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,e differential equations with state-dependent delay are very important equations because they can describe some problems in
the real world more accurately. Due to the complexity of state-dependent delay, it also brings challenges to the research.,e value
of delay varying with the state is the difference between state-dependent delay and time-dependent delay. It is impossible to know
exactly in advance how far historical state information is needed, and then the problem of state-dependent delay is more
complicated compared with time-dependent delay. ,e dominating work of this paper is to solve the stability problem of neural
networks equipped with state-dependent state delay. We use the purely analytical method to deduce the sufficient conditions for
local exponential stability of the zero solution. Finally, a few numerical examples are presented to prove the availability of
our results.

1. Introduction

Neural network is an information processing system to
simulate the structures and functions of the human brain. As
far as we know, the functions and structures of the individual
neuron are simple, but the dynamic behavior of the neural
network is very rich and intricate [1, 2]. In the neural
network, several simple processing units are connected to
each other in a certain way. Neural network system is highly
complex, which not only has the common characteristics of
general nonlinear systems but also has its own unique
features [3–6]. For example, it is proved that the neural
network has the ability to approximate nonlinear mapping,
and any continuous nonlinear function mapping can be
approximated by the multilayer neural network with arbi-
trary precision. It shows that the neural network has a good
application prospect in the challenging nonlinear control
field [3]. Also, the parallel distributed integrated optimi-
zation processing of information makes the neural network
very suitable for solving large-scale real-time computing
problems in system control [4]. At the same time, some
neural network models have the trait of automatically

searching the extremum of energy function, which is very
useful in adaptive control design [5]. In addition, the neural
network also has the peculiarity of high fault-tolerant ability,
generalization ability, and adaptive ability for learning be-
havior [6].

Over that seventy years, neural networks have been in-
volved in combinatorial optimization, pattern recognition,
image processing, robot control, signal processing, and other
scientific fields and achieved extensive success [7–10]. In the
application of the neural network, on the one hand, infor-
mation transmission between neurons needs time. On the
other hand, due to the influence of hardware implementation
in reality (such as limited switching speed), the time delay
phenomenon is inevitable [11]. ,e existence of time delay
may induce instability, oscillation, and poor performance, but
we can also overcome the unfavorable effect about some types
of time delays by developed control frameworks, such as
based on the Halanay inequality framework [1, 2, 11, 12]. At
present, many different delays have been applied to the neural
network [2, 12–18], for instance, time-varying delay [12, 14],
distributed delay [13, 15, 16], discrete constant delay [2, 13],
proportional delay [17], and unbounded delay [18].
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State-dependent delay (SDD) is all around us [19–22].
With limited natural resources, Antarctic whales and seals
tend to mature longer if their populations are large [19]. In
the problem of car following, it is inevitable to encounter the
phenomenon that the time delay changes with the state,
which contains physiological time delay, mechanical time
delay, and motion time delay [20, 21]. In addition, in the
blood circulation system, the concentration of nutrients
regulates the mitotic cycle of hematopoietic stem cells; thus,
the mitotic cycle of stem cells is affected by the concentration
of cells in the region [22]. In these cases, in order to describe
change and evolution of things more accurately and make
the research results more realistic and modest with nuanced
understanding, we must adopt differential equations with
SDD.

Neurodynamics help to identify the highly complex and
precise multilevel nonlinear brain system. ,e processing of
neural information involves the coupling and cooperation of
multiple levels and regions. In this way, the nerve activity
about the structural neural network is worthy of study and
discussion from the perspective of models and evolution,
and then to some extent, the cognitive function of the
specific functional neural network is realized by evolutive
neurodynamics [13]. ,e work about evolutive neuro-
dynamics will be helpful to understand the information
processing mechanism and the neural energy coding rule in
the nervous system and also provides the basis for the re-
search of the potential mechanism of cognitive function.

