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-e first-hand house price in Beijing, the capital of China, has skyrocketed with 43 percent annual growth from 2005 to 2017,
exerting tremendous adverse effects on people’s livelihood and the development of real estate. -us, exploring the behavioral
mechanism and accurate forecasts of house prices is a critical element in making decisions under uncertain conditions and is of
great practical significance for both participants and policymakers in real estate. According to the complex features of house price,
including nonlinear, nonstationary, and multiscale, and considering the remarkable time and frequency discrimination capability
of multiscale analysis in dealing with house price problems, we develop an ensemble empirical mode decomposition- (EEMD-)
based multiscale analysis paradigm to investigate the behavioral mechanism and then obtain accurate forecasts of house prices.
Specifically, the monthly house price in Beijing over the period January 2005 to November 2018 is first decomposed into several
different time-scale intrinsic-mode functions (IMFs) and a residual via EEMD, revealing some interesting characteristics in house
price volatility.-en, we compose the IMFs and residual into three components caused by normal market disequilibrium, extreme
events, and the economic environment using the fine-to-coarse reconstruction algorithm. Finally, we propose an improved hybrid
prediction model for forecasting house prices. Our experimental results show that the proposed multiscale analysis paradigm is
able to clearly reveal the behavioral mechanism hidden in the original house price. More importantly, the mean absolute
percentage errors (MAPEs) of the proposed EEMD-based hybrid approach are 5.62%, 7.24%, and 8.63% for one-, three-, and six-
step-ahead prediction, respectively, consistently lower than the MAPE of the three competitors.

1. Introduction

Reforms in China’s system of urban housing, an important
part of the “reform and opening up” policy initiated in 1978,
led to a general and significant improvement in accom-
modations for most of the urban population in the country.
In nearly four decades, the central and local governments
have successfully provided new and owner-occupied and
indemnification housing of reasonable quality to as much as
80% of the urban population in China. At the same time, real
estate has been a vital engine of rapid growth in China over
the past two decades. According to data from the National
Bureau Statistics (NBS) of China, real estate investment grew
from about 4% of the gross domestic product (GDP) in 1997
to 13.27% of GDP in 2017. In 2017, residential investment in

ground-up developments, in particular, reached a record
high of RMB 0.751 trillion (US$111.52 billion), up to 9.4%
from RMB 0.687 trillion in 2016. It accounts for both about
68.4% of real estate investment and 11.89% of fixed-asset
investment in 2017, which was high compared with that in
other developed and developing countries. Real estate has
strong linkages to several upstream and downstream in-
dustries, and sales are also a key source of local public fi-
nance. -erefore, healthy growth in real estate is important
in economic development in China.

Beijing house price has exhibited considerable soar over
the past two decades. According to NBS data, the first-hand
(new) house price in Beijing ranged from RMB 8,332
(US$1,200) per sq.m. (squaremeter) in January 2005 to RMB
52,405 (US$7,600) per sq.m. in July 2017. -us, criticisms of
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residential housing investment centered on overpricing,
particularly in central Beijing, where many properties were
sold at prices exceeding RMB 100,000 (US$17,000) per sq.m.
On March 15, 2018, a survey commissioned by the People’s
Bank of China (PBOC, the central bank) showed that 62.9%
of urban residents in a sample of 50 cities thought that house
prices had become “unacceptably high.” -is sentiment has
risen by eight percentage points or more every quarter since
2010, especially among high- and middle-income earners. In
addition, 31.4% of urban residents expected the future trend
in house prices will continue to accelerate, while 48.2% of
them expected it to remain stable; only 9.9% of urban
residents expected it to decline (this survey was commis-
sioned by the People’s Bank of China (PBOC) in 2018 in
which the respondents are sampled randomly in fifty cities;
in this survey, the interviewer could not distinguish per-
manent urban residents from those who were transitory, so
the concept of “urban residents” used in this survey includes
all urban residents).

