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)e purpose of this paper is to investigate the stability of a deterministic and stochastic SIS epidemic model with double epidemic
hypothesis and specific nonlinear incidence rate. We prove the local asymptotic stability of the equilibria of the deterministic
model. Moreover, by constructing a suitable Lyapunov function, we obtain a sufficient condition for the global stability of the
disease-free equilibrium. For the stochastic model, we establish global existence and positivity of the solution. )ereafter,
stochastic stability of the disease-free equilibrium in almost sure exponential and pth moment exponential is investigated. Finally,
numerical examples are presented.

1. Introduction

Epidemiology is the study of the spread of infectious diseases
with the objective to trace factors that are responsible for or
contribute to their occurrence. Mathematical modeling has
become an important tool in analyzing the epidemiological
characteristics of infectious diseases and can provide useful
control measures (see, for example, [1–5]).

In classical epidemic models, the susceptible individuals
can be infected with only a disease. In the real world, the
susceptible individuals can be infected by two or more kinds

of diseases at the same time such as HBV coinfection with
HCV and HDV and HIV coinfection with HBV, HCV, and
TB. Recently, the authors of [6–9] investigated the epidemic
model SIS (where infection with the disease does not confer
permanent immunity against reinfection so that those who
survived the infection revert to the class of wholly suscep-
tible individuals [10]) with double epidemic hypothesis
which has two epidemic diseases caused by two different
viruses. In this paper, we consider a deterministic SIS model
with double epidemic hypothesis described by the following
differential system:
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_S(t) � A − μS(t) −
β1S(t)I1(t)

1 + α1S(t) + c1I1(t) + μ1S(t)I1(t)
−

β2S(t)I2(t)

1 + α2S(t) + c2I2(t) + μ2S(t)I2(t)
+ r1I1(t) + r2I2(t),

_I1(t) �
β1S(t)I1(t)

1 + α1S(t) + c1I1(t) + μ1S(t)I1(t)
− μ + a1 + r1( I1(t),

_I2(t) �
β2S(t)I2(t)

1 + α2S(t) + c2I2(t) + μ2S(t)I2(t)
− μ + a2 + r2( I2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where S(t) represents the number of susceptible at time t,
I1(t) and I2(t) are the total population of the infected with
virus V1 and V2 at time t, respectively, A represents the
recruitment rate of the population, μ is the natural death rate
of the population, ri is the treatment cure rate of the disease
caused by virus Vi, ai is the disease-related death rate, and βi

is the infection coefficient, i � 1, 2. )e incidence rate of
disease is modeled by the specific functional response
βiSIi/(1 + αiS + ciIi + μiSIi), where αi, ci, μi are saturation
factors measuring the psychological or inhibitory effect. )is
specific functional response was introduced by Hattaf et al.
[11], and here, it becomes to be a bilinear incidence rate if
αi � ci � μi � 0, a saturated incidence rate if αi � μi � 0 or
ci � μi � 0, a Beddington–DeAngelis functional response

[12, 13] if μi � 0, and a Crowley–Martin functional response
[14] if αici � μi, i � 1, 2.

In the reality, epidemic systems are inevitably affected by
environmental white noise. )erefore, it is necessary to
study how the noise influences the epidemic models.
Consequently, many authors have studied stochastic epi-
demic models, see, e.g., [15–17]. For this, we consider the
case in which the rates βi (i � 1, 2) are subject to random
fluctuations, namely, βidt is replaced by βidt + σidBi(t),
where Bi(t) (i � 1, 2) are independent standard Brownian
motions, and σi > 0 represents the intensity of Bi(t) for
i � 1, 2. )erefore, the corresponding stochastic system to
(1) can be described by the following Itô equations:

dS(t) � A − μS(t) −
β1S(t)I1(t)

f1 S(t), I1(t)( 
−

β2S(t)I2(t)

f2 S(t), I2(t)( 
+ r1I1(t) + r2I2(t) dt −

σ1S(t)I1(t)

f1 S(t), I1(t)( 
dB1(t) −

σ2S(t)I2(t)

f2 S(t), I2(t)( 
dB2(t),

dI1(t) �
β1S(t)I1(t)

f1 S(t), I1(t)( 
− μ + a1 + r1( I1(t) dt +

σ1S(t)I1(t)

f1 S(t), I1(t)( 
dB1(t),

dI2(t) �
β2S(t)I2(t)

f2 S(t), I2(t)( 
− μ + a2 + r2( I2(t) dt +

σ2S(t)I2(t)

f2 S(t), I2(t)( 
dB2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

with fi(S, Ii) � 1 + αiS + ciIi + μiSIi, i � 1, 2.
)e rest of this paper is organized in the following

manner. In Section 2, we present a local stability analysis
of the equilibria and a global stability analysis of the
disease-free equilibrium for the deterministic model (1).
In Section 3, we prove that the stochastic model (2) has a
unique global positive solution, and we give sufficient
conditions for the almost sure exponential stability and
the pth moment exponential stability of the disease-free
equilibrium. Numerical examples will be presented in
Section 4. Finally, we close the paper with a brief
conclusion.