In this paper, the local evolution characteristics of neural
networks with state-dependent state delay (SDSD) will be
discussed. ,e topic introduced here may interest re-
searchers in engaging the theory and application of the new
neural network model having kinematics and dynamics
feature. Prior to this, there have been many studies on the
stability of nonlinear systems with SDSD. Hartung [23]
described a type of nonlinear functional differential equation
with SDSD and analyzed the stability conditions of periodic
solutions based on the linearization method. Exponential
stability conditions of nonlinear systems with SDSD were
reported via comparing with time-dependent delay systems
in [24]. Fiter and Fridman [25] developed the Lyapu-
nov–Krasovskii functional method to discuss asymptotic
stability about some particular linear systems with SDSD. Li
and Wu [26] considered a class of nonlinear differential
systems with SDD pulses. By pulse control theory, uniformly
stable, uniformly asymptotically stable, and exponentially
stable results were presented. To derive stability criteria of
nonlinear systems with SDSD, Li and Yang [27] initially
created purely analytical frame structure. To the best of the
authors’ knowledge, although the neural networks are widely
used and the theoretical results are abundant, the research
on stability of the neural network with SDSD is still blank.
Moreover, since time delay is an inevitable factor in neural
networks, it is of great significance to study the problem of
neural networks with SDSD. ,en, the primary contribu-
tions of this paper are generalized as follows: (1) A general
neural network model with SDSD is established. Neural
network model with SDSD may interest all those profes-
sionals and academics in processing operations who would

desire to utilize the capabilities of control systems about
capturing rich history information for cost effective and yet
robust events to be portrayed. Such research also contributes
to reveal influences of neurodynamics evoked by SDSD
characteristics. (2) Locally exponentially stable sufficient
conditions of the neural networks with SDSD are obtained.
,e purely analytical method employed by us demonstrates
that it is possible to analyze computational neurodynamics
without a few additional restrictions. ,e purely analytical
method itself intents to address the universality of analysis
framework. Definitely, it may be extended to a more general
class of nonlinear systems with SDSD.

,e rest of this paper is arranged as follows. In Section
2, we will present a specific neural network model. ,e
results of our work are described in Section 3. In Section 4,
two numerical examples and simulation results are given
to verify the validity of our results. Finally, in Section 5,
the thesis is summarized, and the future work is
prospected.

2. Preliminaries and Model Description

2.1. Notations. Let R and R+ represent the sets of real
numbers and nonnegative real numbers, respectively. Rn

denotes the n-dimension Euclidean space. For a matrix E,
λmax(E) is used to denote its maximum eigenvalue. P(E)

stands for the minimum value of all elements of matrix E.
,e vector 1-norm and 2-norm are severally expressed by
‖·‖1 and ‖·‖2.

2.2. Some Preliminaries and Problem Formulation. Based on
the work of Li and Yang [27], we put forward the fol-
lowing neural network model with SDSD, which is de-
scribed by

_xi(t) � − aixi(t) + 􏽘
n

j�1
bijgj xj(t)􏼐 􏼑

+ 􏽘
n

j�1
dijfj xj(t − τ(t,X))􏼐 􏼑, i � 1, 2, . . . , n, t≥ t0,

(1)

for the sake of presentation; we also give the compact form of
system (1) as follows:

_X(t) � − AX(t) + Bg(X(t)) + Df(X(t − τ(t,X))),

(2)

where n stands for the number of neurons in the network,
_X(t) denotes the upper right derivative of X(t),
X � X(t) � (x1(t), x2(t), . . . , xn(t))T, and xi(t) represents
the state of the ith neuron. A is a diagonal matrix, for
i � 1, 2, . . . , n, ai > 0, and B and D are constant matrices with
corresponding dimensions. g(X(t)) � (g1(x1)(t),

g2(x2(t)), . . . , gn(xn(t)))T and f(X(t − τ(t,X))) �

(f1(x1(t − τ(t,X))), f2(x2(t − τ(t,X))), . . . , fn(xn(t−

τ(t,X))))T are the excitation functions of the ith neuron at
time t and t − τ(t,X), respectively.
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Furthermore, we use X(s) � Ψ(s), s ∈ [t0 − η, t0] to
denote the initial value of system (2), where Ψ � Ψ(s) �

(ψ1(s),ψ2(s), . . . ,ψn(s))T ∈ C([t0 − η, t0],R
n).

C([t0 − η, t0],R
n) is a Banach space whose elements are

continuous vector-valued functions. ,ese continuous
functions map the interval [t0 − η, t0] into Rn. Let ‖Ψ‖α �

supt0− η≤s≤t0‖Ψ(s)‖ stand for the norm of a function
Ψ(·) ∈ C([t0 − η, t0],R

n), where ‖ · ‖ is the vector norm
matching with the content of the paper.

Remark 1. X(t) is right-upper derivable, which implies that
the solution of system (2) can be continuous but not smooth.
,e state delay τ(t,X) is related to the state of each neuron.