-e extraordinary rise in housing prices in China has
increased the risk and uncertainty faced by central and local
governments when making decisions related to land auc-
tions, mortgage policy, land supply, monetary policy, and
fiscal policy. A high house price is detrimental to consumer
welfare, but low house prices are harmful to government
revenue and prompt it to make some decisions, such as
reducing the supply of salable land, which further worsens
volatility in house prices in the future (Wen and Goodman
[1] concluded that the rising housing price causes land price
to increase and vice versa; thus, declining housing price
causes land price to decrease, which ultimately results in the
lower government revenue, taking the existence of so-called
land public finance at the local level into account).-erefore,
an understanding of behavioral mechanism and accurate
forecasts of house prices is a critical element of making
decisions under uncertain conditions that significantly affect
consumer welfare and government revenue and is of great
practical significance for policymakers when designing real
estate regulations.

-e existing literature demonstrates many efforts to
analyze real estate pricing behavior ([1–12]; Wu, 2015). For
example, Hott and Monnin [7] proposed two alternative
models, based on a no-arbitrage condition between renting
and buying and the market equilibrium between housing
demand and supply, respectively, to estimate fundamental
prices on real estate markets. Hossain and Latif [8] examined
the determinants of housing price volatility and investigated
the dynamic effects of these determinants on volatility, by
using GARCH and VAR models. Ren et al. (2012) applied
the theory of rational expectation bubbles to the Chinese
housing market. Based on data in 35 cities in China, they
found no evidence of such bubbles in the Chinese housing
market. Du et al. [4] examined the impacts of land policies
on the dynamic relationship between housing and land
prices in the Chinese real estate market and found that a
unidirectional Granger causality between housing and land
prices exists in the short run. Gupta et al. [6] assessed the
impact of monetary policy on inflation in house prices in the
nine census divisions of the US economy using a factor-

augmented vector autoregression (FAVAR) model. Wen
and Zhang (2013) developed a simultaneous equations
model to explore the interaction between housing prices and
land and found that the rising housing price causes land
prices to increase and vice versa. Zhang et al. [12] investi-
gated the effect of regulations on the relationship between
housing prices and volume in China. Wang and Xie [10]
examined the correlation structure and dynamics of inter-
national real estate securities markets using a minimum
spanning tree, the hierarchical tree, and the planar maxi-
mally filtered graph.

Many traditional statistical techniques have been used in
real estate price forecasting, such as autoregressive model
[13], dynamic model averaging [14], lattice models and
geostatistical models [15], and fixed-effects model [16]. For
example, Clapp and Giaccotto [13] used an autoregressive
process, which was adopted to produce one-quarter-ahead
forecasts for individual properties, to model a city-wide
housing price index. Beracha et al. [16] examined the extent
to which future cross-sectional differences in house price
changes were predicted based on online search intensity in
prior periods. Bork and Moller [14] examined house price
predictability across the US using dynamic model averaging
and dynamic model selection, which allows for model
change and parameter shifts. Under the assumption of linear
hypothesis, these econometric models perform well. How-
ever, due to the significant nonlinear hidden patterns in the
real estate price, those statistical and econometric models are
not suitable for forecasting real estate prices under real-life
conditions.

-erefore, the research on machine learning has recently
emerged as a trend in the field of real estate price forecasting
because it can capture the nonlinearity and nonstationarity
that exist widely in real estate prices. Specifically, support
vector regression [17], C4.5 [18], Näıve Bayesian [18],
AdaBoost [18], Boltzmann machine [19], and grey models
[20] have been wildly used to forecast house prices. For
instance, Wang et al. [17] proposed a hybrid model that
integrates support vector machines and particle swarm
optimization for real estate price forecasting. Rafiei and
Adeli [19] developed a machine learning-based compre-
hensive model for estimating the price of new housing in any
given city at the design phase or the beginning of the
construction. Although the above studies have shown that
machine learning techniques can effectively analyze complex
systems, machine learning techniques also have their own
limitations, such as parameter sensitivity, local optimization,
and overfitting [21].

Hybrid models have attracted increasing interest in time
series analysis and prediction. A hybridmodel makes full use
of the strengths of different methods to make up for the
shortcomings of other methods to improve the analytical
performance of the model [21]. Among the hybrid models,
the multiscale analysis based on the empirical mode de-
composition (EMD) or ensemble empirical mode decom-
position (EEMD) is a cutting-edge technology in the study of
time series analysis and prediction. -e main aim of the
multiscale analysis is to interpret the generation of time
series from a novel perspective [22]. Previous studies in
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which real estate prices are treated as a single series (original
scale) have difficulty in analyzing internal driving forces and
their economic meaning for movements in house prices and
thus have poor performance in forecasting house prices. By
decomposing the real estate price into intrinsic-mode
functions (IMFs), the original tough analysis and forecasting
task could be divided into several relatively easy subtasks,
particularly taking the high complexity and irregularity of
real estate prices into account. As we propose, the multiscale
analysis paradigm is a promising alternative that can par-
tially solve this problem.

