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A class of linear impulsive fuzzy dynamic equations on time scales is considered by using the generalized differentiability concept
on time scales. Some novel criteria and general forms of solutions are established for such models whose significance lies in
proposing the possibility to get unifying forms of solutions for discrete and continuous dynamical systems under uncertainty and
to unify corresponding problems in the framework of fuzzy dynamic equations on time scales. Finally, some examples show the
applicability of our results.

1. Introduction

In the real world, some processes vary continuously, while
others vary discretely. *ese processes can be modeled by
differential and difference equations, respectively.*ere are
also some processes that vary both continuously and dis-
cretely. Usage of fuzzy differential and difference equations
is a natural way to model dynamical systems under pos-
sibilistic uncertainty [1, 2]. First-order linear fuzzy dif-
ferential (difference) equations are one of the simplest
fuzzy equations which are very basic, important, and may
appear in many applications. *us, it is reasonable to seek
conditions under which the resulting fuzzy systems would
have a solution with a general form. Much progress has
been seen in the fuzzy differential (difference) equation
direction, and many criteria are established based on
different approaches (for instance, fuzzy differential
equations [1, 3–17] and fuzzy difference equations [18–23]).
Careful investigation reveals that it is similar to explore the
existence of solutions for fuzzy differential equations and
their discrete analogue in the approaches, methods, and the
main results. For example, extensive research shows that
many results concerning the existence of fuzzy differential
equations can be carried over to their discrete analogues
[24–26]. However, other results seem to be completely

different [3]. It is natural to ask whether we can explore
such an existence problem in a unified way and offer more
general conclusions.

For the certainty system, the theory of time scale calculus
and dynamic equations on time scales provides us with a
powerful tool for attacking such mixed processes [27]. *e
calculus on time scales (see [28–31]) was initiated by Hilger
in [28] in order to unify continuous and discrete analysis
under the certainty system, and it has a tremendous potential
for applications and has recently received much attention.

*e H-derivative of a fuzzy-number-valued function was
introduced in [32], and it has its starting point in the
Hukuhara derivative of set-valued functions. *e first ap-
proach tomodeling the uncertainty of dynamical systems uses
the H-derivative or its generalized, and mainly the existence
and uniqueness of the solution of a fuzzy differential equation
are studied under this setting (see for example
[11, 14, 33–35]). Fuzzy differential equations have been
studied under other approaches (see [12, 36]). Furthermore,
there are several works that have dealt with fuzzy-number-
valued functions on time scales and focused on a class of new
derivative of such fuzzy functions, see [37–40], as well as the
Hukuhara derivative of set-valued functions has been ex-
tended onto the time scales by Hong in [41–43] and fuzzy or
set dynamic equations have afterward been discussed in cited
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above references and [44, 45]. *e aim of this paper is to
establish a general form of solutions for linear fuzzy impulsive
dynamic equations whose significance lies in proposing the
possibility to get unifying forms of solutions for discrete and
continuous dynamical systems under uncertainty and to build
a unifying framework for the study of corresponding prob-
lems. As mentioned above, the notion of the H-derivative
plays a fundamental role in the theory of fuzzy differential
equations and the calculus on time scales has the features of
unification and extension. In order to achieve our purpose, a
derivative of fuzzy-number-valued functions on time scales,
which is similar to the one in [37] and called theΔH-derivative
in this paper, will be developed to suit our study of fuzzy
dynamic equations. *e proposed approach forms the ap-
propriate environment within which the study of fuzzy dy-
namic systems on time scales can be developed.

*is paper contains four sections. In Section 2, we recall
several basic definitions and properties of time scales and
generalized differentiability of fuzzy-number-valued func-
tions on time scales proposed by [38] which is the extension of
that on the real axis R introduced in [24]. Moreover, it
contains the ΔH-derivative introduced in [41]. In addition,
some corresponding properties of the ΔH-derivative are ex-
plored which provide the necessary background for our
further consideration. Subsequently, in Section 3, we consider
first order linear fuzzy dynamic equations on account of
ΔH-differentiability. *e idea of the present section originates
from the study of an analogous problem examined by Khastan
et al. [3] for a variation of constant formula for the first-order
linear fuzzy differential equations in R. As distinct from [3],
we consider the impulsive problem on an infinite time scale
interval instead of the initial value problem on a finite real-
number interval and present the solutions with general ex-
pressions in this setting. *is study reveals that, when we deal
with the existence of solutions with general expressions for
linear fuzzy differential equations and the difference coun-
terparts, it is unnecessary to prove results for fuzzy differential
equations and separately again for their discrete analogues. In
other words, one can get a unifying expression of solutions for
such continuous and discrete uncertainty systems. Finally,
several examples are given to illustrate the applicability of our
results in Section 4.

2. Preliminaries

In this section, we first recall a notion of the time scale built
by Hilger and Bernd Aulbach. For more details, we refer the
reader to [28, 29].

A closed nonempty subset T of real axisR is called a time
scale or measure chain. For t ∈ T , we define the forward
jump operator σ: T⟶ T by σ(t) � inf τ ∈ T : τ > t{ }, while
the backward jump operator ρ: T⟶ T is defined by
ρ(t) � sup τ ∈ T : τ < t{ }. *e function μ: T⟶ [0,∞)

called the graininess function is defined by μ(t) � σ(t) −

t for t ∈ T . In this definition, we put inf ∅ � sup T(i.e. σ(t) �

t if T has a maximum t) and sup∅ � inf T(i.e., ρ(t) � t if T
has a minimum t), where∅ denotes the empty set. t is said to
be right (left) scattered if σ(t)> t(ρ(t)< t), and t is said to be
right (left) dense if σ(t) � t(ρ(t) � t). A point is said to be

isolated (dense) if it is right-scattered (right-dense) and left-
scattered (left-sense) at the same time. In this paper, we
stipulate that the time scale T is T − M{ } if T has a left-
scattered maximum M.

A function f is right-dense continuous (rd-continuous,
for short) if f is continuous at each right-dense point in T and
its left-sided limits exist at each left-dense points in T . For a
function f: T⟶ R and t ∈ T , S. Hilger defined the
Δ-derivative of f at t, fΔ(t), to be the number (when it
exists), with the property that, for each ε> 0, there exists a
neighborhood UT of t (i.e. UT � (t − δ, t + δ)∩T) such that

f(σ(t)) − f(s) − f
Δ

(t)(σ(t) − s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε|σ(t) − s|, (1)

for all t ∈ UT . A function f is said to be Δ-differentiable at t if
its Δ-derivative exists at t and Δ-differentiable at T if its
Δ-derivative exists at each t ∈ T .

We also recall the concept of thematrix-valued functions
introduced by [29]. An m × n-matrix-valued function
A: T⟶ Rmn(a collection of all m × n-real matrixes) is said
to be Δ-differentiable on T provided each entry of A is
Δ-differentiable on T . In this case, we put

A
Δ

� a
Δ
ij􏼐 􏼑1≤i≤m,1≤j≤n, whereA � aij􏼐 􏼑. (2)

An n × n-matrix-valued function A on T is called re-
gressive provided

I + μ(t)A(t) is invertible for all t ∈ T . (3)

Here, I stands for an n × n-identity matrix (and so is it in
what follows). Let

R � A | A: T⟶ R
nn is a regressive and rd-continuous n􏼈

× nmatrix − valued function},

R
+
1 � p | p: T⟶ R is a rd-continuous function and 1􏼈

+ μ(t)p(t) > 0 for t ∈ T􏼉.

(4)

From now on, unless otherwise mentioned, the matrix-
valued functions under consideration are always assumed to
belong to R.

For A, B ∈R, the “circle plus” and “circle minus” of
matrix-valued functions are referred to as, respectively,

(A⊕B)(t) � A(t) + B(t) + μ(t)A(t)B(t),

(A⊖B)(t) � (A⊕ (⊖B))(t),

with (⊖A)(t) � − [I + μ(t)A(t)]
− 1

A(t) � − A(t)[I + μ(t)A(t)]
− 1

.