2. Deterministic SIS Epidemic Model

For biological reasons, we assume that the initial conditions
of system (1) satisfy

S(0)≥ 0,

I1(0)≥ 0,

I2(0)≥ 0.

(3)

)us, system (1) is positive [18], that is,
S(t)≥ 0, I1(t)≥ 0, and I2(t)≥ 0 for all t≥ 0. In fact, by
Proposition 2.1 in [19], we have

_S � A + r1I1 + r2I2 ≥ 0, for S � 0 and I1, I2 ≥ 0,

_I1 � 0≥ 0, for I1 � 0 and S, I2 ≥ 0,

_I2 � 0≥ 0, for I2 � 0 and S, I1 ≥ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

By summing all the equations of system (1), we find that
the total population size N(t) � S(t) + I1(t) + I2(t) satisfies
the inequality

_N(t) � A − μN(t) − a1I1(t) − a2I2(t)≤A − μN(t), (5)
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which ensures that _N(t)< 0 if N(t)>A/μ. )e standard
comparison theorem [20] can be used to deduce that

N(t)≤
A

μ
−

A

μ
− N(0) e

− μt
. (6)

)us, the feasible solution set of the system equation of
model (1) enters and remains in the region

Γ � S, I1, I2(  ∈ R3
+: S + I1 + I2 ≤

A

μ
 . (7)

)erefore, model (1) is well posed epidemiologically and
mathematically [21]. Hence, it is sufficient to study the
dynamics of model (1) in Γ.

It is easy to see that system (1) has a disease-free
equilibrium state E0 � (A/μ, 0, 0). )erefore, the basic re-
production number is

R0 � max R01, R02 , (8)

where

R01 �
β1A

μ + α1A(  μ + a1 + r1( 
,

R02 �
β2A

μ + α2A(  μ + a2 + r2( 
.

(9)

We mention that the expressions of R01 and R02 can also
be obtained by applying the next generation matrix method
provided by van den Driessche and Watmough [22].

Now, we investigate the local stability of the disease-free
equilibrium E0. )e Jacobian matrix of system (1) at the
equilibrium E0 is as follows:

JE0
�

− μ
− β1A
μ + α1A

+ r1
− β2A
μ + α2A

+ r2

0
β1A

μ + α1A
− μ + a1 + r1(  0

0 0
β2A

μ + α2A
− μ + a2 + r2( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

)e three eigenvalues of JE0
are λ1 � − μ< 0,

λ2 � (μ + a1 + r1)(R01 − 1), and λ3 � (μ + a2 + r2)(R02 − 1).
Hence, the equilibrium E0 will be locally asymptotically
stable if R0 < 1 and unstable when R0 > 1.

)e following theorem discusses the global stability of
the disease-free equilibrium E0.

Theorem 1. If R0 ≤ 1, then the disease-free equilibrium E0 of
(1) is globally asymptotically stable in Γ.

Proof. Let U be the Lyapunov function defined as

U(t) � I1(t) + I2(t). (11)

Differentiating U with respect to t along the positive
solutions of system (1), we get

_U(t) �
β1S

1 + α1S + c1I1 + μ1SI1
− μ + a1 + r1(  I1 +

β2S
1 + α2S + c2I2 + μ2SI2

− μ + a2 + r2(  I2. (12)

We have
βiS

1 + αiS + ciIi + μiSIi

≤
βiS

1 + αiS
, i � 1, 2. (13)

Since S≤A/μ and the functions fi: x ∈ R+↦ (βix/(1 +

αix)) are increasing, then fi(S)≤fi(A/μ) � βiA/(μ + αiA).
)us,

_U(t)≤ μ + a1 + r1(  R01 − 1( I1 + μ + a2 + r2(  R02 − 1( I2.

(14)

)erefore, R0 ≤ 1 ensures that _U(t)≤ 0. Suppose that
(S, I1, I2) is a solution of (1) contained entirely in the set
Δ � (S, I1, I2) ∈ Γ: _U(t) � 0 . )en, _I1 + _I2 � 0. We discuss
four cases:

Case 1. If R01 < 1 and R02 < 1, then

Xi �
βiS

1 + αiS + ciIi + μiSIi

− μ + ai + ri ≤
βiA

μ + αiA
− μ + ai + ri � μ + ai + ri(  R0i − 1( < 0, i � 1, 2. (15)

From the second and third equations of (1), we have X1I1 +

X2I2 � 0, which implies, according to (15), that I1 � I2 � 0. On
the other hand, solutions of (1) contained in the plane I1 � I2 �

0 satisfy _S � A − μS, which implies that S⟶ A/μ as t⟶∞.