Our focus in this study is on the behavioral mechanism
and forecasting of house prices in Beijing from a multiscale
perspective. To our knowledge, this study is the first to use a
multiscale analysis of real estate with an application of the
EEMD technique. In this way, we add to a fairly limited body
of research in this field. On the basis of empirical mode
decomposition (EMD) and ensemble empirical mode de-
composition (EEMD), multiscale analysis is a promising
approach for deeply exploring the behavioral mechanism
and forecasting of a price series with several scales, rather
than the original scale. Successful examples of applications
are seen in various fields, including but not limited to the
energy market [22–24], the financial market [25, 26], the
carbon market [27, 28], and signal processing [29]. EMD,
first proposed by Huang et al. [30], changes a local and high-
adaptive decomposition of a time-series into intrinsic-mode
functions (IMFs) with different average time scales. -e
main advantage of EMD is its ability to handle nonlinear
processes because this technique has no a priori assumptions
regarding these properties of price series under consider-
ation. Still, each of the IMFs obtained reflects the dynamics
of the price series at a specific time scale, which allows
studying the fine structure of the price series [23].

Inspired by multiscale analysis, this study develops a
multiscale analysis framework based on EEMD [31] and a
fine-to-coarse reconstruction algorithm [22] to explore the
behavioral mechanism of house prices in Beijing. In par-
ticular, we reexamine the periodicity and nonlinearity of and
the effects of regulations on house prices from a multiscale
perspective. Furthermore, we propose an EEMD-based
hybrid approach to perform short-term forecasting of house
prices in Beijing. -e monthly price of a house in Beijing
from January 2005 to November 2018 is used as experi-
mental data for the purpose of validation. In this multiscale
analysis paradigm, the original house price series is first
decomposed using EEMD, which is a substantial im-
provement over the original EMD, into several IMFs and a
residual. -en, we employ the fine-to-coarse reconstruction
algorithm to compose the IMFs obtained and residual into
high-frequency, low-frequency, and trend components,
which have their own economic meaning. Specifically, the
economicmeaning of these three components is identified as
short-term fluctuations originating from normal market
disequilibrium of supply and demand, the effects of extreme
events, such as a financial crisis and the release of regula-
tions, and a long-term trend, respectively. By doing so, we
can examine the characteristics and underlying rules of
house prices. From the perspective of multiscale analysis, we

further propose a four-step modeling framework, inte-
grating EEMD, fine-to-coarse reconstruction algorithm,
autoregressive integrated moving average (ARIMA), poly-
nomial function, and support vector regression (SVR), for
forecasting short-term house prices.

-e rest of this paper is organized as follows. Section 2
explains the EEMD, fine-to-coarse reconstruction algo-
rithm, and the proposed EEMD-based hybrid perdition
model. Section 3 introduces the datasets used. Section 4
details and discusses our decomposition results. Finally,
Section 5 concludes the paper.

2. Theoretical Background and Methodologies

2.1. Ensemble Empirical Mode Decomposition (EEMD).
Ensemble empirical mode decomposition (EEMD) was
proposed by Wu and Huang [31] recently to solve the mode
mixing problem existing in the original empirical mode
decomposition (EMD) by adding white noise. First of all, a
mixed mode is defined as consisting of a single “intrinsic-
mode function (IMF)” that comprises either signals of
widely disparate scales or a single similar scale in different
IMF components [31]. Adding white noise to the original
house price series can significantly limit the problem of a
mixedmode in the original EMDmethod. EEMD is based on
the insight gleaned from recent studies of the statistical
properties of white noise (Flandrin et al., 2004; [31]), which
showed that the EMD is effectively an adaptive dyadic filter
bank when applied to white noise. As explained by Wu and
Huang [31], the principle of the EEMD is as follows: the
added white noise populates the entire time-frequency space
uniformly with constituent components of different scales.
Because the noise in each trial is different, it is canceled out
in the ensemble mean of enough trials.-e ensemble mean is
treated as the true answer.