(5)

A matrix exponential function eA(t, t0) is defined as a
unique matrix-valued solution of the following initial value
problem:

Y
Δ

� A(t)Y,

Y t0( 􏼁 � I,
(6)

where A ∈R and t0 ∈ T . In [29], matrix exponential
functions have been proved to possess the following
properties:
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(a1) e0(t, s) ≡ I, eA(t, t) ≡ I, eA(σ(t), s)�(I + μ(t)A(t))

eA(t, s)

(a2) eA(s, t) � e− 1
A (t, s) � e∗⊖A∗(t, s), where A∗ stands

for the conjugate transpose of the matrix A
(a3) eA(t, s)eA(s, r) � eA(t, r)

For an interval J ⊂ T , if a function g: J⟶ R is
Δ-differentiable and gΔ(t) � f(t); then, in [29], the authors
defined the Cauchy integral by

􏽚
t

a
f(s)Δs � g(t) − g(a). (7)

In this case, f is said to be Δ-integrable on J. In particular,
by 􏽒
∞
a

f(t)Δt :� limb⟶∞ 􏽒
b

a
f(t)Δt, we mean that f is

Δ-integrable on J � [a,∞) ∩ T provided this limit exists.
In the following, we introduce the necessary definitions

and notation for fuzzy numbers on time scales which are the
extension of the corresponding concepts in R (see, for
example, [46]). Let us denote by Tf the class of fuzzy subsets
of T satisfying the following properties, that is, u ∈ Tf, i.e.
u: T⟶ [0, 1] and

(f1) u is normal, i.e., there exists s0 ∈ T such that
u(s0) � 1
(f2) u is fuzzy convex on T , i.e., u(ta + (1 − t)b)≥
min u(a), u(b){ } for all t ∈ [0, 1] with ta + (1 − t)b ∈ T ,
where a, b ∈ T
(f3) u is upper semicontinuous on T

(f4) [u]0 � s ∈ T : u(s)> 0{ } ∩ T is compact, where A

denotes the closure of A in R

*en, Tf is called the space of fuzzy numbers.
Obviously, T ⊂ Tf. Here, T ⊂ Tf is understood as T �

χ x{ } | x is an element in the time scale􏽮 􏽯. For 0< α≤ 1, set
[u]α � s ∈ T | u(s)≥ α{ } and [u]0 � s ∈ T | u(s)> 0{ } ∩ T .
From (f1)–(f4), it follows that the α-level set [u]α is a
nonempty compact interval of T for all 0≤ α≤ 1 if u belongs
to Tf (i.e., [u]α is an intersection of a nonempty compact
interval of R and T). *e notation

[u]
α

� u
α
, u

α
􏼂 􏼃 ∩ T ≕ u

α
, u

α
􏼂 􏼃, with u

α
, u

α ∈ T , (8)

denotes explicitly the α-level set of u on T . We refer to u and
u as the lower and upper branches of u, respectively. For
u ∈ Tf, we define the length of u as

diam(u) � u
α

− u
α
. (9)

For u, v ∈ Tf and λ ∈ R, the sum u + v and the product
λu are defined by [u + v]α � [u]α + [v]α, [λu]α � λ[u]α for
any α ∈ [0, 1], where [u]α + [v]α is defined as the same as the
usual addition of two intervals (subsets) of T and λ[u]α

means the usual product between a scalar and a subset of T .
*e metric structure is given by the Hausdorff distance
D: Tf × Tf⟶ R+ � [0,∞) ⊂ R,

D(u, v) � sup
α∈[0,1]

max u
α

− u
α􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, u

α
− v

α􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯. (10)

(Tf, D) is a complete metric space [42, 46], and the fol-
lowing properties are well known:

D(u + w, v + w) � D(u, v), ∀u, v, w ∈ Tf,

D(ku, kv) � |k|D(u, v), ∀k ∈ R, u, v ∈ Tf,

D(u + v, z + w)≤D(u, z) + D(v, w), ∀u, v, z, w ∈ Tf.

(11)

Definition 1. Let x, y ∈ Tf. If there exists z ∈ Tf such that
x � y + z, then z is called the H-difference of x, y and it is
denoted by x− Hy.

Let us remark that, in general, x − Hy≠x + (− 1)y.
Usually, we denote x + (− 1)y by x − y, while x − Hy stands
for theH-difference. Similar to the analysis in [24, 37, 38], we
have the following remark:

(1) We denote 􏽢0 ∈ Tf as a neutral element with respect
to + if u + 􏽢0 � 􏽢0 + u � u for all u ∈ Tf. For instance,
if 0 ∈ T , then 􏽢0 � χ 0{ }

(2) (λ + μ)u � (λu) + (μu), with λμ> 0
(3) λ(u + v) � (λu) + (λv)

*e following lemma appears in references [37, 38, 47].

Lemma 1. If u − Hv exists, it is unique and one has

(i) u − Hu � 􏽢0, u − H
􏽢0 � u, 􏽢0 − Hu � − u and

(u + v) − Hv � u

(ii) v − Hu � − (u − Hv) � (− u) − H(− v) provided
v − Hu exists

In the sequel, we fix T+ � T ∩R+. *e strongly gener-
alized differentiability on the real axis R was introduced in
[24] and studied in [1, 26]. Motivated by these works, we
introduce generalized differentiability on a time scale T

which appears to [38] and can be regarded as a general-
ization of ΔH-differentiability introduced in [41].

Definition 2. Let F: T⟶ Tf, t ∈ T and a neighborhood UT

of t be defined by UT � (t − δ, t + δ) ∩ T for some δ > 0.*en,

(1) F is said to be Δ-right differentiable at t if there exists
an element Δ+F(t) of Tf and, for any given ε> 0,
there exists a neighborhood UT of t such that either
the H-differences F(t + h) − HF(σ(t)) exists and

c1( 􏼁D F(t + h) − HF(σ(t)),Δ+F(t)(h − μ(t))􏼂 􏼃

≤ ε(h − μ(t))

orF(σ(t)) − HF(t + h) exists and

c2( 􏼁D F(σ(t)) − HF(t + h),Δ+F(t)(μ(t) − h)􏼂 􏼃

≤ ε(h − μ(t)),

(12)

for all t + h ∈ UT with 0≤ h< δ. Moreover, Δ+F(t) is
called the Δ-right derivative of F at t.
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(2) F is said to be Δ-left differentiable at t if there exists
an element Δ− F(t) of Tf and, for any given ε> 0,
there exists a neighborhood UT of t such that either
the H-differences F(t − h) − HF(σ(t)) exists and

c1( 􏼁 D F(t − h) − HF(σ(t)),Δ− F(t)(− h − μ(t))􏼂 􏼃

≤ ε(h + μ(t))

orF(σ(t)) − HF(t − h) exists and

c2( 􏼁 D F(σ(t)) − HF(t − h),Δ− F(t)(h + μ(t))􏼂 􏼃

≤ ε(μ(t) + h),

(13)

for all t − h ∈ UT with 0≤ h< δ. Moreover, Δ− F(t) is
called the Δ-left derivative of F at t.

(3) F is said to be Δ-differentiable at t if F is both Δ-left
and Δ-right differentiable at t and Δ− F(t) � Δ+F(t).
*e element Δ+F(t) or Δ− F(t) is said to be the
ΔH-derivative of F at t and is denoted by ΔHF(t). We
say that F is ΔH-differentiable at t if its ΔH-derivative
exists at t. Moreover, we say F is ΔH-differentiable on
T if its ΔH-derivative exists at each t ∈ T . *e fuzzy
set-valued functionΔHF: T⟶ Tf is then called the
ΔH-derivative of F on T .

*e principal properties of the ΔH-derivative in the sense
of Definition 2 have been proposed in [37–39, 41]. Next, we
shall write some properties whose a majority of proofs are
similar to the above mentioned references.

Proposition 1 (see [38]). Let F: T⟶ Tf. For t ∈ T , we
have the following results:

(I) If F is ΔH-differentiable at t, then F is continuous at t.
(II) If F is continuous at t and t is right scattered, then F is

ΔH-differentiable at t with

ΔHF(t) �
F(σ(t))− HF(t)

μ(t)

orF(σ(t)) � F(t) + μ(t)ΔHF(t).

(14)

(III) If t is right-dense, then F is ΔH-differentiable at t if
and only if

lim
h⟶0+

F(t + h) − HF(t)

h

or lim
h⟶0+

F(t) − HF(t + h)

− h
,

lim
h⟶0+

F(t) − HF(t − h)

h

or lim
h⟶0+

F(t − h) − HF(t)

− h
,

(15)

exist as a finite number and satisfy any one of the following
equations:

lim
h⟶0+

F(t + h) − HF(t)

h
� lim

h⟶0+

F(t) − HF(t − h)

h

� ΔHF(t),

(16)

lim
h⟶0+

F(t + h) − HF(t)

h
� lim

h⟶0+

F(t − h) − HF(t)

− h

� ΔHF(t),

(17)

lim
h⟶0+

F(t) − HF(t + h)

− h
� lim

h⟶0+

F(t) − HF(t − h)

h

� ΔHF(t),

(18)

lim
h⟶0+

F(t) − HF(t + h)

− h
� lim

h⟶0+

F(t − h) − HF(t)

− h

� ΔHF(t).

(19)

Remark 1. Proposition 1 implies that, under the hypothesis
that T is a discrete system, the fuzzy number-valued function
F: T⟶ Tf is ΔH-differentiable if and only if F is con-
tinuous and the corresponding H-differences exist. How-
ever, if T is a continuous system, ΔH-derivative of F does not
always exist even if the corresponding H-differences exist.

Remark 2. If T � R, equations (16)–(19) are identical to the
relevant provisions in Definition 5 in [24] in which four
cases for derivatives were considered in R. In addition,
equation (16) is identical to (16)-differentiability and
equation (19) to (17)-differentiability in [3].

If T � Z, then the previous definition expresses some
generalized difference operators, for example, corresponding
to the difference operator ΔFn � Fn+1 − HFn given in [21].