Discrete Dynamics in Nature and Society 3



Case 2. If R01 < 1 and R02 � 1, then X1 < 0 and

X2 �
β2S

1 + α2S + c2I2 + μ2SI2
−

β2A
μ + α2A

�
β2(Sμ − A) − β2AI2 c2 + μ2S( 

1 + α2S + c2I2 + μ2SI2(  μ + α2A( 
≤ 0. (16)

)en, X1I1 + X2I2 � 0 implies that I1 � 0 and conse-
quently X2I2 � 0. Suppose that I2 > 0; then, X2 � 0. Hence,
Sμ − A � AI2(c2 + μ2S)> 0; then, S>A/μ which is a con-
tradiction. )en, I1 � I2 � 0.

Case 3. )e case R01 � 1 and R02 < 1 is analogue to the
previous case.

Case 4. If R01 � 1 and R02 � 1, then X1I1 + X2I2 � 0 such
that Xi � (βi(Sμ − A) − βiAIi(ci + μiS))/((1 + αiS + ciIi+

μiSIi)(μ + αiA))≤ 0, i � 1, 2. Hence, X1I1 � X2I2 � 0, and
by the same analysis in Case 2, we obtain that I1 � I2 � 0.

Hence, by LaSalle’s invariance principle [23], every so-
lution to equations of system (1), with initial conditions in Γ,
approaches E0 as t⟶∞. )us, E0 is globally asymptoti-
cally stable.

Now, if R01 > 1, then system (1) has the disease-free
equilibrium for I2, E∗1 � (S∗1 , I

∗
1 , 0), where

S
∗
1 �

A − μ + a1( I
∗
1

μ
,

I
∗
1 �

2ϖ1 μ + α1A(  R01 − 1( 

μ + a1(  β1 − α1ϖ1(  + ϖ1 c1μ + μ1A(  +
���
Δ1

 ,

(17)

with ϖ1 � μ + a1 + r1 and

Δ1 � μ + a1(  β1 − α1ϖ1(  + ϖ1 c1μ + μ1A(  
2

− 4μ1 μ + a1( ϖ1 β1A − μ + α1A( ϖ1 

� μ + a1(  β1 − α1ϖ1(  + ϖ1 c1μ − μ1A(  
2

+ 4μ1μϖ
2
1 μ + a1 + c1A( .

(18)

Theorem 2. If R01 > 1 and R02 < 1, then the equilibrium E∗1 is
locally asymptotically stable.

Proof. )e Jacobian matrix of system (1) at the equilibrium
E∗1 is determined by

JE∗1
�

− m1 − m2 + r1 − m3 + r2

m4 m2 − m5 0

0 0 m3 − m6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (19)

where

m1 � μ +
β1I
∗
1 1 + c1I

∗
1 

1 + α1S∗1 + c1I
∗
1 + μ1S∗1I

∗
1 

2,

m2 �
β1S∗1 1 + α1S∗1( 

1 + α1S∗1 + c1I
∗
1 + μ1S∗1I

∗
1 

2,

m3 �
β2S∗1

1 + α2S∗1
,

m4 �
β1I
∗
1 1 + c1I

∗
1 

1 + α1S∗1 + c1I
∗
1 + μ1S∗1I

∗
1 

2,

m5 � μ + a1 + r1,

m6 � μ + a2 + r2.

(20)

Clearly, λ1 � β2S∗1 /(1 + α2S∗1 ) − (μ + a2 + r2) is an eigen-
value of JE∗1

. Since S∗1 <A/μ because A − μS∗1 � (μ + a1)I
∗
1 > 0

and the function f2: x ∈ R+↦β2x/(1 + α2x) is increasing,
then λ1 <f2(A/μ) − (μ + a2 + r2) � (β2A/(μ + α2A)) − (μ+

a2 + r2) � (μ + a2 + r2)(R02 − 1). Hence, λ1 < 0 if R02 < 1.)e
other two eigenvalues of JE∗1

are determined by the following
equation:

λ2 + a1λ + a0 � 0, (21)

where

a1 � m1 + m5 − m2,

a0 � μ + a1( m4 + μ m5 − m2( .
(22)

Since m5 − m2 � ((β1S∗1I
∗
1 (c1 + μ1S∗1 ))/((1 + α1S∗1+

c1I
∗
1 + μ1S∗1I

∗
1 )2))> 0, then a1 > 0 and a0 > 0. )us, by the

Routh–Hurwitz criterion, the eigenvalues λj(j � 2, 3) of JE∗1
have negative real part. )erefore, the equilibrium E∗1 of
system (1) is asymptotically stable if R01 > 1 and R02 < 1.