For subsequent analysis, we need the following as-
sumptions for system (1) and (2).

Assumption 1. Functions g(·), f(·) ∈Rn satisfy f(0) � 0,

g(0) � 0.
,rough Assumption 1, this ensures that X � 0 is a

constant solution of systems (1) and (2).

Assumption 2. g(·), f(·) ∈Rn are locally Lipschitz con-
tinuous; in other words, ∀ β1, β2 ∈R, and we have

gi β1( 􏼁 − gi β2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ℓi β1 − β2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀i ∈ 1, 2, . . . , n{ },

fi β1( 􏼁 − fi β2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽥ℓi β1 − β2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀i ∈ 1, 2, . . . , n{ },
(3)

where ℓi > 0 and 􏽥ℓi > 0.
According to Assumption 2, we can get two constant sets

ℓ1, ℓ2, . . . , ℓn􏼈 􏼉 and 􏽥ℓ1, 􏽥ℓ2, . . . , 􏽥ℓn􏼈 􏼉. Let ℓ1, ℓ2, . . . , ℓn􏼈 􏼉 and
lf � max 􏽥ℓ1, 􏽥ℓ2, . . . , 􏽥ℓn􏼈 􏼉.

Assumption 3. ,e state delay τ(t,X) ∈ C(R+ × Rn, [0, η])

is locally Lipschitz continuous, namely, for any Γ1, Γ2 ∈R
n,

there always exists a constant ℓτ > 0 such that

τ t, Γ1( 􏼁 − τ t, Γ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ℓτ Γ1 − Γ2
����

����. (4)

Assumption 4. When X � 0, τ(t,X) has supremum
equipped with τ0(≤η), sup τ(t, 0), t≥ t0􏼈 􏼉 � τ0.

For ease of expression, let

π1 � max
1≤i≤n

− ai + 􏽘

n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ℓi
⎛⎝ ⎞⎠,

π2 � max
1≤i≤n

􏽘

n

j�1
dji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽥ℓi.

(5)

Definition 1 (see [28]). ,e zero solution of system (2) is said
to be locally exponentially stable (LES) in regionM; if there
exist constants c> 0 and Lyapunov exponent ζ > 0, for any
t≥ t0, we have

X t; t0,Ψ( 􏼁
����

����≤ c‖Ψ‖αe
− ζ t− t0( ), (6)

where X(t; t0,Ψ) is a solution of system (2) with the initial
condition Ψ ∈ C([t0 − η, t0],M), M ⊂Rn, and M is called
a local exponential attraction set of the zero solution.

Lemma 1 (see [29]). Let Γ1, Γ2 ∈R
n, and we have

ΓT1 Γ2 + ΓT2 Γ1 ≤ϖΓ
T
1 Γ1 + ϖ− 1ΓT2 Γ2, (7)

for any ϖ> 0.

3. Main Results

Theorem 1. Under Assumptions 1–4, the zero equilibrium of
system (2) is LES if

π1 + π2 < 0, (8)

and Lyapunov exponent ζ > 0 satisfies

ζ + π1 + π2e
ζ ℓτ‖Ψ‖α+τ0( ) ≤ 0. (9)

Proof. We assume that X(t; t0,Ψ) is a trajectory of system
(2) with initial value (t0,Ψ), where Ψ ∈ C([t0 − η, t0],R

n)

andΨ≠ 0. For the sake of convenience, let V(t) � V(t,X) �

‖X(t)‖1 � 􏽐
n
i�1 |xi(t)| and V0 � supV(s), s ∈ [t0 − η, t0]􏼈 􏼉.

,en, for any ϵ ∈ (0, ζ), we claim that

e
(ζ− ϵ) t− t0( )V(t)≤V0, ∀t≥ t0. (10)

Firstly, when t � t0, (10) holds. Next, we prove that (10)
holds on (t0, +∞). In contrast to (10), there are some
instants on (t0, +∞) to make (10) untenable, and then we
can find an instant tq ≥ t0; the following three events will
happen:

(1) e(ζ− ϵ)(tq− t0)V(tq) � V0.
(2) e(ζ− ϵ)(t− t0)V(t)≤V0, for ∀t ∈ [t0 − η, tq].
(3) ,ere exists a right neighbor of tq(U0

+(tq, ξ)) such
that ∀tξ ∈ U0

+(tq, ξ) and e(ζ− ϵ)(tξ − t0)V(tξ)>V0.