Huang et al. [30] used the term “intrinsic-mode func-
tion” because it represents the oscillationmode embedded in
the data. -e IMF in each cycle, defined by the zero
crossings, involves only one mode of oscillation, with no
complex riding waves allowed. Note that the time scale used
in this study is the inverse of the frequency for time series in
general. In EEMD, the smaller the time scale, the more
“compressed” or higher frequency the IMFs. Conversely, the
larger the time scale, the more “stretched” or lower fre-
quency the IMFs.

EEMD can decompose a complex time series into a set of
IMFs as well as a residual, which reveals the oscillation mode
embedded in the time series. Since the work of Wu and
Huang [31], EEMD has been successfully used to analyze
time series with complex nonlinearity and high irregularity
in various areas. -eoretically, IMFs must meet the fol-
lowing two conditions: (1) the number of extremes and of
zero crossings must be equal or must differ at most by one;
(2) the time series must be symmetric with respect to local
zero means.

Given a house price series Xt for t � 1, 2, . . . , n,
according to this definition of IMFs, IMFs can be extracted
iteratively from this series using the following sifting
process:

Discrete Dynamics in Nature and Society 3



Step 1: identify all local extremes (both maxima and
minima) in the house price series.
Step 2: connect all local maxima and minima using
cubic spline interpolation to generate its upper and
lower envelope lines, X

upper
t and Xlower

t , respectively.
Step 3: compute the pointwise local mean
mt � (X

upper
t + Xlower

t )/2 from the upper and lower
envelope lines.
Step 4: define the difference between the house price
series Xt and the mean mt: ht � Xt − mt.
Step 5: examine whether ht satisfies the two afore-
mentioned conditions of IMFs. If so, ht is a new IMF, so
replace Xt with rt � Xt−ht; if not, replace Xt with ht.
Step 6: repeat Steps 1 to 5 until the stop criterion is
satisfied.

After this sifting process is completed, the original house
price series X(t) can finally be expressed as the sum of IMFs
and a residual is extracted:

Xt � 􏽘
k

i�1
hi,t + rt, t � 1, 2, . . . , n, (1)

where k denotes the total number of IMFs,
hi,t(i � 1, 2, . . . , k) are the IMFs, and rt is the residual.

Adding white noise to the original house price series can
significantly reduce the mixed-mode problem in the original
EMDmethod. As such, the EEMD procedure is presented as
follows:

Step 1: add a white noise series εt to the original house
price series Xt to generate a new price series Xnew

t �

εt + Xt for t � 1, 2, . . . , n.
Step 2: decompose the new price series Xnew

t into a set
of IMFs as well as a residual via the sifting process
outlined above.
Step 3: repeat Steps 1 and 2 using different white noise
series each time. Finally, calculate the ensemble means
of corresponding IMFs and residuals, which generates
the final results.

2.2. Fine-to-Coarse Reconstruction Algorithm. As discussed
above, the original house prices are decomposed into a set of
IMFs and a residual via EEMD. Basically, EEMD can be
applied as a filter to separate the high-frequency patterns
from the low-frequency ones. To facilitate the prediction
modeling and reveal the economic meaning of the de-
composition results via EEMD, we use the fine-to-coarse
reconstruction algorithm [22], a high-pass filter, to recon-
struct the IMFs by adding fast oscillations to slow ones and
then generate three components: high-frequency, low-fre-
quency, and trend components. Given a set of IMFs hi,t(i �

1, 2, . . . , k) of house prices obtained in the previous section,
we describe the fine-coarse reconstruction algorithm as
follows [22]:

Step 1: calculate the mean of the sum of h1,t to hr,t,
r � 1, 2, . . . , k, which produces Mr(r � 1, 2, . . . , k).

Step 2: use a t-test to determine for which
r(r � 1, 2, . . . , k) the mean Mr significantly departs
from zero at the significance level of 0.05.
Step 3: after r is determined, the IMFs from r to k are
partially summed as the low-frequency components,
and the rest of the IMFs are partially summed as the
high-frequency components. Moreover, the residual is
treated as the trend component.

2.3. .e Proposed EEMD-Based Hybrid Prediction Approach.
To obtain an accurate prediction of house prices in Beijing,
we proposed an EEMD-based hybrid approach and present
the steps involved in this process in this section. Given a
housing price series x(t) for t � 1, . . . , n, we suggest six-
month-ahead forecasting. We construct a four-step model
framework for short-term house price forecasting that in-
tegrates EEMD, fine-to-coarse reconstruction algorithm,
ARIMA, polynomial function, and support vector regression
(SVR) (see Figure 1).