Furthermore, if R02 > 1, then system (1) has the disease-
free equilibrium for I1, E∗2 � (S∗2 , 0, I

∗
2 ), where

S
∗
2 �

A − μ + a2( I
∗
2

μ
,

I
∗
2 �

2ϖ2 μ + α2A(  R02 − 1( 

μ + a2(  β2 − α2ϖ2(  + ϖ2 c2μ + μ2A(  +
���
Δ2

 ,

(23)

with ϖ2 � μ + a2 + r2 and
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Δ2 � μ + a2(  β2 − α2ϖ2(  + ϖ2 c2μ + μ2A(  
2

− 4μ2 μ + a2( ϖ2 β2A − μ + α2A( ϖ2 

� μ + a2(  β2 − α2ϖ2(  + ϖ2 c2μ − μ2A(  
2

+ 4μ2μϖ
2
2 μ + a2 + c2A( .

(24)

Theorem 3. If R01 < 1 and R02 > 1, then the equilibrium E∗2 is
locally asymptotically stable.

Proof. It is analogue to the previous proof.
Next, we investigate the local stability of system (1) at

both-endemic equilibrium E∗ � (S∗, I∗1 , I∗2 ). To obtain
conditions for the existence of the equilibrium E∗, system (1)
is rearranged to get I∗1 and I∗2 which gives

I
∗
1 �

β1 − α1ϖ1( S∗ − ϖ1
ϖ1 c1 + μ1S∗( 

,

I
∗
2 �

β2 − α2ϖ2( S∗ − ϖ2
ϖ2 c2 + μ2S∗( 

.

(25)

We have I∗i > 0 if βi − αiϖi > 0 for i � 1, 2, and
S∗ >maxi�1,2 ϖi/(βi − αiϖi) . In addition, S∗ is given by the
following cubic equation:

C0S
∗3

+ C1S
∗2

+ C2S
∗

− C3 � 0, (26)

where

C0 � μμ1μ2ϖ1ϖ2 > 0,

C1 � ϖ1ϖ2 μ c1μ2 + c2μ1(  − Aμ1μ2 

+ μ1ϖ1 μ + a2(  β2 − α2ϖ2( 

+ μ2ϖ2 μ + a1(  β1 − α1ϖ1( ,

C2 � ϖ1ϖ2 μc1c2 − A c1μ2 + c2μ1(  

+ ϖ1 μ + a2(  c1 β2 − α2ϖ2(  − μ1ϖ2 

+ ϖ2 μ + a1(  c2 β1 − α1ϖ1(  − μ2ϖ1 ,

C3 � ϖ1ϖ2 Ac1c2 + c1 μ + a2(  + c2 μ + a1(  > 0.

(27)

With the help of Descartes’ rule of signs [24], equation
(26) has a unique positive real root S∗ if any one of the
following holds:

(i) C1 > 0 and C2 > 0
(ii) C1 > 0 and C2 < 0
(iii) C1 < 0 and C2 < 0

Hence, system (1) has a unique positive equilibrium E∗ if
βi − αiϖi > 0 for i � 1, 2, one of the conditions (i), (ii), and
(iii) hold true, and S∗ >maxi�1,2 ϖi/(βi − αiϖi) .

)e Jacobianmatrix of system (1) at the equilibrium E∗ is
determined by

JE∗ �

− p1 − p2 + r1 − p3 + r2

p4 p2 − p5 0

p6 0 p3 − p7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (28)

where

p1 � μ +
β1I∗1 1 + c1I

∗
1( 

1 + α1S∗ + c1I
∗
1 + μ1S∗I∗1( 

2

+
β2I∗2 1 + c2I

∗
2( 

1 + α2S∗ + c2I
∗
2 + μ2S∗I∗2( 

2,

p2 �
β1S∗ 1 + α1S∗( 

1 + α1S∗ + c1I
∗
1 + μ1S∗I∗1( 

2,

p3 �
β2S∗ 1 + α2S∗( 

1 + α2S∗ + c2I
∗
2 + μ2S∗I∗2( 

2,

p4 �
β1I∗1 1 + c1I

∗
1( 

1 + α1S∗ + c1I
∗
1 + μ1S∗I∗1( 

2,

p5 � μ + a1 + r1,

p6 �
β2I∗2 1 + c2I

∗
2( 

1 + α2S∗ + c2I
∗
2 + μ2S∗I∗2( 

2,

p7 � μ + a2 + r2.

(29)

Theorem 4. 8e endemic equilibrium E∗ is locally asymp-
totically stable if it exists.

Proof. )e characteristic equation of Jacobian matrix JE∗

can be written as

λ3 + Q2λ
2

+ Q1λ + Q0 � 0, (30)

where

Q2 � p1 + p5 − p2(  + p7 − p3( ,

Q1 � μ + p4(  p7 − p3(  + μ + p6(  p5 − p2( 

+ p5 − p2(  p7 − p3(  + μ + a1( p4 + μ + a2( p6,

Q0 � μ p5 − p2(  p7 − p3(  + μ + a1(  p7 − p3( p4

+ μ + a2(  p5 − p2( p6.