For functions F, G: T⟶ Tf, we define the sum F + G

by (F + G)(t) � F(t) + G(t) and theH-difference F − HG by
(F − HG)(t) � F(t) − HG(t) for each t ∈ T . We have the
following.

Proposition 2. Assume that F, G: T⟶ Tf are ΔH-differ-
entiable at t ∈ T and λ is any constant. =en,

(i) =e sum is ΔH-differentiable at t ∈ T . Moreover,

ΔH(F + G)(t) � ΔHF(t) + ΔHG(t); (20)

(ii) λF is ΔH-differentiable at t and ΔH(λF)(t) �

λΔHF(t).

In the sequel, we say that a fuzzy function isΔH-differentiable
meaning that it is in two cases of (c1) and (c2)-differentiability
(denoted by (i)-differentiable) or (c2) and (c1)-differentiability
(denoted by (ii)-differentiable) on T .

Proposition 3. Let F, G: T⟶ Tf be ΔH-differentiable such
that F is (i)-differentiable and G is (ii)-differentiable or F is
(ii)-differentiable and G is (i)-differentiable on T . If the H-
difference F(t) − HG(t) exists for t ∈ T , then F− HG is
ΔH-differentiable and
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ΔH(F − HG)(t) � ΔHF(t) +(− 1) · ΔHG(t). (21)

Proof. For t ∈ T , if t is a right-dense point, it is the same as
the proof of *eorem 4 in [1]. If t is a right-scattered point,
by means of Proposition 2-(II) and Lemma 1-(i) and (ii), we
have

ΔH(F − G)(t) �
(F − HG)(σ(t)) − H(F − HG)(t)

μ(t)

�
F(σ(t)) − HG(σ(t)) − H(F(t) − HG(t))

μ(t)

�
F(σ(t)) − HF(t)

μ(t)
+

G(t) − HG(σ(t))

μ(t)

� ΔHF(t) +(− 1) ·
G(σ(t)) − HG(t)

μ(t)
� ΔHF(t)

+(− 1) · ΔHG(t).

(22)

*is proof is complete.
*e following lemma roots in *eorem 5 of [1]. □

Lemma 2. Let a: T⟶ R be Δ-differentiable and
G: T⟶ TfΔH-differentiable.

(a) If a(σ(t))aΔ(t)> 0 and G is (i)-differentiable, then aG

is (i)-differentiable and we have

ΔH(aG)(t) � a
Δ
(t)G(t) + a(σ(t))ΔHG(t). (23)

(b) If a(σ(t))aΔ(t)< 0 and G is (ii)-differentiable, then
aG is (ii)-differentiable and we have

ΔH(aG)(t) � a
Δ
(t)G(t) + a(σ(t))ΔHG(t). (24)

(c) If a(σ(t))aΔ(t)> 0, G is (ii)-differentiable and the H-
differences (aG)(σ(t)) − H(aG)(t + h) and (aG)(t −

h) − H(aG)(σ(t)) exist, then aG is (ii)-differentiable,
and we have

ΔH(aG)(t) � a(σ(t))ΔHG(t) − H − a
Δ
(t)􏼐 􏼑G(t).

(25)

Proof. We get into details regarding the discussion of the
cases (b) and (c), while the proof of (a) is similar to (b).

(b) For any t ∈ T and ε> 0, there exists a neighborhood
UT of t for some δ > 0 such that

D G(σ(t)) − HG(t + h),ΔHG(t)(μ(t) − h)􏼂 􏼃≤ ε(h − μ(t)),

(26)

a(σ(t)) − a(t + h) − a
Δ
(t)(μ(t) − h)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε(h − μ(t)),

(27)

for 0≤ h< δ with t + h ∈ UT . On the contrary, we have

D a(σ(t))G(σ(t)) − Ha(t + h)G(t + h), a
Δ

(t)G(t)􏼐􏽨

+ a(σ(t))ΔHG(t)􏼁(μ(t) − h)􏼃

≤D a(σ(t))G(σ(t)) − Ha(σ(t))G(t + h), a(σ(t))ΔH􏼂

· G(t)(μ(t) − h)􏼃

+ D a(σ(t))G(t + h) − Ha(t + h)G(t + h), a
Δ
(t)􏽨

· G(t)(μ(t) − h)􏼃

≤D G(σ(t)) − HG(t + h),ΔHG(t)(μ(t) − h)􏼂 􏼃

· |a(σ(t))|

+ D a(σ(t))G(t + h) − Ha(t + h)G(t + h), a
Δ
(t)􏽨

· G(t)(μ(t) − h)􏼃

≤D G(σ(t)) − HG(t + h),ΔHG(t)(μ(t) − h)􏼂 􏼃

· |a(σ(t))|

+ D a(σ(t))G(t + h), a(t + h)G(t + h) + a
Δ

(t)􏽨

· G(t + h)(μ(t) − h)􏼃

+ D 0{ }, a
Δ

(t)G(t)(μ(t) − h)− Ha
Δ

(t)G(t + h)􏽨

· (μ(t) − h)􏽩.

(28)

Note that a(σ(t)) has the same sign as a(t + h) for
sufficiently small h> 0. In addition, a(σ(t))aΔ(t)< 0
and μ(t) − h≤ 0 imply that aΔ(t)(μ(t) − h) has the
same sign as a(σ(t)). Hence, a(t + h)G(t + h) + aΔ

(t)G(t + h)(μ(t) − h) � [a(t + h) + aΔ(t)(μ(t) − h)]G

(t + h) and

D a(σ(t))G(t + h), a(t + h)G(t + h) + a
Δ

(t)G(t + h)􏽨

· μ(t) − h)( 􏼃 � a(σ(t)) − a(t + h) + a
Δ
(t)(μ(t) − h)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

· ‖G(t + h)‖.

(29)

It follows that

D a(σ(t))G(σ(t)) − Ha(t + h)G(t + h), a
Δ

(t)G(t)􏼐􏽨

+ a(σ(t))ΔHG(t)􏼁(μ(t) − h)􏼃

≤D G(σ(t)) − HG(t + h),ΔHG(t)(μ(t) − h)􏼂 􏼃|a(σ(t))|

+ a(σ(t)) − a(t + h) + a
Δ

(t)(μ(t) − h)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌‖G(t + h)‖

+ D[G(t), G(t + h)] a
Δ
(t)(μ(t) − h)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(30)

In view of this and the continuity of G, together with
the inequalities (26) and (27), we see that aG satisfies
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the first inequality of Definition 2-(c2). We can
similarly check the second inequality of Definition 2-
(c1). Consequently, the desired conclusion arrives.

(c) As in case (b), the inequalities (26) and (27) are valid.
Moreover, − aΔ(t)(μ(t) − h) has the same sign as
a(σ(t)) and a(t + h) under the hypothesis of (c).
*erefore, for 0≤ h< δ with t + h ∈ UT , we have

D a(σ(t))G(σ(t)) − Ha(t + h)G(t + h), a(σ(t))ΔHG(t) − H − a
Δ

(t)􏼐 􏼑G(t)􏼐 􏼑(μ(t) − h)􏽨 􏽩

≤D a(σ(t))G(σ(t)) − Ha(σ(t))G(t + h), a(σ(t))ΔHG(t)(μ(t) − h)􏼂 􏼃

+ D a(σ(t))G(t + h) − Ha(t + h)G(t + h), 􏽢0 − H − a
Δ
(t)G(t)(μ(t) − h)􏼐 􏼑􏽨 􏽩

≤D G(σ(t)) − HG(t + h),ΔHG(t)(μ(t) − h)􏼂 􏼃|a(σ(t))|

+ D a(σ(t))G(t + h), a(t + h)G(t + h) + − a
Δ

(t)􏼐 􏼑G(t + h)(μ(t) − h)􏽨 􏽩

+ D 􏽢0, − H − a
Δ

(t)􏼐 􏼑G(t + h)(μ(t) − h) − H − a
Δ
(t)G(t)(μ(t) − h)􏼐 􏼑􏽨 􏽩

≤D G(σ(t)) − HG(t + h),ΔHG(t)(μ(t) − h)􏼂 􏼃|a(σ(t))|

+ a(σ(t)) − a(t + h) + a
Δ

(t)(μ(t) − h)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌‖G(t + h)‖

+ D[G(t), G(t + h)] a
Δ

(t)(μ(t) − h)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(31)

As in case (b), we arrive at the desired result.*is proof is
complete. □

Proposition 4. Let F: T⟶ Tf and put [F(t)]α � [Fα(t),

F
α
(t)] for each α ∈ [0, 1].

(i) If F is (i)-differentiable, then Fα and F
α are Δ-dif-

ferentiable functions and

ΔHF(t)􏼂 􏼃
α

� F
α

􏼒 􏼓
Δ
(t), F

α
􏼐 􏼑
Δ
(t)􏼢 􏼣. (32)

(ii) If F is (ii)-differentiable, then Fα and F
α are Δ-dif-

ferentiable functions, and we have

ΔHF(t)􏼂 􏼃
α

� F
α

􏼐 􏼑
Δ
(t), F

α
􏼒 􏼓
Δ
(t)􏼢 􏼣. (33)

Proposition 4 for its proof is similar to*eorem 5 in [11].
A fuzzy-number-valued function F: J ⊂ T⟶ Tf is

called regulated provided its right-sided limit exists at any
right-dense point in T and left-sided limit exists at any left-
dense point in T .