As seen in Figure 1, the proposed EEMD-based hybrid
approach consists of the following four steps:

Step 1: decomposition. -e original house price is
decomposed into several IMFs and a residual using the
EEMD technique.
Step 2: composition. -e fine-to-coarse reconstruction
algorithm is applied to compose the obtained IMFs and
residual into high-frequency, low-frequency, and trend
components.
Step 3: single forecasting. SVR is used for low-fre-
quency component forecasting, while ARIMA and
polynomial function are used to forecast the high-
frequency and trend components, respectively.
Step 4: ensemble forecasting. -e predicted values of
the high-frequency, low-frequency, and trend com-
ponents are aggregated using another independent
SVR model, which models the relationship among the
three parts, to generate an ensemble forecast—the final
prediction of the original house price series.

3. Datasets

In this study, we use monthly data on the price of new
residential houses in Beijing obtained from the NBS. Beijing
is the capital of China, the second most populous city and
most populous capital city in the world.-emonthly price is
the average transaction price in nominal terms across all
districts in Beijing, which is recorded by the city’s De-
partment of Housing Management. Figure 2 shows the
house price series in Beijing from January 2005 to November
2018, with a total of 167 data points as well as some sig-
nificant events related to the real estate market and when
they occurred.

Figure 2 illustrates that house prices have had extraor-
dinary fluctuations and a steady uptrend since 2005. Based
on the time gap between stationary phases in housing prices,
an obvious periodicity of approximately three years emerges.
-e lowest price in our sample (RMB 8,332 per sq.m.)
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occurred in January 2005, and then the price rose to RMB
14,308 per sq.m. in August 2008. Afterward, the price
remained stable until November 2009, before sharply rising
from RMB 18,306 per sq.m. in December 2009 to RMB
21,078 per sq.m. inMay 2011, followed by another stationary
phase fromMay 2011 to December 2012. In March 2014, the
price reached its second-highest value (RMB 27,913 per
sq.m.). Since mid-2014, alternating phases of stability and
increases have followed, such that in June 2017, the price
attained its highest value to date (RMB 52,405 per sq.m.).
Because of a series of strict central and local government
regulations since then, the price stopped rising and entered
another phase of stationary fluctuation.

Table 1 lists the summary statistics of house prices. -e
estimated measure of skewness suggests that house prices
have a nearly symmetric distribution. In addition, the
kurtosis suggests that house prices have lighter tails than a
standard normal distribution.-e results of the nonnormality
Jarque–Bera test at the 1% level of significance further suggest
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Figure 1: -e proposed EEMD-based hybrid approach.
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Figure 2: Monthly house prices in Beijing.
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that the null hypothesis of following a normal distribution is
rejected for house prices. -e augmented Dickey–Fuller
(ADF) and Phillips–Perron statistics in Table 2 indicate that a
unit root cannot be rejected at the levels. However, house
prices are stationary after the first difference.

4. Results and Discussion

4.1. Decomposition. In this section, house prices are
decomposed via EEMD into a set of IMFs and a residual. In
EEMD, an ensemble membership of 100 is used, and the
added white noise in each ensemble member has a standard
deviation of 0.2 [32]. -eoretically, the number of IMFs is
restricted to log2 N, where N is the sample size (167 in this
case). -erefore, six different time-scale IMFs and a residual
are obtained. Figure 3 presents all IMFs and residual listed in
order from the highest frequency to the lowest frequency.

All the IMFs present changing frequencies and ampli-
tudes, which is not the same with any harmonic. With the
frequency changing from high to low, the amplitudes of the
IMFs become larger: for example, all the amplitudes of IMF2
to IMF5 in Figure 3 are up to 3,000; the last residual is the
mode slowly increasing from 7,819 to 45,845.