(31)

Note that

p5 − p2 �
β1S∗I∗1 c1 + μ1S∗( 

1 + α1S∗ + c1I
∗
1 + μ1S∗I∗1( 

2 > 0,

p7 − p3 �
β2S∗I∗2 c2 + μ2S∗( 

1 + α2S∗ + c2I
∗
2 + μ2S∗I∗2( 

2 > 0.

(32)

)en, it is easy to show that Q2 > 0, Q1 > 0, Q0 > 0, and
Q2Q1 >Q0. )us, by the Routh–Hurwitz criterion, all roots
λi(i � 1, 2, 3) of (30) have negative real part. )erefore, the
equilibrium E∗ of system (1) is asymptotically stable. □
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3. Stochastic SIS Epidemic Model

Let (Ω,F, Ft t≥0,P) be a complete probability space with
filtration Ft t≥ 0 satisfying the usual conditions (i.e., it is
increasing and right continuous whileF0 contains allP-null
sets). We consider the following stochastic differential
system:

dx(t) � f(x(t), t)dt + g(x(t), t)dB(t), t≥ 0, (33)

where x(t) ∈ Rn, x(0) � x0 represents the initial value, and
f: Rn × [0, +∞)↦Rn and g: Rn × [0, +∞)↦Rn×m are lo-
cally Lipschitz functions in x. B(t){ }t≥0 is an m-dimensional
standard Wiener process defined on the above probability
space.

Let us suppose that f(0, t) � g(0, t) � 0 for all t≥ 0 so
that zero of Rn is an equilibrium point of system (33).

Definition 1 (see [25]). )e trivial solution x � 0 of system
(33) is said to be almost surely exponentially stable if for all
x0 ∈ Rn, we have

lim sup
t⟶∞

1
t
ln|x(t)|< 0 (a.s.). (34)

Denote by C2,1(Rn × [0, +∞);R+) the family of all
nonnegative functions V(x, t) defined onRn × [0, +∞) such
that they are continuously twice differentiable in x and once
in t. Denote by E(X) the mathematical expectation of a
random variable X. If L acts on a function
V ∈ C2,1(Rn × [0, +∞);R+), then

LV(x, t) � Vt(x, t) + Vx(x, t)f(x, t)

+
1
2
trace g(x, t)

T
Vxx(x, t)g(x, t) ,

(35)

where Vt(x, t) � zV/zt, Vx(x, t) � (zV/zx1, . . . , zV/zxn),
and Vxx(x, t) � (z2V/zxizxj).

By Itô’s formula, we have

dV(x, t) � LV(x, t)dt + Vx(x, t)g(x, t)dB(t). (36)

Lemma 1 (see [26]). Suppose there exists a function
V ∈ C2,1(Rn × [0, +∞);R+) satisfying the inequalities

K1|x|
p ≤V(x, t)≤K2|x|

p
,

LV(x, t)≤ − K3|x|
p
,

(37)

where p> 0 and Ki(i � 1, 2, 3) are positive constants. 8en,
the equilibrium of system (33) is pth moment exponentially
stable.When p � 2, it is usually said to be exponentially stable
in mean square, and the equilibrium x � 0 is globally as-
ymptotically stable.

3.1. Existence and Uniqueness of the Global Positive Solution.
)e following theorem shows that the solution of our system

(2) is global and positive.

Theorem 5. For any initial value (S(0), I1(0), I2(0)) ∈ Γ,
there is a unique solution (S(t), I1(t), I2(t)) to (2) on t≥ 0,
and this solution remains in Γ with probability one.

Proof. Let (S(0), I1(0), I2(0)) ∈ Γ. )e total population in
system (2) verifies the equation

dN(t) � A − μN(t) − a1I1(t) − a2I2(t)( dt. (38)

If (S(s), I1(s), I2(s)) ∈ R3
+ for all s ∈ [0, t] (a.s.), then we

get

dN(s)≤ (A − μN(s))ds (a.s.). (39)

Hence, by integration, we have

N(s)≤
A

μ
−

A

μ
− N(0) e

− μs
(a.s.). (40)

)en, N(s)≤A/μ (a.s.), so

S(s), I1(s), I2(s) ∈ 0,
A

μ
  for all s ∈ [0, t] (a.s.).

(41)

Since the coefficients of system (2) are locally Lipschitz
continuous, then by the work of Mao [25] for any initial
value (S(0), I1(0), I2(0)) ∈ Γ, there is a unique local positive
solution (S(t), I1(t), I2(t)) on [0, τe), where τe is the ex-
plosion time. To show that this solution is global, we only
need to prove τe �∞ (a.s.).

Let ε0 > 0 such that S(0), I1(0), I2(0)> ε0. For ε≤ ε0, we
define the stopping time:

τε � inf t ∈ 0, τe : S(t)≤ ε or I1(t)≤ ε or I2(t)≤ ε .

(42)

)en,
τ � lim

ε⟶0
τε � inf t ∈ 0, τe : S(t)≤ 0 or I1(t)≤ 0 or I2(t)≤ 0 .