F is called right dense continuous, denoted r d-contin-
uous, provided F is continuous at each right dense point in
T , its left-sided limits exist at each left dense points in T .
Similarly, we can define l d-continuity. *e sets of all
r d-continuous fuzzy-number-valued functions, and all such
functions F: J⟶ Tf whose rd-continuous ΔH-derivative
exist are denoted, respectively, by

Crd � Crd(J) � Crd J, Tf􏼐 􏼑,

C
1
rd � C

1
rd(J) � C

1
rd J, Tf􏼐 􏼑.

(34)

A function f: J ⊂ T⟶ R is called an integrable se-
lector of the fuzzy-number-valued function F: J⟶ Tf if f

is Δ-integrable and f(t) ∈ [F(t)]α for all t ∈ J with
α ∈ [0, 1]. F is called integrable on J if it has at least an
integrable selector. *e integral of F, denoted by 􏽒

J
F(s)Δs,

is defined levelwise by

􏽚
J
F(s)Δs􏼢 􏼣

α

� 􏽚
J
[F(s)]

αΔs � 􏽚
J
f(s)Δs: f􏼨

is an integrable selector of F on J
⎫⎬

⎭.

(35)

For the fuzzy version of the fundamental properties of
calculus in the sense of (i)-differentiability, we refer to the
analogue of set-valued functions in [41, 43], and in the sense
of (ii)-differentiability we present the following results which
are similar to those proposed in [3, 11]:

*e integral FF(t) � 􏽒
t

t0
F(s)Δs is (i)-differentiable

and ΔHF(t) � F(t). If F ∈ Crd(T , Tf) and the function F is
(ii)-differentiable, then ΔHF(t) � F(t).

As the authors pointed out in [3], in general, the
function F(t) is not (ii)-differentiable. Indeed, suppose that
is (ii)-differentiable, then the length of the support de-
creases in t, but the function F(t), if f is fuzzy non-real-
valued, has increasing length of the support. A (ii)-dif-
ferentiable function needs to have decreasing length of
support which is a contradiction.

Lemma 3 (see [42]). Let J � [t0, T]∩ T with t0, T ∈ T . =en,
we have

(i) Let F ∈ Crd(J, Tf) and define U(t) � c− H 􏽒
t

t0
− HF(s)Δs for t ∈ J, where c ∈ Tf is such that the
previous H-difference exists for t ∈ J. =en, U is (ii)-
differentiable and ΔHU(t) � F(t);

(ii) Let F be (ii)-differentiable and ΔHF be integrable on
T+. =en, for each t ∈ T+ with t≥ t0 ∈ T+, we have

6 Discrete Dynamics in Nature and Society



F(t) � F t0( 􏼁 − H􏽚
t

t0

− HΔHF(τ)Δτ; (36)

(iii) 􏽒
T

t0
F(s)Δs � 􏽒

t

t0
F(s)Δs + 􏽒

T

t
F(s)sΔs. Specially, 􏽒

t

t
F(s)Δs � 0{ } for t ∈ J;

(iv) 􏽒
σ(t)

t
F(s)Δs � μ(t)F(t), for t ∈ J;

(v) Let F is (i)-differentiable on T+. =en, F(t) � c +

􏽒
t

t0
F(s)Δs with c ∈ Tf is (i)-differentiable and

ΔHF(t) � F(t);
(vi) If F, G ∈ Crd(E), then D[F(·), G(·)]: J⟶ R+ is

Δ-integrable and

D 􏽚
T

t0

F(s)Δs, 􏽚
T

t0

G(s)Δs􏼢 􏼣≤ 􏽚
T

t0

D[F(s), G(s)]Δs.

(37)

3. General Forms of Solutions for LIFDE

Let T+ � t ∈ T | t≥ 0{ }, J � tk ∈ T+ | 0≤ t0 < t1 < t2 < · · ·􏼈

< tk < · · · , limk⟶∞tk �∞}, J− � [0, t0]∩ T+ and Jk � (tk,

tk+1]∩ T+ for k � 0, 1, . . .. Let xt+
k

� x(t+
k ) represent the right

limit of x(t) at tk if tk is right-dense and xt+
k

� x(σ(tk)) if tk

is right-scattered for k � 1, 2, . . . . We emphasize the fol-
lowing notation:

PC � U: T+⟶ Tf

􏼌􏼌􏼌􏼌􏼌 U ∈ Crd tk− 1, tk( 􏼃( 􏼁 and lim
t⟶t+

k

U(t)􏼨

� U t
+
k( 􏼁 exists for k � 1, 2, . . . 􏼩.

BC � U ∈ PC | ‖U(t)‖ � D(U(t), 􏽢0) is bounded in T+􏽮 􏽯,

PC
1

� U ∈ BC | U isΔH􏼈

− differentiable in each interval tk− 1, tk( 􏼁􏼉.

(38)

It is clear that (BC, D0) is a complete metric space if it is
endowed with the distance D0(U, V) � supt∈T+

D(U(t),

V(t)).
Consider the first linear impulsive fuzzy dynamic

equation (LIFDE):
ΔHU(t) � r(t)U(t) + F(t), t ∈ T+J,

Ut+
k

� LkU tk( 􏼁, tk ∈ J(k � 0, 1, 2, . . .),

U(0) � U0 ∈ Tf, t0 ∈ T+,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

where r: T+⟶ R, F ∈ PC and Lk: PC1⟶ PC1 is a
continuous linear operator, i.e., for any v, w ∈ Tf and
a, b ∈ R, one has Lk(av ± gbw) � aLk(v) ± gbLk(w)

whenever the H-difference exists. Let U ∈ PC1 be a fuzzy-
number-valued function such that ΔHU exists at every point
t ∈ T+\J. By a (i)-solution of LIFDE (39), we mean U and
ΔHU exist in the case of (i)-differential and satisfy problem
(39).*e definition thatU is a (ii)-solution of (39) is similar.

To explore the existence of solutions to LIFDE (39), we
need the following essential preliminaries. In virtue of
*eorem 5.24 in [29], the problem

uΔ(t) � A(t)u(t) + f(t), t ∈ T ,

u(0) � v0,

⎧⎨

⎩ (40)

has a unique solution v: T⟶ Rn given by

v(t) � eA(t)v0 + 􏽚
t

0
eA(t, σ(s))f(s)Δs, (41)

where A ∈R, eA(t) � eA(t, 0) and w: T⟶ Rn is
rd-continuous.

Let A ∈R, f: T+⟶ Rn be an rd-continuous function
and limt⟶t+

k
f(t) � f(t+

k ) exist for k � 1, 2, . . ., and let Lk be
a continuous linear operator acting inRn for k � 1, 2, . . .. By
an analogue of the proof of the above result, we can prove
that the linear impulsive dynamic equation:

uΔ(t) � A(t)u(t) + f(t), t ∈ Jk,

ut+
k

� Φk � Lk u tk( 􏼁( 􏼁,

u tk( 􏼁 � uk− 1 tk( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)

for each tk ∈ J has a unique solution

uk(t) � eA t, t+
k( 􏼁Φk + 􏽚

t

tk

eA(t, σ(τ))f(τ)Δτ, t ∈ Jk,

uk tk( 􏼁 � uk− 1 tk( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩

(43)

for k � 0, 1, 2, . . ., where u0− 1 � v(t0). *us, we obtain that
the linear impulsive dynamic equation:

uΔ(t) � A(t)u(t) + f(t), t ∈ T+\J,

ut+
k

� Φk � Lk u tk( 􏼁( 􏼁, tk ∈ J(k � 0, 1, 2, . . .),

u(0) � v0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(44)

has a unique solution w � w(v0) on T+ which is left con-
tinuous on T+ and defined by

w(t) �

v(t), t ∈ J− ,

u0(t), t ∈ J0,

· · · · · ·

uk(t), t ∈ Jk;

· · · · · · .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

Similar to the formulation in [3], we study LIFDE (39) in
three cases r(t)< 0, r(t)> 0 and r(t) � 0 for t ∈ T+, where r
is a function given in LIPDE (39). We first observe that the
hyperbolic functions proposed by Bohner and Peterson [31]
can be extended to
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coshr(t, s) �
er(t, s) + e− r(t, s)

2
,

sinhr(t, s) �
er(t, s) − e− r(t, s)

2
.