On the contrary, by Assumptions 1–4 and combin-
ing (2), the derivative of e(ζ− ϵ)(t− t0)V(t) at time tq is as
follows:
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d
dt

e
(ζ− ϵ) t− t0( )V(t)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�tq

� (ζ − ϵ)e(ζ− ϵ) tq− t0( 􏼁
V tq􏼐 􏼑 + e

(ζ− ϵ) t− t0( ) _V(t)􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�tq

≤ (ζ − ϵ)V0 + e
(ζ− ϵ) tq− t0( 􏼁

􏽘

n

i�1
sgn xi tq􏼐 􏼑􏼐 􏼑 _xi tq􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

� (ζ − ϵ)V0 + e
(ζ− ϵ) tq− t0( 􏼁

􏽘

n

i�1
sgn xi tq􏼐 􏼑􏼐 􏼑 − aixi tq􏼐 􏼑􏽨⎛⎝

+ 􏽘
n

j�1
bijgj xj tq􏼐 􏼑􏼐 􏼑 + 􏽘

n

j�1
dijfj xj tq − τ tq,X tq􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎤⎥⎥⎦⎞⎠

≤ (ζ − ϵ)V0 + e
(ζ− ϵ) tq− t0( 􏼁

􏽘

n

i�1
− ai xi tq􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

+ e
(ζ− ϵ) tq− t0( 􏼁

􏽘

n

i�1
􏽘

n

j�1
bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ℓj xj tq􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ e
(ζ− ϵ) tq− t0( 􏼁

􏽘

n

i�1
􏽘

n

j�1
dij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽥ℓj xj tq − τ tq,X tq􏼐 􏼑􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

≤ (ζ − ϵ)V0

+ e
(ζ− ϵ) tq− t0( 􏼁 max

1≤i≤n
− ai + 􏽘

n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ℓi
⎛⎝ ⎞⎠ X tq􏼐 􏼑

�����

�����

+ e
(ζ− ϵ) tq− t0( 􏼁 max

1≤i≤n
􏽘

n

j�1
dji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽥ℓi
⎛⎝ ⎞⎠ X tq − τ tq,X􏼐 􏼑􏼐 􏼑

�����

�����

� ζ − ϵ + π1( 􏼁V0 + e
(ζ− ϵ) tq− τ tq,X( 􏼁− t0( 􏼁

X tq − τ tq,X􏼐 􏼑􏼐 􏼑
�����

�����

× π2e
(ζ− ϵ)τ tq,X( 􏼁

≤ ζ − ϵ + π1 + π2e
(ζ− ϵ)τ tq,X( 􏼁

􏼒 􏼓V0

� ζ − ϵ + π1 + π2e
(ζ− ϵ) τ tq,X( 􏼁− τ tq,0( 􏼁􏼂 􏼃

e
(ζ− ϵ)τ tq,0( 􏼁

􏼒 􏼓V0

≤ ζ − ϵ + π1 + π2e
(ζ− ϵ)ℓτ X tq( 􏼁

����
����1e

(ζ− ϵ)τ tq,0( 􏼁
􏼒 􏼓V0

≤ ζ − ϵ + π1 + π2e
(ζ− ϵ) ℓτ X tq( 􏼁

����
����1

+τ0􏼐 􏼑
􏼠 􏼡V0.

(11)

Together with the definition ofV0, V(t), tq and condition
(1), we have

X tq􏼐 􏼑
�����

�����1
� V tq􏼐 􏼑≤V0 � ‖Ψ‖α, (12)

and then from (9) and (11), we obtain
d
dt

e
(ζ− ϵ) t− t0( )V(t)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�tq

≤ ζ − ϵ + π1 + π2e
(ζ− ϵ) ℓτ‖Ψ‖α+τ0( )􏼒 􏼓‖Ψ‖α < 0,

(13)

which is a contradiction with condition (9), and thus, (10)
holds.