-e summary characteristics of the IMFs and residual
are reported in Table 3, which shows that the residual ac-
counts for the vast majority of the variance. Indeed, the
residual accounts for 94.922% of the total variation in the
original house prices, which suggests that they are deter-
mined mainly by long-term trends (i.e., the residual). At the
same time, the Pearson correlation coefficient and the
Kendal coefficient between the original house prices and
residual are the highest. In addition, each of the IMFs has a
very low correlation coefficient with the original price and
accounts for less than 6% of the total variance, further in-
dicating that IMFs have a limited impact on the original
prices. An exception occurs in the relationship between the
IMF5 and the original prices. When we take a closer look at
the IMFs, we find that the second important mode is the
lowest frequency IMF, that is, IMF5, which has a mean
period of nearly 52.52 months (nearly four years).

4.2. Composition Results. After the analysis of the IMFs and
residual is performed, the fine-to-coarse reconstruction al-
gorithm presented above is employed to compose IMFs into
high-frequency and low-frequency components. At the same

time, the residual is treated as the trend component. -e
overview and economic meaning of these three composed
components are detailed in this section.

4.2.1. Overview of the .ree Composed Components.
Table 4 reports the mean of the fine-to-coarse reconstruction
as a function of IMF index r, and the house price departs
significantly from zero at r� 4. -us, the partial recon-
struction with IMF1, IMF2, and IMF3 represents the high-
frequency component, and the partial reconstruction with
IMF4, IMF5, and IMF6 represents the low-frequency
component. -e residual is treated as the overall trend in the
observed house price.

Figure 4 shows the three composed components of house
prices, showing that each component has some distinct
features. -e high-frequency component reflects short-term
fluctuations house prices and thus should be representative
of the effects of normal market disequilibrium, which mainly
derive from normal volatility in the supply of and demand
for commercial houses. By integrating every sharp up or
down in the low-frequency component and some extreme
events marked in Figure 4, we conclude that each significant
break in the low-frequency component corresponds to one
or more extreme events and shows their effects. Last but not
least, the residual, which slowly varies around the long-term
mean, can be treated as the long-term trend during the
evolution in house prices.

-e statistical measures of these components and the
observed price are given in Table 5, which shows that the
most dominant component is also the trend component.
Indeed, the trend has a high correlation with original house
prices, regardless of which correlation statistics are con-
sidered. In addition, the low-frequency and trend compo-
nents have higher contributions to variance, accounting for
3.862% and 94.922%, respectively. Unsurprisingly, the effect
of the high-frequency component on all changes in the
original housing prices is the smallest.

4.2.2. Long-Term Trend. As mentioned in the previous
section, the residual is the component that determines house
prices. An important determinant of housing prices is the
amount of money in circulation. Figure 5 shows the Chinese
money supply (M2) and the trend component obtained in
this section, which shows that they have a similar upward
trend. In China, therefore, the continuously increasing trend
in house prices is consistent with an increase in the money
supply.

Table 2: Augmented Dickey–Fuller (ADF) test results on the house
price series.

Bound Test for unit root in T-statistics p value

ADF Level 0.657 0.991
First difference −13.330∗∗∗ 0.000

Phillips–Perron Level 0.640 0.990
First difference −23.695∗∗∗ 0.000

Note. ∗∗∗-e null hypothesis is rejected at the 0.01 level (two-tailed).

Table 1: Statistical description of the housing price series.

Statistic Value
Sample size 167
Mean 22,537.220
Std. dev. 11,571.440
Min. 8,332.510
Max. 52,405.000
Median 20983.000
Skewness 0.753
Kurtosis 2.682
Jarque–Bera test 16.489∗∗∗

Note. ∗∗∗-e null hypothesis is rejected at the 0.01 level (two-tailed).
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In Table 5, Pearson and Kendall correlation coefficients
between the trend component and original house prices are
0.973 and 0.891, respectively, with significance at the 0.01
level. More importantly, the trend component contributes
approximately 94.92% of the total variance in original house
prices, which suggests that the trend component is the
dominant force in the evolution of house prices in the long
run. A comparison of the trend component and original
housing prices shows that although house prices fluctuated
dramatically because of some extreme events, they

Table 3: Measures of IMFs and residual in the house price series.