(46)

Let Er(t, s) � er(t, s)e− r(t, s). Obviously, for all t, s ∈ T ,
the hyperbolic functions possess the following properties:

(p1) coshr(s, s) � 1, sinhr(s, s) � 0
(p2) coshΔt

r (t, s)�r sinhr(t, s), sinhΔt
r (t, s)� r coshr(t, s),

where αΔt (t, s) means the Δ-derivative of α with
respect to the variable t

(p3) coshr(s, t) � (1/Er(t, s))coshr(t, s), sinhr (s, t) �

− (1/Er(t, s))sinhr(t, s)

(p4) sinhr(t, s) + coshr(t, s) � er(t, s), coshr(t, s) −

sinhr(t, s) � e− r(t, s) and cosh2r(t, s) − sinh2r(t, s) �

Er(t, s)

We are now in a position to state and verify our main
results.

Theorem 1. If r ∈R+
1 satisfies r(t)< 0 for all t ∈ T+, then

(i) LIFDE (39) has a (i)-solution on T+ given by

U(t) �
V(t), t ∈ J− ,

Uk(t), t ∈ Jk(k � 0, 1, 2, . . .),
􏼨 (47)

where

V(t) � coshr(t) U0 + 􏽚
t

0
F(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩

+ sinhr(t) U0 + 􏽚
t

0
F(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩,

Uk(t) � coshr t, t
+
k( 􏼁 LkUk tk( 􏼁 + 􏽚

t

tk

F(τ)
coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− HF(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩

+ sinhr t, t
+
k( 􏼁 LkUk tk( 􏼁 + 􏽚

t

tk

F(τ)
coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− HF(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩,

(48)

with U0(t0) � V(t0), Uk(tk) � Uk− 1(tk) for
k � 0, 1, 2, . . ., and

(ii) =e (ii)-solution of the LIFDE (39) on T+is given by

U(t) �

V(t) � er(t) U0− H 􏽚
t

0
− HF(τ)e⊖r(σ(τ))Δτ􏼢 􏼣, t ∈ J− ,

Uk(t) � er t, t+
k( 􏼁 LkUk tk( 􏼁 − H􏽚

t

tk

F(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼢 􏼣, t ∈ Jk,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(49)

provided the H-differences exist and U0(t0) � V(t0),

Uk(tk) � Uk− 1(tk) for k � 0, 1, 2, . . ..

Proof. Proposition 4 shows us how to translate the LIFDE
(39) into a system of ordinary dynamic equations (ODEs),
that is, if r(t)< 0 with t ∈ T+ and U is (i)-differentiable, then
[ΔHU(t)]α � [(Uα)Δ(t), (U

α
)Δ(t)] with [U]α � [Uα, U

α
]

for all α ∈ [0, 1], and (39) is translated into the following
impulsive system of ODEs:

Uα( 􏼁
Δ

(t) � r(t)U
α
(t) + Fα(t), t ∈ T+\J,

U
α

􏼐 􏼑
Δ

(t) � r(t)Uα(t) + F
α
(t), t ∈ T+\J,

Uα( 􏼁t+
k

� LkUα tk( 􏼁,

U
α

􏼐 􏼑
t+
k

� LkU
α

tk( 􏼁,

tk ∈ J(k � 0, 1, 2, . . .),

Uα(0) � Uα( 􏼁0,

U
α
(0) � U

α
􏼐 􏼑0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)
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where [F(t)]α � [Fα(t), F
α
(t)] for all α ∈ [0, 1]. For solving

system (50), we translate it into system (44) with

u(t) �
Uα(t)

U
α
(t)

􏼠 􏼡,

ut+
k

�

Uα( 􏼁t+
k

U
α

􏼐 􏼑
t+
k

⎛⎜⎜⎝ ⎞⎟⎟⎠,

f(t) �
Fα(t)

F
α
(t)

􏼠 􏼡,

v0 �
Uα( 􏼁0

U
α

􏼐 􏼑0

⎛⎝ ⎞⎠,

(α ∈ [0, 1]),

A(t) �
0 r(t)

r(t) 0
􏼠 􏼡.

(51)

Similarly, if U is (ii)-differentiable then [ΔHU(t)]α �

[(U
α
)Δ(t), (Uα)Δ(t)] and (39) is translated into (44) with

u, ut+
k
, v0 given as in (51) and

A(t) �
r(t) 0

0 r(t)
􏼠 􏼡,

f(t) �
F
α
(t)

Fα(t)
⎛⎝ ⎞⎠.

(52)

(i) Under the case of the (i)-differential, we check that A
given by (51) belongs to R. From r ∈R+

1 , it follows
that the matrix

I + μ(t)A(t) �
1 μ(t)r(t)

μ(t)r(t) 1
􏼠 􏼡, (53)

is invertible for each t ∈ T+, that is, A ∈R. Moreover,
we easily check that

eA(t, s) �
coshr(t, s) sinhr(t, s)

sinhr(t, s) coshr(t, s)
􏼠 􏼡, (54)

with A given in (51).
Now, by substituting this matrix exponential function
for eA(t, t+

k ) and eA(t, σ(τ)) of (43), we have

uk(t) �
coshr t, t+

k( 􏼁 sinhr t, t+
k( 􏼁

sinhr t, t+
k( 􏼁 coshr t, t+

k( 􏼁
􏼠 􏼡Φk

+ 􏽚
t

tk

coshr(t, σ(τ)) sinhr(t, σ(τ))

sinhr(t, σ(τ)) coshr(t, σ(τ))
􏼠 􏼡f(τ)Δτ, t ∈ Jk,

uk tk( 􏼁 � uk− 1 tk( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

where u0− 1(t0) � v(t0). Since eA(t, σ(τ)) � eA(t, tk)

eA(tk, σ(τ)), we have

uk(t) �
coshr t, t+

k( 􏼁 sinhr t, t+
k( 􏼁

sinhr t, t+
k( 􏼁 coshr t, t+

k( 􏼁
􏼠 􏼡 Φk + 􏽚

t

tk

coshr tk, σ(τ)( 􏼁 sinhr tk, σ(τ)( 􏼁

sinhr tk, σ(τ)( 􏼁 coshr tk, σ(τ)( 􏼁
􏼠 􏼡f(τ)Δτ􏼢 􏼣. (56)

*erefore, for t ∈ Jk with k � 0, 1, 2, . . ., we have

Uα(t)

U
α
(t)

􏼠 􏼡 �
Uk

α(t)

Uk

α
(t)

⎛⎝ ⎞⎠ �
coshr t, t+

k( 􏼁 sinhr t, t+
k( 􏼁

sinhr t, t+
k( 􏼁 coshr t, t+

k( 􏼁
􏼠 􏼡

×
LkUk

α tk( 􏼁

LkUk

α
tk( 􏼁

⎛⎝ ⎞⎠ + 􏽚
t

tk

coshr tk, σ(τ)( 􏼁 sinhr tk, σ(τ)( 􏼁

sinhr tk, σ(τ)( 􏼁 coshr tk, σ(τ)( 􏼁
􏼠 􏼡

Fα(τ)

F
α
(τ)

􏼠 􏼡Δτ⎡⎢⎢⎣ ⎤⎥⎥⎦

�
coshr t, t+

k( 􏼁 sinhr t, t+
k( 􏼁

sinhr t, t+
k( 􏼁 coshr t, t+

k( 􏼁
􏼠 􏼡

×

LkUk
α tk( 􏼁 + 􏽚

t

tk

F
α
(τ)coshr tk, σ(τ)( 􏼁 + F

α
(τ)sinhr tk, σ(τ)( 􏼁􏼔 􏼕Δτ

LkUk

α
tk( 􏼁 + 􏽚

t

tk

F
α
(τ)sinhr tk, σ(τ)( 􏼁 + F

α
(τ)coshr tk, σ(τ)( 􏼁􏼔 􏼕Δτ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(57)
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*en, by the property (p3), the solution of the linear
dynamic equation system is

u
α
(t) � Uk

α
(t)

� coshr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

F
α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− F

α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩

+ sinhr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

− F
α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
+ F

α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩,

U
α
(t) � Uk

α
(t)

� sinhr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

F
α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− F

α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩

+ coshr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

− F
α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
+ F

α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩.

(58)

*us, we obtain the (i)-solution of LIFDE (39) on Jk for
k � 0, 1, 2, . . . when r(t)< 0 with t ∈ T+ as follows:

U(t) � Uk(t)

� coshr t, t
+
k( 􏼁 LkUk tk( 􏼁 + 􏽚

t

tk

F(τ)
coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− HF(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩

+ sinhr t, t
+
k( 􏼁 LkUk tk( 􏼁 + 􏽚

t

tk

F(τ)
coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− HF(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩.

(59)

Similarly, if t ∈ J− , we have

U(t) � V(t) � coshr(t) U0 + 􏽚
t

0
F(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩

+ sinhr(t) U0 + 􏽚
t

0
F(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩.

(60)

Let us remark that the H-difference

F(τ)
coshr(σ(τ), s)

Er(σ(τ), s)
− HF(τ)

sinhr(σ(τ), s)

Er(σ(τ), s)
, (61)

always exists for s ∈ [0, σ(τ)] and r(t)< 0. As expli-
cated in [3], the diameters of the α-level sets of
F(τ)coshr(σ(τ), s)/Er(σ(τ), s) and F(τ)sinhr(σ(τ),

s)/Er(σ(τ), s) are, respectively,

diam [F(τ)]
α

( 􏼁
coshr(σ(τ), s)

Er(σ(τ), s)
,

diam [F(τ)]
α

( 􏼁
− sinhr(σ(τ), s)

Er(σ(τ), s)
􏼢 􏼣.