(43)

Consider the function U defined for (S, I1, I2) ∈ R3
+ by

U S, I1, I2(  � − ln
μ
A

S  − ln
μ
A

I1  − ln
μ
A

I2 . (44)

Calculating the differential of U along the solution
trajectories of system (2) and using Itô’s formula, for all t≥ 0
and s ∈ [0, t∧τε], we get

dU S(s), I1(s), I2(s)(  � LUds + σ1
I1 − S

f1 S, I1( 
dB1(s)

+ σ2
I2 − S

f2 S, I2( 
dB2(s),

(45)

where
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LU � −
A + r1I1 + r2I2

S
+ 3μ + a1 + r1 + a2 + r2 + β1

I1 − S

f1 S, I1( 
+ β2

I2 − S

f2 S, I1( 

+
σ21
2

I21 + S2

f1 S, I1( ( 
2 +

σ22
2

I22 + S2

f2 S, I2( ( 
2

≤ 3μ + a1 + r1 + a2 + r2 +
β1I1

f1 S, I1( 
+

β2I2
f2 S, I1( 

+
σ21
2

I21 + S2

f1 S, I1( ( 
2 +

σ22
2

I22 + S2

f2 S, I2( ( 
2.

(46)

According to (41), we have S(s), I1(s), I2(s) ∈ (0, A/μ)

for all s ∈ [0, t∧τε] (a.s.). Hence,
Ii(s)

fi S(s), Ii(s)( 
≤

A

μ
,

S(s)

fi S(s), Ii(s)( 
≤

A

μ
,

i � 1, 2.

(47)

)erefore,

dU≤Mds + σ1
I1 − S

f1 S, I1( 
dB1(s) + σ2

I2 − S

f2 S, I2( 
dB2(s),

(48)

where

M � 3μ + a1 + r1 + a2 + r2 +
β1A
μ

+
β2A
μ

+
σ1A
μ

 

2

+
σ2A
μ

 

2

.

(49)

Integrating both sides of (48) from 0 to t∧ τε and after
taking the expectation on both sides, we obtain that

E U S t∧τε( , I1 t∧τε( , I2 t∧τε( (  ≤U S(0), I1(0), I2(0)(  + Mt.

(50)

Since U(S(t∧τε), I1(t∧τε), I2(t∧τε))> 0, then

E U S t∧ τε( , I1 t∧ τε( , I2 t∧ τε( (  ≥E U S t∧ τε( , I1 t∧ τε( , I2 t∧ τε( ( χ τε≤t{ } 

≥E U S τε( , I1 τε( , I2 τε( ( χ τε≤t{ } ,

(51)

where χ τk ≤ t{ } is the indicator function of τk ≤ t . Note that
there are some components of (S(τε), I1(τε), I2(τε)) equal to
ε. )erefore,

U S τε( , I1 τε( , I2 τε( ( ≥ − ln
μ
A
ε  � ln

A

με
 . (52)

)us,

E U S t∧ τε( , I1 t∧ τε( , I2 t∧ τε( (  ≥ ln
A

με
 P τε ≤ t( .

(53)

By combining (50) and (53), we get that, for all t> 0,

P τε ≤ t( ≤
U S(0), I1(0), I2(0)(  + Mt

ln(A/με)
. (54)

Extending ε to 0, we obtain for all t> 0, P(τ ≤ t) � 0.
Hence, P(τ �∞) � 1. As τe ≥ τ, then τ � τe �∞ (a.s.)
which completes the proof. □

3.2. Almost Sure Exponential Stability. )e goal of this
section is to establish a sufficient condition for the almost
sure exponential stability of the disease-free equilibrium E0
in Γ. For this, we consider

Ψ(t) �
A

μ
− S(t)  + I1(t) + I2(t),

V S(t), I1(t), I2(t)(  � lnΨ(t).

(55)

Proposition 1. Ψ(t) almost surely converges exponentially to
0 if

lim sup
t⟶∞

1
t


t

0
LV S(s), I1(s), I2(s)( ds< 0 (a.s.). (56)

Proof. By Itô’s formula, we have

dV S(s), I1(s), I2(s)(  � LV S(s), I1(s), I2(s)( ds

+
2σ1S(s)I1(s)

Ψ(s)f1 S(s), I1(s)( 
dB1(s)

+
2σ2S(s)I2(s)

Ψ(s)f2 S(s), I2(s)( 
dB2(s).