Mean period
(month)

Pearson
correlation

Kendall
correlation Variance Variance as (%) of observed Variance as % of (􏽐 IMFs + residual)

Observed 1.339∗108
IMF1 2.79 0.114 0.061 1.443∗106 1.078 1.084%
IMF2 5.95 0.051 0.045 4.825∗105 0.360 0.363%
IMF3 15.22 −0.010 0.028 5.439∗105 0.406 0.409%
IMF4 33.41 0.281∗∗∗ 0.139∗∗ 9.925∗105 0.741 0.746%
IMF5 52.52 0.373∗∗∗ 0.021 2.239∗106 1.672 1.682%
IMF6 83.23 −0.554∗∗∗ −0.352∗∗∗ 2.952∗105 0.220 0.222%
Residual 0.973∗∗∗ 0.891∗∗∗ 1.271∗ 108 94.922 95.495%
Sum 99.400 100%
Note. ∗∗∗ Correlation is significant at the 0.01 level (two-tailed). ∗∗Correlation is significant at the 0.05 level (two-tailed). ∗Correlation is significant at the 0.1
level (two-tailed).

Table 4: -e mean of the fine-to-coarse reconstruction as a
function of index r

r Mean p-value
1 5.215 0.955
2 −4.924 0.965
3 −31.785 0.137
4 63.252 0.035∗∗
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Figure 4: Original house prices and three corresponding composed
components.

–2000
3000

IM
F1

–2000

2000
IM

F2

–2000

2000

IM
F3

–1500

2000

IM
F4

–2000

3000

IM
F5

–200

200

IM
F6

01/2005 04/2008 08/2011 12/2014 11/2018
10000

40000

R

Figure 3: -e IMFs and a residual of house prices via EEMD.

Discrete Dynamics in Nature and Society 7



approached and finally returned to the long-term trend after
the influence of those extreme events gradually disappeared.
For instance, the outbreak of the global financial crisis in
mid-2008 made housing prices fall rapidly, from RMB
14,370 to 10,486 per sq.m., but prices recovered afterward
and by December 2009 had returned to the trend level, about
RMB 18,306 per sq.m.

4.2.3. Effects of Extreme Events. As discussed above, the
effects of extreme events on house prices are reflected in the
low-frequency component, which consists of IMF4, IMF5,
and IMF6. In Table 3, the mean periods of these three IMFs
are 33.41 months, 52.52 months, and 83.23 months, re-
spectively, revealing that, historically, the effects of extreme
events are often significant and can last for at least three years.
In Table 5, the Pearson and Kendall correlation coefficients
between the low-frequency component and original house
prices are 0.231 and −0.025, respectively. At the same time, the
low-frequency component contributes approximately 3.862%
of the total variance in original house prices, indicating that
the low-frequency component has little influence on changes
in house prices, less than that of the trend component. In
Figure 4, the low-frequency component is relatively volatile,
suggesting that the number and intensity of extreme events in
real estate have increased since 2010.

By separating the effects of extreme events contained in
the low-frequency component from the original house

prices, we can examine the effect of each extreme event and,
more importantly, use it as a benchmark for judging the
effect of the next similar extreme event on real estate in
Beijing. Figure 6 shows the low-frequency component of the
original house prices. More importantly, some significant
events related to real estate and when they occurred are
indicated in the figure. -en, the policy type, date of release,
title, and main focus of the regulations in real estate are
detailed in Table 6.

Regulations issued by central and local governments are
among the most important events affecting house prices in
China [11]. In addition, the changes in local land leasing also
significantly affect the housing prices in cities like Beijing
[11]. Since 2004, land leases have become an important
source of revenue for local governments. Leases generated an
amount of revenue equivalent to about 7.5 percent of GDP
for Beijing between 2013 and 2017. Basically, local land
leasing could be deemed to an event like regulation policy
because the auctions on land leasing are not performed every
day, and the area and location of land parcels are totally
determined by the local government. To illustrate the effect
of extreme events on housing prices for the perspective of
multiscale analysis, we take the regulation policies as ex-
amples in this section.

To better understand the history of policies and the
impact of policies on real estate, we briefly review the
regulations listed in Table 6. On May 26, 2005, seven
ministries released the first official policy to curb the real
estate speculation. -e policy states that homeowners who
sell their house within two years of purchase are subject to
business tax on the total revenue from the sale. However, this
policy had greater symbolism than practical impact. To
further dampen real estate speculation, nine ministries re-
leased another policy, which is seen as an improved and
enhanced version of the previous policy.