(62)

While the former is greater than the latter since we have
the inequality:
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sinhr(σ(τ), s)

Er(σ(τ), s)
+
coshr(σ(τ), s)

Er(σ(τ), s)
�

er(σ(τ), s)

Er(σ(τ), s)
�

1
e− r(σ(τ), s)

> 0, (63)

from r ∈R+
1 and r(t)< 0.

Finally, note that coshr(σ(t), s) · coshΔt
r (t, s)

� r coshr(σ(t), s) · sinhr(t, s)> 0 and sinhr(σ(t), s) ·

sinhΔt
r (t, s) � r(t)sinhr(σ(t), s) · coshr(t, s)> 0 for

r(t)< 0, we see that U(t) is (i)-differentiable on T+\J

in view of Lemma 2-(a). Consequently, LIFDE (39)
has a (i)-solution and (47) holds.

(ii) For t ∈ Jk, under the hypothesis of (ii)-differentia-
bility, LIFDE (39) is translated into the corre-
sponding system (42) with A and f given as (52).
Obviously, A ∈R and

eA(t, s) � er(t, s)I. (64)

By means of (43), we have

uk(t) � er t, t+
k( 􏼁 IΦk + 􏽚

t

tk

e⊖r σ(τ), tk( 􏼁 If (τ)Δτ􏼢 􏼣, t ∈ Jk,

uk tk( 􏼁 � uk− 1 tk( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩

(65)

Repeating the arguments of (i), we obtain that the so-
lution of the corresponding ODEs system is

Uk
α
(t) � er t, t

+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

F
α
(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼢 􏼣,

Uk

α
(t) � er t, t

+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

F
α
(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼢 􏼣,

(66)

for all α ∈ [0, 1]. We assert that the (ii)-solution of LIFDE
(39) on Jk is

U(t) � Uk(t) � er t, t
+
k( 􏼁 LkUk tk( 􏼁 − H􏽚

t

tk

− F(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼢 􏼣,

(67)

where k � 0, 1, 2, . . . and r(t)< 0. In fact, we observe that
er(σ(t), tk)e

Δt
r (t, tk) � r(t)er(σ(t), tk)er(t, tk)< 0. If we de-

note Gk(t) � LkUk(tk) − H􏽒
t

tk
− F(τ)e⊖r(σ(τ), tk)Δτ, then

Lemma 3-(i) guarantees that Gk is (ii)-differentiable and

ΔHGk(t) � F(t)e⊖r σ(t), tk( 􏼁. (68)

Now, the conditions in Lemma 2-(b) are met, so

ΔHUk(t) � r(t)er t, t
+
k( 􏼁Gk(t) + er σ(t), tk( 􏼁ΔHGk(t) � r(t)

Uk(t) + F(t),

(69)

for k � 0, 1, 2 . . .. Similarly, for t ∈ J− , we have

U(t) � V(t) � er(t, 0) U0 − g􏽚
t

0
− gF(τ)e⊖r(σ(τ), 0)Δτ􏼢 􏼣.

(70)

We obtain that LIFDE (39) has a (ii)-solution satisfying
(49). *e proof is complete. □

Theorem 2. If − r ∈R+
1 and r(t)> 0 with t ∈ T+, then

(i) LIFDE (39) has a (ii)-solution on T+ given as in (47),
where

V(t) � coshr(t) U0 − H􏽚
t

0
F(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩 − H − sinhr(t)􏼂 􏼃

· U0 − H􏽚
t

0
F(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩, t ∈ J− ,

Uk(t) � coshr t, t+
k( 􏼁 LkUk tk( 􏼁 − H􏽚

t

tk

F(τ)
sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− HF(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩 − H − sinhr t, t+

k( 􏼁􏼂 􏼃

· LkUk tk( 􏼁 − H􏽚
t

tk

F(τ)
sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− HF(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩, t ∈ Jk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

Discrete Dynamics in Nature and Society 11



provided that the above H-differences exist and
U0(t0) � V(t0), Uk(tk) � Uk− 1(tk) for k � 0, 1, 2, . . ..

(ii) =e (i)-solution of LIFDE (39) on T+ is given by

U(t) �

V(t) � er(t) U0 + 􏽚
t

0
F(τ)e⊖r(σ(τ))Δτ􏼢 􏼣, t ∈ J− ,

Uk(t) � er t, t+
k( 􏼁 LkUk tk( 􏼁 + 􏽚

t

tk

F(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼢 􏼣, t ∈ Jk,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(72)

where U0(t0) � V(t0), Uk(tk) � Uk− 1(tk) for k � 0, 1, 2, . . ..

Proof. (i) LIFDE (39) with (ii)-differentiability is trans-
formed into the linear impulsive dynamic equation system
(44) with u(t), ut+

k
, A(t), v0 given in (51) and f(t) as in (52).

By (44), we obtain

uk(t) � A t, t+
k( 􏼁 Φk + 􏽚

t

tk

A tk, σ(τ)( 􏼁f(τ)Δτ􏼢 􏼣, t ∈ Jk,

uk tk( 􏼁 � uk− 1 tk( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩

(73)

where u0− 1(t0) � v(t0). *erefore, for each α ∈ [0, 1], we
have

u
α
(t) � Uk

α
(t)

� coshr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

F
α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− F

α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩

+ sinhr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

− F
α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
+ F

α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩,

U
α
(t) � Uk

α
(t)

� sinhr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

F
α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− F

α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩

+ coshr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + 􏽚

t

tk

− F
α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
+ F

α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ􏼨 􏼩.

(74)

*erefore, for t ∈ Jk(k � 0, 1, 2, . . .), by r(t)> 0, we
check that

Uk(t) � coshr t, t
+
k( 􏼁Gk(t)− H − sinhr t, t

+
k( 􏼁􏼂 􏼃Gk(t), (75)

with

Gk(t) � LkUk tk( 􏼁− H 􏽚
t

tk

F(τ)
sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− HF(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ, (76)

is (ii)-differentiable and Uk is a (ii)-solution of LIFDE (39)
on Jk.

*e following argument is due to the proof of *eorem
3.3 in [3]. First, by our hypothesis Gk is well defined. Second,
Lemma 3-(i) guarantees that Gk is (ii)-differentiable and the
diameter of Gk is nonincreasing in the variable t for fixed

α ∈ [0, 1]. Note that coshr(t, t+
k ) − sinhr(t, t+

k ) � e− r (t, t+
k ) is

nonnegative and decreasing in t. *us, diam[Uk(t)]αis non-
increasing in t for fixed α ∈ [0, 1]. *erefore, the
H-differences Uk(σ(t))− HUk(t + h) and Uk(t − h)−

HUk(σ(t)) exist. *ird, we check that the (ii)-derivative of
Uk is r(t) Uk(t) + F(t) for t ∈ Ek(k � 0, 1, 2, . . .). If t is a
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right-dense point, in view of an analogous argument of *e-
orem 3.3 in [3], we can check that

lim
h⟶0+

Uk(t)− HUk(t + h)

− h
� lim

h⟶0+

Uk(t − h)− HUk(t)

− h

� r(t)Uk(t) + F(t).

(77)

In the light of Proposition 1-(III), we have
ΔHUk(t) � r(t)Uk(t) + F(t). If t is a right-scattered point,
we denote

ξk(t) � 􏽚
t

tk

F
α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− F

α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ,

ηk(t) � 􏽚
t

tk

− F
α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
+ F

α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ.

(78)

*en,

ξΔk (t) � F
α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
− F

α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
,

ηΔk (t) � − F
α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
+ F

α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
,

ξk(σ(t)) − ξk(t) � 􏽚
σ(t)

t
F
α
(τ)

coshr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
− F

α
(τ)

sinhr σ(τ), tk( 􏼁

Er σ(τ), tk( 􏼁
􏼢 􏼣Δτ

� μ(t)F
α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
− μ(t)F

α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
,

ηk(σ(t)) − ηk(t) � − μ(t)F
α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
+ μ(t)F

α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
.

(79)

From Proposition 1-(II) and the property (p2) it follows

sinhr σ(t), tk( 􏼁 − sinhr t + h, tk( 􏼁 � r(t)coshr t, tk( 􏼁μ(t),

coshr σ(t), tk( 􏼁 − coshr t + h, tk( 􏼁 � r(t)sinhr t, tk( 􏼁μ(t).