(57)

Integrating both sides from 0 to t yields that
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V S(t), I1(t), I2(t)(  � V S(0), I1(0), I2(0)(  + 
t

0
LV S(s), I1(s), I2(s)( ds + M1(t) + M2(t), (58)

where Mi(t) � 
t

0(2σiS(s)Ii(s)/Ψ(s)fi(S(s), Ii(s)))dBi(s),
i � 1, 2, are continuous local martingales with Mi(0) � 0.
Moreover, we have

〈Mi, Mi〉t � 
t

0

2σ iS(s)Ii(s)

Ψ(s)fi S(s), Ii(s)( 
 

2

ds≤Cit, (59)

where Ci(i � 1, 2) are positive constants. )us, the strong
law of large numbers for local martingales [27] implies that

lim
t⟶∞

Mi(t)

t
� 0 (a.s.). (60)

It follows that

lim sup
t⟶∞

V S(t), I1(t), I2(t)( 

t
� lim sup

t⟶∞

1
t


t

0
LV S(s), I1(s), I2(s)( ds (a.s.). (61)

)e proposition is proved. □

)en, we obtain the following theorem.

Theorem 6. If (β1σ2)
2 + (β2σ1)

2 < (μ/2)(σ1σ2)
2, then the

disease-free equilibrium E0 of stochastic system (2) is almost
surely exponentially stable in Γ.

Proof. It suffices to prove that Ψ(t) converges to 0 expo-
nentially (a.s.). )en, by Proposition 1, it suffices to prove
that

lim sup
t⟶∞

1
t


t

0
LV S(s), I1(s), I2(s)( ds< 0 (a.s.). (62)

By Itô’s formula, we have

LV S(s), I1(s), I2(s)(  �
1
Ψ

− A + μS +
2β1SI1

f1 S, I1( 
+

2β2SI2

f2 S, I2( 
− r1I1 − r2I2 − μ + a1 + r1( I1 − μ + a2 + r2( I2 

− 2
σ1SI1

Ψf1 S, I1( 
 

2

− 2
σ2SI2

Ψf2 S, I2( 
 

2

�
1
Ψ

2β1SI1

f1 S, I1( 
+

2β2SI2

f2 S, I2( 
− μ

A

μ
− S  − μ + a1 + 2r1( I1 − μ + a2 + 2r2( I2 

− 2
σ1SI1
Ψf1 S, I1( 

 

2

− 2
σ2SI2
Ψf2 S, I2( 

 

2

.

(63)

Since

μ
A

μ
− S  + μ + a1 + 2r1( I1 + μ + a2 + 2r2( I2 ≥ μ

A

μ
− S  + μI1 + μI2 � μΨ, (64)

we have

LV S(s), I1(s), I2(s)( ≤
2β1SI1

Ψf1 S, I1( 
+

2β2SI2

Ψf2 S, I2( 
− μ − 2

σ1SI1

Ψf1 S, I1( 
 

2

− 2
σ2SI2

Ψf2 S, I2( 
 

2

. (65)
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Set X1 � SI1/Ψf1(S, I1) and X2 � SI2/Ψf2(S, I2). )en,

LV S(s), I1(s), I2(s)( ≤ 2β1X1 − 2σ21X
2
1 + 2β2X2 − 2σ22X

2
2 − μ.

(66)

Since 2βiXi − 2σ2i X2
i − (μ/2) � − 2σ2i ((βi/σ2i ) − Xi)

2+

(4β2i − μσ2i /2σ
2
i ), i � 1, 2, hence,

LV S(s), I1(s), I2(s)( ≤
4β21 − μσ21

2σ21
+
4β22 − μσ22

2σ22

�
2 β1σ2( 

2
+ 2 β2σ1( 

2
− μ σ1σ2( 

2

σ1σ2( 
2 .

(67)

)erefore,

lim sup
t⟶∞

1
t


t

0
LV S(s), I1(s), I2(s)( ds≤

2 β1σ2( 
2

+ 2 β2σ1( 
2

− μ σ1σ2( 
2

σ1σ2( 
2 < 0 (a.s.). (68)

)is completes the proof. □

3.3. Moment Exponential Stability. In this section, we in-
vestigate the pth moment exponential stability of the dis-
ease-free equilibrium E0 in Γ of stochastic system (2).

We use Lemma 1 to prove the following theorem.

Theorem 7. Let p≥ 2. If

max R01 +
(p − 1)σ21

2 μ + a1 + r1( 

A

μ + α1A
 

2

, R02 +
(p − 1)σ22

2 μ + a2 + r2( 

A

μ + α2A
 

2⎧⎨

⎩

⎫⎬

⎭ < 1, (69)

then the disease-free equilibrium E0 of stochastic system (2) is
pth moment exponentially stable in Γ.