Consider the arbitrariness of ϵ, let ϵ⟶ 0, and then we
obtain

e
ζ t− t0( )V(t)≤V0, ∀t≥ t0, (14)

i.e.,

‖X(t)‖1 � V(t)≤ ‖Ψ‖αe
− ζ t− t0( ), ∀t≥ t0. (15)

,e reasoning process of ,eorem 1 is completed. □

Theorem 2. B and D are symmetric matrices; then, under
Assumptions 1–4, the zero equilibrium of system (2) is LES
if

− 2P(A) + λmax B
2

􏼐 􏼑 + l
2
g + λmax D

2
􏼐 􏼑 + l

2
f < 0, (16)

and μ � 2ζ > 0 satisfies

μ − 2P(A) + λmax B
2

􏼐 􏼑 + l
2
g + λmax D

2
􏼐 􏼑

+ l
2
fe

μ ℓτ‖Ψ‖α+τ0( ) ≤ 0,
(17)

where ζ is the Lyapunov exponent.

Proof. Suppose X(t; t0,Ψ) is a solution of system (2) with
initial state (t0,Ψ), where Ψ ∈ C([t0 − η, t0],R

n) and Ψ≠ 0.
Let V(t,X) � (‖X(t)‖2)

2 � XT(t)X(t). For convenience,
set V(t) � V(t,X) and V0 � supV(s), s ∈ [t0 − η, t0]􏼈 􏼉.
,en, for any ϵ ∈ (0, μ), we claim that

e
(μ− ϵ) t− t0( )V(t)≤V0, ∀t≥ t0. (18)

Firstly, when t � t0, (18) holds. Next, we prove that (18)
holds on (t0, +∞). In contrast to (18), there are some in-
stants on (t0, +∞) to make (18) untenable, and then we can
find an instant tq ≥ t0 to satisfy the following three
conditions:

(1) e(μ− ϵ)(tq− t0)V(tq) � V0.
(2) e(μ− ϵ)(t− t0)V(t)≤V0, for ∀t ∈ [t0 − η, tq].
(3) ,ere exists a right neighbor of tq(U0

+(tq, ξ)) such
that ∀tξ ∈ U0

+(tq, ξ), e(μ− ϵ)(tξ − t0)V(tξ)>V0.

On the contrary, by Assumptions 1–4 and Lemma 1, we
compute the derivative of e(μ− ϵ)(t− t0)V(t) at time tq:

4 Discrete Dynamics in Nature and Society



d
dt

e
(μ− ϵ) t− t0( )V(t)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�tq

� (μ − ϵ)e(μ− ϵ) tq− t0( 􏼁
V tq􏼐 􏼑 + e

(μ− ϵ) t− t0( ) _V(t)􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�tq

≤ (μ − ϵ)V0 + e
(μ− ϵ) tq− t0( 􏼁 2XT

tq􏼐 􏼑 _X tq􏼐 􏼑􏼐 􏼑

� (μ − ϵ)V0 + e
(μ− ϵ) tq− t0( 􏼁

× 2XT
tq􏼐 􏼑

× − AX tq􏼐 􏼑 + Bg X tq􏼐 􏼑􏼐 􏼑 + Df X tq − τ tq,X􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨 􏽩