(80)

Due to the above results, for each α ∈ [0, 1], we uni-
formly have

Uk
α
(σ(t)) − Uk

α
(t) − r(t)Uk

α
(t) + F

α
(t)􏽨 􏽩μ(t)

� coshr σ(t), t
+
k( 􏼁 LkUk

α
tk( 􏼁 + ξk(σ(t))􏽨 􏽩 + sinhr σ(t), t

+
k( 􏼁 LkUk

α
tk( 􏼁 + ηk(σ(t))􏽨 􏽩

− coshr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + ξk(t)􏽨 􏽩 − sinhr t, t

+
k( 􏼁 LkUk

α
tk( 􏼁 + ηk(t)􏽨 􏽩

− r(t)μ(t) sinhr t, t
+
k( 􏼁 LkUk

α
tk( 􏼁 + ξk(t)􏽨 􏽩 + coshr t, t

+
k( 􏼁 LkUk

α
tk( 􏼁 + ηk(t)􏽨 􏽩􏽮 􏽯 − F

α
(t)μ(t)

� coshr σ(t), tk( 􏼁 − coshr t, tk( 􏼁 − r(t)μ(t)sinhr t, tk( 􏼁􏼂 􏼃 LkUk
α

tk( 􏼁 + ξk(σ(t))􏽨 􏽩

+ sinhr σ(t), tk( 􏼁 − sinhr t, tk( 􏼁 − r(t)μ(t)coshr t, tk( 􏼁􏼂 􏼃 LkUk

α
tk( 􏼁 + ηk(σ(t))􏽨 􏽩

+ coshr t, tk( 􏼁 ξk(σ(t)) − ξk(t)( 􏼁 + r(t)μ(t)sinhr t, tk( 􏼁 ξk(σ(t)) − ξk(t)􏼂 􏼃

+ sinhr t, tk( 􏼁 ηk(σ(t)) − ηk(t)( 􏼁 + r(t)μ(t)coshr t, tk( 􏼁 ηk(σ(t)) − ηk(t)􏼂 􏼃 − F
α
(t)μ(t)
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� μ(t) coshr t, tk( 􏼁 + r(t)sinhr t, tk( 􏼁􏼂 􏼃 F
α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
− F

α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
􏼢 􏼣

+ μ(t) sinhr t, tk( 􏼁 + r(t)coshr t, tk( 􏼁􏼂 􏼃 − F
α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
+ F

α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
􏼢 􏼣 − F

α
(t)μ(t)

� μ(t)coshr σ(t), tk( 􏼁 F
α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
− F

α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
􏼢 􏼣

+ μ(t)sinhr σ(t), tk( 􏼁 − F
α
(t)

sinhr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
+ F

α
(t)

coshr σ(t), tk( 􏼁

Er σ(t), tk( 􏼁
􏼢 􏼣 − F

α
(t)μ(t) � 0,

(81)

that is, Uk
α (σ(t)) − Uk

α (t) � [r(t)Uk

α
(t) + F

α
(t)]μ(t).

Analogously, we can prove

Uk

α
(σ(t)) − Uk

α
(t) � r(t)Uk

α
(t) + F

α
(t)􏽨 􏽩μ(t), (82)

for all α ∈ [0, 1]. Hence, Proposition 1-(II) guarantees that
ΔHUk(t) � r(t)Uk(t) + F(t)for all right-scattered point
t ∈ Jk. In consequence, Uk is a (ii)-solution of LIFDE (39) on
Jk for k � 0, 1, 2 . . .. Similarly, for t ∈ J− , we have

U(t) � V(t) � coshr(t) U0− H 􏽚
t

0
F(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩 − H − sinhr(t)􏼂 􏼃

U0− H 􏽚
t

0
F(τ)

sinhr(σ(τ), 0)

Er(σ(τ), 0)
− HF(τ)

coshr(σ(τ), 0)

Er(σ(τ), 0)
􏼢 􏼣Δτ􏼨 􏼩.

(83)

Now, (71) holds, and (i) is proved.

(ii) For t ∈ Jk, under the hypothesis of (i)-differentia-
bility, LIFDE (39) is translated into the corre-
sponding system (42) with A ∈R given in (52) and f
given in (51). Load eA(t, s) � er(t, s)I in (43) and
repeat the process of the proof of *eorem 1, we
have, for all α ∈ [0, 1],

Uk
α
(t) � er t, t

+
k( 􏼁 LkUk

α
tk( 􏼁 − 􏽚

t

tk

􏼢

− F
α
(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼣,

Uk

α
(t) � er t, t

+
k( 􏼁 LkUk

α
tk( 􏼁 − 􏽚

t

tk

􏼢

− F
α
(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼣.

(84)

We now check that the (i)-solution of LIFDE (39) on Jk

for k � 0, 1, 2, . . . and r(t)> 0(t ∈ T+) is

Uk(t) � er t, t
+
k( 􏼁 LkUk tk( 􏼁 + 􏽚

t

tk

F(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼢 􏼣.

(85)

Note that er(σ(t), tk)eΔr (t, tk) � r(t)er(σ(t), tk)er(t, tk)

> 0 for r(t)> 0. From Lemma 3-(v), it follows that
LkUk(tk) + 􏽒

t

tk
F(τ)e⊖r(σ(τ), tk)Δτ is (i)-differentiable on

T+, and from Lemma 2-(a) it follows that

ΔHUk(t) � r(t)er t, t
+
k( 􏼁 LkUk tk( 􏼁 + 􏽚

t

tk

F(τ)e⊖r σ(τ), tk( 􏼁Δτ􏼢 􏼣

+ er σ(t), t
+
k( 􏼁F(t)e⊖r σ(t), tk( 􏼁 � r(t)Uk(t) + F(t),

(86)

for k � 0, 1, 2, . . .. Similarly, we have for t ∈ J−

U(t) � V(t) � er(t) U0 + 􏽚
t

0
F(τ)e⊖r(σ(τ))Δτ􏼢 􏼣. (87)

*is shows that (71) holds, and LIFDE (39) has a (i)-
solution on T+. *is proof is complete. □

Theorem 3. If r ≡ 0, then LIFDE (39) has a (i)-solution

U(t) �

V(t) � U0 + 􏽚
t

0
F(τ)Δτ, t ∈ J− ,

Uk(t) � LkUk tk( 􏼁 + 􏽚
t

tk

F(τ)Δτ, t ∈ Jk(k � 0, 1, 2, . . .),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(88)

and a (ii)-solution

U(t) �

V(t) � U0− H 􏽚
t

0
(− F(τ))Δτ, t ∈ J− ,

Uk(t) � LkUk tk( 􏼁− H 􏽚
t

tk

(− F(τ))Δτ, t ∈ Jk(k � 0, 1, 2, . . .),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(89)
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provided the above H-differences exist and U0(t0) �

V(t0), Uk(tk) � Uk− 1(tk) for k � 0, 1, 2, . . ..

Remark 3. If T � R, then Er(t, s) ≡ 1, sinhr(t, s) �

sinh 􏽒
t

s
r(τ)dτ􏽮 􏽯, and coshr(t, s) � cosh 􏽒

t

s
r(τ)dτ􏽮 􏽯. *us,

our results are the extension and improvement of the
corresponding results in [3]. In particular, the present results

are identical to those in [3] in case that we consider t re-
stricted to J− and under H-difference.

If T � Z, then Er(t, s) � 􏽑
t− 1
τ�s(1 − r2(τ)), sinhr(t, s) �

1/2(􏽑
t− 1
τ�s(1 + r(τ)) − 􏽑

t− 1
τ�s(1 − r(τ))) and coshr(t, s) � 1/2

(􏽑
t− 1
τ�s(1 + r(τ)) + 􏽑

t− 1
τ�s(1 − r(τ))) provided that r is never

± 1 and s< t. *us, we obtain the general form of solutions
to linear impulsive fuzzy difference equation:

U(n + 1) � r(n)U(n) + U(n) + F(n), n ∈ Z+\J,

Ut+
k

� LkU tk( 􏼁, tk ∈ J(k � 0, 1, 2, . . .),

U(0) � U0 ∈ Tf, t0 ∈ T+.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(90)

In addition, we also extend these “classical cases” to cases
“in between”, for instance, T � 􏽐

n
k�1 (1/k): n ∈ N􏼈 􏼉. In this

case,

Er(t, s) �
n − s + r

n − s

⎛⎝ ⎞⎠ ·
n − s − r

n − s

⎛⎝ ⎞⎠,

sinhr(t, s) �
1
2

n − s + r

n − s

⎛⎝ ⎞⎠ −

n − s − r

n − s

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

coshr(t, s) �
1
2

n − s + r

n − s

⎛⎝ ⎞⎠ +

n − s − r

n − s

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(91)

where t � 􏽐
n
k�1 (1/k). We can also consider the so-called

q-difference problems.

Remark 4. Although problem (44) has a unique solution on
T+, the solution of LIFDE (39) is not unique in general.

4. Examples

In this section, we present several examples to further il-
lustrate the applicability of the results involved in the above
sections.

