτ∗
+ e

iωτ∗
 ψ2,

g02 �
τ∗

2
− e

− ρτ∗ β1 + β2c5( σ − β2P
∗
e

− ρτ∗
c6σ

2
+ ασ2eiωτ∗

 ψ1 + e
− ρτ∗ β1 + β2c5( σ + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2eiωτ∗

 ψ2 ,

g21 � 〈− e
− ρτ∗ β1 + β2c5(  2w

(2)
11 (0) + w

(2)
20 (0) + 2σw

(1)
11 (0) + σw

(1)
20 (0) − β2P

∗
e

− ρτ∗
c6 2σw

(2)
20 (0) + 4σw

(2)
11 (0) 

+ α 2σw
(2)
11 (− 1) + σw

(2)
20 (− 1) + 2σw

(2)
11 (0)e

− iωτ∗
+ σe

iωτ∗
w

(1)
20 (0) , 1〉ψ1

+〈e
− ρτ∗ β1 + β2c5(  2w

(2)
11 (0) + w

(2)
20 (0) + 2σw

(1)
11 (0) + σw

(1)
20 (0) + β2P

∗
e

− ρτ∗
c6(2σ)w

(2)
20 (0)

+ 4σw
(2)
11 (0) − α 2σw

(2)
11 (− 1) + σw

(2)
20 (− 1) + 2σw

(2)
11 (0)e

− iωτ∗
+ σe

iωτ∗
w

(1)
20 (0) , 1〉ψ2.

(64)

Notice that g21 concludes W20(θ), W11(θ) for
θ ∈ [− 1, 0]. From (61), we can easily obtain that

_W(z, z) � W20z _z + W11( _zz + z _z) + W02z _z + · · · , (65)

Aτ∗W � Aτ∗W20
z
2

2
+ Aτ∗W11zz + Aτ∗W02

z
2

2
+ · · · . (66)

Furthermore, by [20], W(z(t), z(t)) satisfies
_W � Aτ∗W + H(z, z), (67)

where

H(z, z) � H20
z
2

2
+ H11zz + H02

z
2

2
+ · · · , (68)

with Hij ∈ PSC, i + j � 2. .us, from (58) and (65)–(67), we
can obtain that

2iω0τ
∗

− Aτ∗( W20 � H20,

− Aτ∗W11 � H11.
 (69)

It is noted that Aτ∗ has two pure imaginary roots ±iω0τ∗.
.us, (67) has a unique solution Wij(i + j � 2) in PSC given
by

W20 � 2iω0τ
∗

− Aτ∗( 
− 1

H20,

W11 � − A
− 1
τ∗H11.

⎧⎨

⎩ (70)

From (68), we obtain that

H(z, z) � − Φ(θ)Ψ(0)<F U
∗
t , 0( , f0 > · f0

� −
1
4

g20r1(θ) + g02r2(θ) z
2

· f0

−
1
2

g11r1(θ) + g11r2(θ) zz · f0 + · · · ,

(71)

for − 1≤ θ < 0.
.erefore, for − 1≤ θ< 0,
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H20(θ) � −
1
2

g20r1(θ) + g02r2(θ)  · f0.

H11(θ) � −
1
2

g11r1(θ) + g11r2(θ)  · f0.

H(z, z)(0) � F U
∗
t , 0(  − Φ Ψ, 〈F U

∗
t , 0( , f0〉(  · f0,

H20(0) �
τ∗

2

− e
− ρτ∗ β1 + β2c5(  − β2P

∗
e

− ρτ∗
c6σ

2
+ ασ2e− iωτ∗

e
− ρτ∗ β1 + β2c5(  + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2e− iωτ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

−
1
2

g20r1(0) + g02r2(0)  · f0,

H11(0) �
τ∗

4

− e
− ρτ∗ β1 + β2c5( (σ + σ) − 2β2P

∗
e

− ρτ∗
c6σσ + ασσ e

− iωτ∗
+ e

iωτ∗
 

e
− ρτ∗ β1 + β2c5( (σ + σ) + 2β2P

∗
e

− ρτ∗
c6σσ − ασσ e

− iωτ∗
+ e

iωτ∗
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
1
2

g11r1(0) + g11r2(0)  · f0.

(72)

According to the definition of Aτ∗ , and from (70), we get
that

_W20(θ) � 2iω0τ
∗
W20(θ) +

1
2

g20r1(θ) + g02r2(θ) 

· f0, − 1≤ θ< 0.