� (μ − ϵ)V0 + e
(μ− ϵ) tq− t0( 􏼁

− 2XT
tq􏼐 􏼑AX tq􏼐 􏼑􏼐 􏼑

+ e
(μ− ϵ) tq− t0( 􏼁 2XT

tq􏼐 􏼑Bg X tq􏼐 􏼑􏼐 􏼑􏼐 􏼑

+ e
(μ− ϵ) tq− t0( 􏼁 2XT

tq􏼐 􏼑Df X tq − τ tq,X􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

≤ (μ − ϵ)V0 + e
(μ− ϵ) tq− t0( 􏼁

(− 2P(A))X
T

tq􏼐 􏼑X tq􏼐 􏼑

+ e
(μ− ϵ) tq− t0( 􏼁 λmax B

2
􏼐 􏼑 + l

2
g􏼐 􏼑X

T
tq􏼐 􏼑X tq􏼐 􏼑

+ e
(μ− ϵ) tq− t0( 􏼁λmax D

2
􏼐 􏼑X

T
tq􏼐 􏼑X tq􏼐 􏼑

+ e
(μ− ϵ) tq− t0( 􏼁

l
2
fX

T
tq − τ tq,X􏼐 􏼑􏼐 􏼑X tq − τ tq,X􏼐 􏼑􏼐 􏼑

� μ − ϵ − 2P(A) + λmax B
2

􏼐 􏼑 + l
2
g + λmax D

2
􏼐 􏼑􏼐 􏼑V0

+ e
(μ− ϵ) tq− τ tq,X( 􏼁− t0( 􏼁

l
2
fX

T
tq − τ tq,X􏼐 􏼑􏼐 􏼑X tq − τ tq,X􏼐 􏼑􏼐 􏼑

× e
(μ− ϵ)τ tq,X( 􏼁

≤ μ − ϵ − 2P(A) + λmax B
2

􏼐 􏼑 + l
2
g + λmax D

2
􏼐 􏼑􏼐 􏼑V0

+ l
2
fe

(μ− ϵ)τ tq,X( 􏼁
V0

� μ − ϵ − 2P(A) + λmax B
2

􏼐 􏼑 + l
2
g + λmax D

2
􏼐 􏼑􏼐 􏼑V0

+ l
2
fe

(μ− ϵ) τ tq,X( 􏼁− τ tq,0( 􏼁􏼂 􏼃
e

(μ− ϵ)τ tq,0( 􏼁
V0

≤ μ − ϵ − 2P(A) + λmax B
2

􏼐 􏼑 + l
2
g + λmax D

2
􏼐 􏼑􏼐

+l
2
fe

(μ− ϵ) ℓτ X tq( 􏼁
����

����2
+τ0􏼐 􏼑

􏼡V0.

(19)

Combining the definition of V0, V(t), tq and condition
(1), we have

X tq􏼐 􏼑
�����

�����2
� V tq􏼐 􏼑􏼐 􏼑

1/2
≤ V0( 􏼁

1/2
� ‖Ψ‖α, (20)

and then from (17) and (19), we obtain
d
dt

e
(μ− ϵ) t− t0( )V(t)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�tq

≤ μ − ϵ − 2P(A) + λmax B
2

􏼐 􏼑 + l
2
g + λmax D

2
􏼐 􏼑􏼐

+l
2
fe

(μ− ϵ) ℓτ‖Ψ‖α+τ0( )􏼓 ‖Ψ‖α( 􏼁
2 < 0.

(21)

,is is in contradiction with (9), so (18) holds.
Consider the arbitrariness of ϵ, let ϵ⟶ 0, and then we

could be capable of getting

e
μ t− t0( )V(t)≤V0, ∀t≥ t0, (22)

i.e.,

‖X(t)‖2 � (V(t))
1/2 ≤ ‖Ψ‖αe

− (μ/2) t− t0( ), ∀t≥ t0. (23)

,e reasoning process of ,eorem 2 is completed. □

Remark 2. In,eorem 2, by taking the value of ϖ in Lemma
1 to be 1, we can get the following inequality:

2XT
tq􏼐 􏼑Bg X tq􏼐 􏼑􏼐 􏼑 � X

T
tq􏼐 􏼑Bg X tq􏼐 􏼑􏼐 􏼑 + X

T
tq􏼐 􏼑Bg X tq􏼐 􏼑􏼐 􏼑

� X
T

tq􏼐 􏼑B
T
g X tq􏼐 􏼑􏼐 􏼑 + g

T
X tq􏼐 􏼑􏼐 􏼑BX tq􏼐 􏼑

� BX tq􏼐 􏼑􏼐 􏼑
T
g X tq􏼐 􏼑􏼐 􏼑 + g

T
X tq􏼐 􏼑􏼐 􏼑 BX tq􏼐 􏼑􏼐 􏼑

≤ BX tq􏼐 􏼑􏼐 􏼑
T

BX tq􏼐 􏼑􏼐 􏼑 + g
T
X tq􏼐 􏼑􏼐 􏼑g X tq􏼐 􏼑􏼐 􏼑

� X
T

tq􏼐 􏼑B
T
BX tq􏼐 􏼑 + g

T
X tq􏼐 􏼑􏼐 􏼑g X tq􏼐 􏼑􏼐 􏼑

� X
T

tq􏼐 􏼑B
2
X tq􏼐 􏼑 + g

T
X tq􏼐 􏼑􏼐 􏼑g X tq􏼐 􏼑􏼐 􏼑

≤ λmax B
2

􏼐 􏼑X
T

tq􏼐 􏼑X tq􏼐 􏼑 + l
2
gX

T
tq􏼐 􏼑X tq􏼐 􏼑

� λmax B
2

􏼐 􏼑 + l
2
g􏼐 􏼑X

T
tq􏼐 􏼑X tq􏼐 􏼑.