Example 1. Consider the impulsive fuzzy dynamic equation:
ΔHU(t) � aU(t) + t, t ∈ T+\J,

U t+
k( 􏼁 � LkU tk( 􏼁, k � 0, 1, 2, . . . ,

U t0( 􏼁 � U0,

⎧⎪⎪⎨

⎪⎪⎩
(92)

where a< 0, a ∈R1
+, and Lk is linear bounded. It is not

difficult to infer the existence of the H-differences
U0− H 􏽒

t

0 τe⊖a(σ(τ))Δτ and LkU(tk) − H􏽒
t

tk
τe⊖a(σ(τ),

tk)Δτ. *us, by*eorem 1, (ii)-solution of LIFDE (92) on T+

is given by

U(t) �

V(t) � ea(t) U0− H 􏽚
t

0
τe⊖a(σ(τ))Δτ􏼢 􏼣, t ∈ J− ,

Uk(t) � ea t, t+
k( 􏼁 LkUk tk( 􏼁− H 􏽚

t

tk

τe⊖a σ(τ), tk( 􏼁Δτ􏼢 􏼣, t ∈ Jk,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(93)

where U0(t0) � V(t0), Uk(tk) � Uk− 1(tk) for k � 0, 1, 2, . . .. Remark 5. If T � R, then we get

V(t) � eat U0− H 􏽚
t

0
− τe

− aτdτ􏼢 􏼣, t ∈ J− ,

Uk(t) � ea t− tk( ) LkUk tk( 􏼁− H 􏽚
t

tk

τe
− a τ− tk( )dτ􏼢 􏼣, t ∈ Jk(k � 0, 1, 2 . . .).

(94)
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We obtain by calculating

Uk(t) �
1
a

t +
1
a

􏼒 􏼓􏽥1 + LkUk tk( 􏼁 +
t

a
+

1
a2􏼒 􏼓􏼔 􏼕e

a t− tk( ),

(95)

with 􏽥1 � χ 1{ }, t ∈ Jk. We observe that in this case
D[U(t), (1/a)(t + (1/a))􏽥1]≤ ‖LkUk(tk) + (t/a) + (t/a2)‖eat,
and this implies that limt⟶∞D[U(t), (1/a)(t + (1/a))􏽥1] � 0.
An interpretation in the light of [1] is that the uncertainty
asymptotically disappears on the fuzzy system.

If T � Z, then

V(t) � (1 + a)t U0− H􏽘
t− 1
τ�0(− τ)(1 + a)− (τ+1)

􏼔 􏼕, t ∈ J− ,

Uk(t) � (1 + a) t− tk( ) LkUk tk( 􏼁− H 􏽘

t− 1

τ�tk

(− τ)(1 + a)
− τ+1− tk( )⎡⎢⎢⎣ ⎤⎥⎥⎦, t ∈ Jk(k � 0, 1, 2, . . .).

(96)

For t ∈ Jk, we have

U(t) � Uk(t) � LkUk tk( 􏼁(1 + a)
t− tk − H(1 + a)

t
􏽘

t− 1

τ�tk

(− τ)(1 + a)
− (τ+1)

�
(1 + a)1− tk

a
􏽥1 + LkU tk( 􏼁 −

1 + a

a
􏼔 􏼕(1 + a)

t− tk .

(97)

*erefore, in the discrete case, the phenomenon that the
uncertainty asymptotically disappears on the fuzzy system
arises only a> − 1.

Example 2. Let us consider the LIFDE

ΔHU(t) � 2tU(t) + tc, t ∈ T+\J,

Ut+
k

� 4U tk( 􏼁, k � 0, 1, 2, . . . ,

U(0) � c,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(98)

where [c]α � [α − 1, 1 − α] with α ∈ [0, 1].

5. Conclusion

Let T � R and tk �
���������
(k + 1)ln 2

􏽰
for k � 0, 1, 2, . . .. As a

result of *eorem 2, the (i)-solution of (98) is

U(t) �

V(t) �
1
2

3e
t2

− 1􏼒 􏼓c, t ∈ J− � [0,
���
ln 2

√
] ∩ T+,

Uk(t) � 4Uk(
���������
(k + 1)ln 2

􏽰
)et2− (k+1)ln 2 +

1
2

e
t2− (k+1)ln 2

− 1􏼒 􏼓c, t ∈ Jk(k � 0, 1, 2, . . .).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(99)

To seek the (ii)-solution, we note that
coshr(t, tk) � cosh(t2 − t2k) and sinhr(t, tk) � sinh(t2 − t2k)

when r(t) � 2t. *e solution of the ODEs system corre-
sponding to (43) is

Uk
α
(t) � 4Uk

α
tk( 􏼁cosh t

2
− t

2
k􏼐 􏼑 + 4Uk

α
tk( 􏼁sinh t

2
− t

2
k􏼐 􏼑

−
α − 1
2

cosh t
2

− t
2
k􏼐 􏼑 +sinh t

2
− t

2
k􏼐 􏼑􏼑 − 1􏽨 􏽩 cosh t

2
− t

2
k􏼐 􏼑 − sinh t

2
− t

2
k􏼐 􏼑􏼐 􏼑,

Uk

α
(t) � 4Uk

α
tk( 􏼁sinh t

2
− t

2
k􏼐 􏼑 + 4Uk

α
tk( 􏼁cosh t

2
− t

2
k􏼐 􏼑

−
1 − α
2

cosh t
2

− t
2
k􏼐 􏼑 +sinh t

2
− t

2
k􏼐 􏼑􏼑 − 1􏽨 􏽩 cosh t

2
− t

2
k􏼐 􏼑 − sinh t

2
− t

2
k􏼐 􏼑􏼐 􏼑.

(100)

It is easy to see that the H-difference

c − H 􏽚
t

0
τc sinh τ2􏼐 􏼑τc cosh τ2􏼐 􏼑􏽨 􏽩dτ, (101)

exists on [0,
���
ln 2

√
], and the (ii)-solution V(t) of (98) on

[0,
���
ln2

√
] can be written as

V(t) �
1
2

3e
− t2

− 1􏼒 􏼓c. (102)
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In particular, V(
���
ln 2

√
) � (1/4)c. From L0U0(t0) �

4 × (1/4)c � c, it follows that the H-difference

L0U0 t0( 􏼁− H 􏽚
t

t0

τc sinh τ2 − t
2
0􏼐 􏼑τc cosh τ2 − t

2
0􏼐 􏼑􏽨 􏽩dτ,

� c− H 􏽚
t

���
ln 2

√ τc sinh τ2 − ln 2􏼐 􏼑τc cosh τ2 − ln 2􏼐 􏼑􏽨 􏽩dτ,

(103)

exists on (
���
ln 2

√
,

�����
2 ln 2

√
], and the (ii)-solution U0(t) of (98)

on (
���
ln 2

√
,

�����
2 ln 2

√
] can be written as

U0(t) � cosh t
2

− ln 2􏼐 􏼑 c− H 􏽚
t

���
ln 2

√ τc sinh τ2 − ln 2􏼐 􏼑− Hτc cosh τ2 − ln 2􏼐 􏼑􏽨 􏽩dτ􏼢 􏼣

− H − sinh t
2

− ln 2􏼐 􏼑􏼐 c− H 􏽚
t

���
ln 2

√ τc sinh τ2 − ln 2􏼐 􏼑 − τc cosh τ2 − ln 2􏼐 􏼑􏽨 􏽩dτ􏼢 􏼣

� 1 −
1
2

sinh t
2

− ln 2􏼐 􏼑 + cosh t
2

− ln 2􏼐 􏼑 − 1􏼐 􏼑􏼒 􏼓 cosh t
2

− ln 2􏼐 􏼑 − sinh t
2

− ln 2􏼐 􏼑􏼐 􏼑c

�
1
2

3e
− t2− ln 2( ) − 1􏼒 􏼓.

(104)

In particular, U0(
�����
2 ln 2

√
) � (1/4)c. On the analogy of

this process, we obtain that the (ii)-solution of (98) on Jk �

(
���������
(k + 1)ln 2

􏽰
,

���������
(k + 2)ln 2

􏽰
] can be expressed by

Uk(t) �
1
2

3e
− t2− (k+1)ln 2( ) − 1􏼒 􏼓, for t ∈ Jk,

Uk(
���������
(k + 2)ln 2

􏽰
) �

1
4

c, k � 1, 2, . . .

(105)

Let T � Z and tk � (2k + 1)(k � 0, 1, 2, . . .). r(t) � 2t

implies that er(t, s) � 􏽑
t− 1
τ�s(1 + 2τ). *erefore, the (i)-so-

lution of (98) is

U(t) �

V(t) � c, t ∈ J− ,

Uk(t) � 􏽑
t− 1
τ�2k+1(1 + 2τ) · 4Uk− 1 tk( 􏼁 + 􏽘

t− 1
τ�2k+1

τ
􏽑

τ
s�2k+1 (1 + 2s)

c􏼢 􏼣, t ∈ Jk(k � 0, 1, 2, . . .).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(106)

Here, J− � [0, 1]∩Z+, Jk � (2k + 1, 2k + 3]∩Z+,
U0− 1(t0) � c, andU0(t1) � 3 · 5(4c) + (1/5)c + 2c, . . .

Similarly, we can present the expression of the (ii)-so-
lutions of (98) in the discrete case.
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