(73)

It is noted that r1(θ) � r1(0)eiω0τ∗ , − 1≤ θ≤ 0.
Consequently,

W20(θ) �
i

2
g20

ω0τ
∗r1(θ) +

g02

3ω0τ
∗r2(θ)  · f0 + Ee

2iω0τ∗θ,

(74)

E � W20(0) −
i

2
g20

ω0τ
∗r1(0) +

g02

3ω0τ
∗r2(0)  · f0. (75)

Combining (70) and (75), we get

2iω0τ
∗ ig20

2ω0τ
∗r1(0) · f0 +

ig02

6ω0τ
∗r2(0) · f0 + E  − L τ∗( 

ig20

2ω0τ
∗r1(θ) · f0 +

ig02

6ω0τ
∗r2(θ) · f0 + Ee

2iω0τ∗θ 

�
τ∗

2

− e
− ρτ∗ β1 + β2c5(  − β2P

∗
e

− ρτ∗
c6σ

2
+ ασ2e− iωτ∗

e
− ρτ∗ β1 + β2c5(  + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2e− iωτ∗

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ −
1
2

g20r1(0) + g02r2(0)  · f0.

(76)

Notice that

L τ∗(  r1(θ) · f0  � iω0τ
∗
r1(0) · f0,

L τ∗(  r2(θ) · f0  � − iω0τ
∗
r2(0) · f0.

⎧⎨

⎩ (77)

.us, we get

2iω0τ
∗
E − τ∗DΔE − L τ∗(  Ee

2iω0τ∗θ 

�
τ∗

2

− e
− ρτ∗ β1 + β2c5(  − β2P

∗
e

− ρτ∗
c6σ

2
+ ασ2e− iωτ∗

e
− ρτ∗ β1 + β2c5(  + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2e− iωτ∗

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(78)

From the above equation, it is easily obtained that

E �
1
2

2iω0 − c1 − c3 + β2P∗e− ρτc2 − αA∗e− 2iω0τ∗

− c4 2iω0 − β2P∗e− ρτc2 + αA∗e− 2iω0τ∗

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

− 1

×

− e
− ρτ∗ β1 + β2c5(  − β2P

∗
e

− ρτ∗
c6σ

2
+ ασ2e− iωτ∗

e
− ρτ∗ β1 + β2c5(  + β2P

∗
e

− ρτ∗
c6σ

2
− ασ2e− iωτ∗

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(79)

Similarly, we obtain

Discrete Dynamics in Nature and Society 9



_W11(θ) �
1
2

g11r1(θ) + g11r2(θ)  · f0, − 1≤ θ< 0,

W11(θ) �
i

2ω0τ
∗ − g11r1(θ) + g11r2(θ)  · f0 + F.

(80)

In the similarly way, we get

F �
1
4

− c1 − c3 + β2P∗e− ρτc2

− c4 − β2P∗e− ρτc2

⎛⎝ ⎞⎠

− 1

×

− e
− ρτ∗ β1 + β2c5( (σ + σ) − 2β2P

∗
e

− ρτ∗
c6σσ + ασσ e

− iωτ∗
+ e

iωτ∗
 

e
− ρτ∗ β1 + β2c5( (σ + σ) + 2β2P

∗
e

− ρτ∗
c6σσ − ασσ e

− iωτ∗
+ e

iωτ∗
 

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(81)

As a result, g21 can be obtained explicitly, and we have
the following result.

Theorem 3. System (4) has the following Poincare
�
normal

form
_ξ � iω0τ

∗ξ + c1(0)ξ|ξ|
2

+ o |ξ|
5

 , (82)

where

c1(0) �
i

2ω0τ
∗ g20g11 − 2 g11



2

−
g02



2

3
⎡⎣ ⎤⎦ +

g21

2
. (83)

Hence, we can compute the following results:

σ2 � −
Re c1(0)( 

Re λ′ τ∗( ( 
,

β2 � 2Re c1(0)( ,

T2 � −
Im c1(0)(  + σ2Im λ′ τ∗( ( 

ω0τ
∗ ,

(84)

which determine the properties of bifurcating periodic so-
lutions at the critical values τ∗; i.e., σ2 determines the di-
rections of the Hopf bifurcation: if σ2 > 0(σ2 < 0), then the
Hopf bifurcation is supercritical (subcritical) and the bi-
furcating periodic solutions exist for τ > τ∗; β2 determines
the stability of the bifurcating periodic solutions: the bi-
furcating periodic solutions on the center manifold are stable
(unstable) if β2 < 0(β2 > 0); and T2 determines the period of
the bifurcating periodic solutions: the periodic increase
(decrease) occurs if T2 > 0(T2 < 0).