(24)

We give a particular case of system (2), considering the
following one-dimensional system:

_x(t) � ax(t) + bg(x(t)) + df(x(t − τ(t, x))), t≥ 0,

τ(t, x) � δ + λx(t),

(25)

where a, b, d, δ, λ ∈R.

Corollary 1. If system (25) satisfies the following conditions,

(1) f(0) � 0, g(0) � 0. g(·), f(·) are locally Lipschitz
continuous functions whose Lipschitz constants are
l1, l2, respectively,

(2) a< 0 and a + |b|l1 + |d|l2 < 0,
(3) δ > 0, and the initial condition of system (25) satisfies

|ψ(·)|≤M< (δ/|λ|), where |ψ(·)| � max− η≤t≤0|ψ(·)|,

then we can obtain

|x(t)|≤Me
− ζt

, t≥ 0, (26)

Discrete Dynamics in Nature and Society 5



where x(t) � x(t; 0,ψ) represents the trajectory of system
(25) with initial state (0,ψ), and Lyapunov exponent ζ > 0
satisfies

ζ + a +|b|l1 +|d|l2e
ζ(|λ|M+δ) ≤ 0. (27)

Proof. To prove Corollary 1, we only need to prove that
Corollary 1 satisfies Assumptions 1–4. Obviously, from
condition (1), we can know that system (25) satisfies As-
sumptions 1 and 2. Next, we prove that system (25) satisfies
Assumptions 3 and 4.

We assume that x(t; 0,ψ) is a trajectory of system (25)
with initial value (0,ψ), where ψ ≠ 0. From τ(t, x) � δ+

λx(t), we could know that τ(t, x) is continuous about t.
Owing to |ψ|≤M and M< (δ/|λ|), there exists ρ> 0 such that
∀t ∈ [0, ρ] and τ(t, x)≥ 0. In the circumstances, set
V(t) � |x(t)|. Next, under conditions (1)–(3) and by ,eo-
rem 1, we get |x(t)|≤Me− ζt, for ∀t ∈ [0, ρ], where Lyapunov
exponent ζ satisfies (27).

,en, for ∀t ∈ [0, +∞), we declare that τ(t, x)≥ 0. In
contrast to the claim, there must be some instant on
(ρ, +∞) to make τ(t, x(t))< 0. ,en, we could find an
instant tq ∈ [ρ, +∞) to meet the following three
conditions:

(1) τ(tq, x(tq)) � δ + λx(tq) � 0.
(2) ∀t ∈ [0, tq], τ(t, x(t))≥ 0.
(3) ,ere exists a right neighbor of tq(U0

+(tq, ξ)) such
that τ(tξ , x(tξ))< 0, for any tξ ∈ U0

+(tq, ξ).

It follows from ,eorem 1, for any t ∈ [0, tq], we have
|x(t)|≤Me− ζt, which indicates that |x(tq)|≤Me− ζtq <
(δ/|λ|). On the basis of the continuity of x(t), there exists
ξ0 > 0 such that |x(t)| < (δ/|λ|), for any t ∈ [tq, tq + ξ0). It
means that ∀t ∈ [tq, tq + ξ0), and
τ(t, x(t)) � δ + λx(t)> 0holds, which contradicts with (9);
therefore, ∀t ∈ [0, +∞) and τ(t, x(t))≥ 0. It ulteriorly
indicates that Assumptions 3 and 4 are all satisfied.
,erefore, it can be known from,eorem 1 that Corollary
1 is valid. ,e proof is completed. □

Remark 3. Actually, in,eorem 1, when π1 + π2 < 0, we can
definitely get ζ + π1 + π2eζ(ℓτ‖Ψ‖+τ0) ≤ 0 as long as ζ is small
enough. ,eorem 2 has a similar conclusion.

Remark 4. In ,eorem 1, by taking tq − τ(tq,X) as a whole
and then from condition (2), we are able to get
e(ζ− ϵ)(tq− τ(tq,X)− t0)‖X(tq − τ(tq,X))‖≤V0. ,eorem 2 has a
similar conclusion.

Remark 5. ,e proofs of ,eorems 1 and 2 also provide an
estimate of the locally exponentially convergent rate ζ which
could be obtained by solving transcendental equation (9) or
(17).

Remark 6. Remarkably, the Lyapunov exponent in ,eo-
rems 1 and 2 is state-dependent, so only when the initial
value is bounded can we find common ζ to make

e(ζ− ϵ)V(t)≤V(0). Furthermore, due to the effect of SDSD,
the results in our paper are local features, not global
features.