Proof. Let p≥ 2 and (S(0), I1(0), I2(0)) ∈ Γ. We define the
Lyapunov function V as follows:

V � ω
A

μ
− S 

p

+
1
p



2

i�1
I

p
i , (70)

whereω is a positive constant which will be determined later.
By Itô’s formula, we have

LV � − ωp
A

μ
− S 

p− 1

A − μS − 
2

i�1

βiSIi

fi S, Ii( 
+ 

2

i�1
riIi

⎛⎝ ⎞⎠ +
ωp(p − 1)

2


2

i�1

σiSIi

fi S, Ii( 
 

2
A

μ
− S 

p− 2

+ 
2

i�1

βiS

fi S, Ii( 
− μ + ai + ri(  I

p
i +

p − 1
2



2

i�1

σiS

fi S, Ii( 
 

2

I
p
i

≤ − ωμp
A

μ
− S 

p

+ ωp 
2

i�1

βiA

μ + αiA

A

μ
− S 

p− 1

Ii +
ωp(p − 1)

2


2

i�1
σ2i

A

μ + αiA
 

2
A

μ
− S 

p− 2

I
2
i

+ 
2

i�1

βiA

μ + αiA
− μ + ai + ri(  I

p

i +
p − 1
2



2

i�1
σ21

A

μ + αiA
 

2

I
p

i .

(71)
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From Young’s inequality, for ε> 0, we have

A

μ
− S 

p− 1

Ii ≤
p − 1

p
ε

A

μ
− S 

p

+
1
p
ε1− p

I
p

i ,

A

μ
− S 

p− 2

I
2
i ≤

p − 2
p

ε
A

μ
− S 

p

+
2
p
ε(2− p)/p

I
p
i ,

i � 1, 2.

(72)

)en,

LV≤ − Q0
A

μ
− S 

p

− 

2

i�1
QiI

p
i , (73)

where

Q0 � ω μp − (p − 1) 
2

i�1

βiA

μ + αiA
+

p − 2
2



2

i�1
σ2i

A

μ + αiA
 

2
⎛⎝ ⎞⎠ε⎡⎢⎢⎣ ⎤⎥⎥⎦,

Qi � μ + ai + ri −
βiA

μ + αiA
−

p − 1
2

σ2i
A

μ + αiA
 

2

− ω
βiA

μ + αiA
ε1− p

+(p − 1)σ2i
A

μ + αiA
 

2

ε(2− p)/p⎛⎝ ⎞⎠,

i � 1, 2.

(74)

Now, we choose ε sufficiently small such that Q0 > 0. In
view of condition (69), we have μ + ai + ri − (βiA/
(μ + αiA)) − ((p − 1)/2)σ2i (A/(μ + αiA))2 > 0 for i � 1, 2;
hence, we can choose ω positive such that Qi > 0 for i � 1, 2.
According to Lemma 1, the proof is completed. □

Remark 1. From Lemma 1, )eorem 7, and the case p � 2,
we get that if

max R01 +
σ21

2 μ + a1 + r1( 

A

μ + α1A
 

2

, R02 +
σ22

2 μ + a2 + r2( 

A

μ + α2A
 

2⎧⎨

⎩

⎫⎬

⎭ < 1 , (75)

then the disease-free equilibrium E0 of stochastic system (2)
is globally asymptotically stable in Γ.

4. Numerical Examples

In this section, we give some numerical examples in order to
illustrate our theoretical results in )eorem 1 and )eorem
6.

Example 1. We consider the deterministic SIS system with
parameters A � 0.9, μ � 0.3, β1 � 0.25, β2 � 0.2, a1 � 0.2,
a2 � 0.3, r1 � 0.3, r2 � 0.2, α1 � 0.2, c1 � 0.1, μ1 � 0.06,
α2 � 0.15, c2 � 0.2, and μ2 � 0.07. By calculation, we have
R0 � max R01, R02  � max 0.5859, 0.5172{ }< 1. Hence,
according to )eorem 1, the disease-free equilibrium is
globally asymptotically stable, which means that the disease
dies out.

Example 2. In this example, we consider the stochastic SIS
system with parameters the same as in Example 1 and
σ1 � 0.9, σ2 � 0.95, )en, we have 0.08880625 � (β1σ2)

2 +

(β2σ1)
2 < (μ/2)(σ1σ2)

2 � 0.10965375. )us, from )eorem
6, we can conclude that the disease-free equilibrium is al-
most surely exponentially stable.

Now, we choose σ1 � 0.4 and σ2 � 0.5. )en, we have
0.022025 � (β1σ2)

2 + (β2σ1)
2 > (μ/2)(σ1σ2)

2 � 0.006.
)erefore, the condition of )eorem 6 is not satisfied. Con-
sequently, if the magnitude of the intensity of noise σi(i � 1, 2)

is large, then the disease in the stochastic model will go extinct.

5. Conclusion

In this paper, we have proposed and analyzed a new stochastic
SIS epidemic model with double epidemic hypothesis and
specific functional response by introducing random pertur-
bations of white noise. Firstly, in the absence of noise, we have
derived sufficient conditions for local asymptotic stability of the
equilibria; also, we have proved the global stability for disease-
free equilibrium.Next, we have established global existence and
positivity of the solution for our stochastic model. In addition,
we have given a sufficient condition for the almost sure ex-
ponential stability and pth moment exponential stability of the
disease-free equilibrium of model (2). It is shown that the
magnitude of the intensity of noise σi(i � 1, 2) will have an
effective impact on stochastic stability of E0.
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