5. Numerical Simulation

In this section, we present numerical simulations of some
examples to illustrate our theoretical results.

5.1.Hopf Bifurcations Induced byDelay. Consider system (4)
with the following parameters: r � 0.8, α � 0.3, β1 � 0.3,

β2 � 0.2, δ � 0.04, m � 10, and ρ � 0.4. We plot the graph of
P∗ and A∗ and that of Sj(τ) versus τ in the interval [0, 10] in
Figures 1 and 2, respectively.

From Figure 1, we find that, with increasing delay τ, P∗

gradually increases and A∗ gradually decrease, and when
τ ≈ 11.5, the positive equilibrium disappears. In fact, the
positive equilibrium and the boundary equilibrium E0 are
inconsistent at this time. .is outcome occurs because when
the evaluation period of a new product becomes very long,
the individuals do not become adopters since they do not
adopt the product.

Apparently, no zero point exits for S1(τ), and for S0(τ),
there are two zeros: the first at τ1 � 1.0879 and the other at
τ2 � 6.6616. .ese indicate that, at the point τ ∈ [0, τ1), the
positive equilibrium of system (4) is stable (see Figure 3), and
when τ ∈ (τ1, τ2), the positive equilibrium of system (4) is
unstable (see Figure 4). As τ increases through the critical
value τ2 � 6.6616, the stability switch occurs again, and the
positive equilibrium of system (4) becomes stable, as shown
in Figure 5.

When τ passes through the zero point τ1 � 1.0879, the
positive equilibrium becomes unstable, and a Hopf bi-
furcation occurs, i.e., a family of periodic solutions bi-
furcate from the positive equilibrium, as shown in
Figure 4. We can compute μ2 � − Re(c1(0))/Re(λ′(τ∗)) �

22243672.8653> 0 and β2 � 2Re(c1(0)) � − 109.2516< 0.
.erefore, the orbitally asymptotically bifurcated periodic
solutions of the system are stable (4) when τ1 � 1.1929 in
the whole phase space, and the Hopf bifurcation is su-
percritical for μ2 > 0. As τ increases further and reaches the
critical value τ2 � 6.6616, it can be computed that
β2 � 0.3038. Hence, the limit cycle becomes unstable
based on the discussion in Section 3, and the positive
equilibrium recovers it stability, as shown in Figure 5. In
summary, with the increase in τ, the positive equilibrium
of the system will finally reach stability by two Hopf bi-
furcations. However, if the delay τ increases further, then
the positive equilibrium will disappear, and all solutions
of system (4) will reach equilibrium E0, as shown in
Figure 6.
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5.2. Effect of Parameter ρ. We now investigate the effect of
the parameter ρ. .erefore, let the parameters be the same
as in Section 5.1, except ρ � 0, which means that the
system parameters are constants independent of time
delay. .e graph of Sj(τ) versus τ is plotted in Figure 7. It
is shown that the positive equilibrium is stable with
τ ∈ [0, τ1).

However, with each crossing of every critical delay
τj(j � 1, 2, . . . , ), the number of eigenvalues with positive

real parts can be increased by 2, and the equilibrium be-
comes unstable. .is is quite different from the analysis in
Figure 2. In this analysis, with the increase in τ, a limited
number of stable switches can occur, and the system can be
stabilized with a moderately large delay.

Figure 8 shows the graph of Sj(τ) versus τ for different ρ.
Clearly, the larger the value of ρ is, the wider the interval of
the time delay τ is under system stability.
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Figure 1: Graph of P∗ and A∗ versus τ for system (4).
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Figure 3: .e equilibrium E∗ of system (4) is stable with τ � 0.9.
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Figure 4: .e equilibrium E∗ of system (4) is unstable with τ � 6.
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Figure 5: .e equilibrium E∗ of system (4) is stable with τ � 8.4.
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Figure 6: All solutions of system (4) converge to the equilibrium E0
with τ � 13.
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6. Conclusions

In this paper, the stability switches and Hopf bifurcation of a
delayed nonlinear mathematical model are analyzed in
detail. .e model is designed with a stage structure used to
simulate the stages of the process of adopting a new product.
Moreover, the normal and the center manifold theory are
used to investigate the stability and the direction of the
bifurcating periodic solutions. .e results of the numerical
simulations show that, in the range of zero to infinity for the
delay, there may exist a number of stability switches for the
model with delay-dependent parameters. Moreover, the

system could also be stabilized by a moderately large delay.
.is characteristic of the models is quite different from that
of systems without delay-dependent parameters.
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