4. Illustrative Examples

To prove the effectiveness of our results, two numerical
examples will be given in this section.

Example 1. Consider a 2-dimensional neural network with
SDSD, which is described by

_x1(t)

_x2(t)
􏼠 􏼡 � −

1 0

0 1
􏼠 􏼡

x1(t)

x2(t)
􏼠 􏼡

+
0.25 0.25

0.02 0.01
􏼠 􏼡

g1 x1(t)( 􏼁

g2 x2(t)( 􏼁
􏼠 􏼡

+
0.3 0.2

0.01 0.02
􏼠 􏼡

f1 x1(t − τ(t,X))( 􏼁

f2 x2(t − τ(t,X))( 􏼁
􏼠 􏼡,

(28)

where t0 � 0 and

gi(·) � xi(t) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + xi(t) − 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, i � 1, 2,

fi(·) � sin xi t − sin x1(t) + x2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑, i � 1, 2,

τ(t,X) � sin x1(t) + x2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(29)

Evidently, ℓ1 � ℓ2 � 2, 􏽥ℓ1 � 􏽥ℓ2 � 1, ℓτ � 1, τ(t, 0) �

0, τ(t,X) ∈ [0, 1]. By calculating,

π1 � max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ℓi
⎛⎝ ⎞⎠ � − 0.46,

π2 � max
1≤i≤n

􏽘

n

j�1
dji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏽥ℓi � 0.31.

(30)

,en, from ,eorem 1, system (28) is LES. ,e trajec-
tories of the solution from a random initial value are shown
in Figure 1. As shown in Figure 1, x1(t) and x2(t) in neural
network model (28) are convergent. Figure 2 shows the
phase diagram of system (28) evolving with time.

Example 2. Consider another 2-dimensional neural network
with SDSD, which is depicted by

_x1(t)

_x2(t)
􏼠 􏼡 � −

2 0

0 2
􏼠 􏼡

x1(t)

x2(t)
􏼠 􏼡

+
0.5 0.2

0.2 0.5
􏼠 􏼡

g1 x1(t)( 􏼁

g2 x2(t)( 􏼁
􏼠 􏼡

+
0.3 0.2

0.2 0.3
􏼠 􏼡

f1 x1(t − (t,X))( 􏼁

f2 x2(t − (t,X))( 􏼁
􏼠 􏼡,

(31)

where t0 � 0 and
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gi(·) �
cos xi(t) +(π/2)( 􏼁

2
, i � 1, 2,

fi(·) � tanh xi t − sin x1(t) + x2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑, i � 1, 2,

τ(t,X) � sin x1(t) + x2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(32)

Obviously, lg � 1/2, lf � 1, ℓτ � 1, τ(t, 0) � 0, (t,X) ∈
[0, 1],P(A) � 2. By computing, λmax(B2) � 0.49, λmax
(C2) � 0.25, and − 2P(A) + l2g + l2f + λ(B2)+ λ(C2) � − 4+

(1/4) + 1 + 0.49 + 0.25 � − 2.01< 0. ,en, from ,eorem 2,
system (31) is LES. ,e trajectories of the solution from a
random initial value are shown in Figure 3. As shown in
Figure 3, x1(t) and x2(t) in neural network model (31) are
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0
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3
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0 0.2 0.4 0.6 0.8 1
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Figure 1: Transient behavior of (a) x1(t) and (b) x2(t) in system (28).
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Figure 2: Transient behavior of (x1(t), x2(t)) in system (28).
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Figure 3: Transient behavior of (a) x1(t) and (b) x2(t) in system (31).
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Figure 4: Transient behavior of (x1(t), x2(t)) in system (31).
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convergent. Figure 4 shows the phase diagram of system (31)
evolving with time.

5. Concluding Remarks

We devote to resolve the problem of local dynamic property
for neural networks with SDSD in this paper. ,rough pure
analysis method and technique of reduction to absurdity, we
obtain a certain number of sufficient conditions for local
exponential stability of neural networks with SDSD. Based
on our results, we know that the Lyapunov exponent relies
on the state on account of the effect of SDSD. It also indicates
that the exponential stability results derived are local rather
than global. Consequently, we can take the global dynamics
as a topic in the prospective research. In addition, we can
also develop SDSD system methods, for instance, event-
triggered control.
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