Despite these extensive and severe restrictions, house
prices continuously rose. On September 27, 2007, the central
government responded with additional measures. For in-
stance, the down payment was raised to 40% and interest
rates were increased to 1.1 times the benchmark rate. In
September 2008, the global economy suffered a major fi-
nancial crisis that emanated from the US, and China was no
exception. -us, on November 17, 2008, the central gov-
ernment reversed the course regarding its controls on house
prices and issued other measures.

With the rapid revival in China’s economy, pent-up
demand for houses burst into the open in the second quarter

Table 5: Measures of three composed components of house prices.

Mean period
(month)

Pearson
correlation

Kendall
correlation Variance Variance as (%) of observations Variance as % of (􏽐 IMFs + residual)

Observed 1.339∗108
High 3.08 0.101 0.062 3.072∗106 2.294 2.270%
Low 41.77 0.231∗∗∗ −0.025 5.171∗ 106 3.862 3.821%
Trend 0.973∗∗∗ 0.891∗∗∗ 1.271∗ 108 94.922 93.910%
Total 101.078 100%
Note. High, low, and trend mean high-frequency, low-frequency, and trend components, respectively. ∗∗∗Correlation is significant at the 0.01 level (two-
tailed).
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Figure 5: Monthly Chinese money supply (M2) and trend com-
ponent of house prices.
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of 2009, and house prices began to trend upward again. To
restrain speculation in real estate, the central and local
governments responded by increasing the supply of land for
sale, raising down payments, and increasing interest rates on
real estate loans. -is flurry of real estate regulations led to a
decline in house prices in 2013. -en, in mid-2014, to
achieve destocking in real estate, the government reversed
course on house prices again by adjusting mortgage policies
on September 30, 2014, May 30, 2015, and September 30,
2015, enabling another cycle of growth in the mortgage

industry and ballooning in house prices in 2016, with rapid,
record-breaking sales and price growth. On March 31, 2016,
the central and local governments introduced new real estate
policies to cool demand in Tier 1 cities (currently, Tier 1
cities in China refer to the Beijing, Shanghai, Guangzhou,
and Shenzhen.). And these policies on loan and purchase
limitation spread to Tier 2 cities (currently, Tier 2 cities in
China mainly refer to the provincial capitals in the eco-
nomically developed provinces; the typical Tier 2 cities in
China are Nanjing, Hangzhou, Chengdu, Wuhan, Xiamen,
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Figure 6: -e low-frequency component of house prices in Beijing with some significant events.

Table 6: Real estate regulations, 2005 to 2017.

Policy direction Date of release Main focus of the policy

Tightening
03/26/2005 State 8: the first regulation policy, whose symbolic meaning is greater than practical meaning, in

real estate.
05/29/2006 State 15: an improved and enhanced version of State 8.
09/27/2007 Increases down payments and interest rates for real estate loans.

Easing 12/17/2008 State 13: decreases down payments and interest rates for real estate loans.

Tightening

12/14/2009 State 4: increases supply of salable land and restrains speculation.
01/10/2010 State 11: increases down payments and interest rates for real estate loans.
04/17/2010 New State 10: increases the supply of salable land and strengthen indemnification houses.
01/26/2011 New State 8: increases down payment on a second home to 60%.
02/20/2013 New State 5: limits purchases.

Easing
09/30/2014 New mortgage policy: decreases down payments and interest rates for real estate loans.
03/30/2015 New mortgage policy: decreases down payment on a second home to 40%.
09/30/2015 New mortgage policy: decreases down payment on a first home to 25%.

Tightening 09/30/2016 Limits loans and purchases in 19 major cities.
03/17/2017 Further limits on loans and purchases.

Note that the regulation policies on real estate listed here would be revised several times.
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etc.) on September 30, 2016. To further curb the rising house
prices, enhanced and extensive regulations on loans and
purchasing limits were issued on May 17, 2017.

Figure 6 shows that every big fluctuation in the low-
frequency component is accompanied by one or more
policies (and other events not considered in this study). For
example, mortgage policies released on September 30, 2014,
May 30, 2015, and September 30, 2015, respectively, and
other events that occurred during this period caused sharp
increases in house prices: from RMB 23,202 per sq.m. in
February 2015 to RMB 38,573 per sq.m. in September
2016—an increase of RMB 15,371 per sq.m. (66.248%).

What is the exact effect of these policies and events on
house prices in isolation from other factors? According to
the low-frequency component, the values of this component
are RMB −4,892 per sq.m. in February 2015 and RMB 245
per sq.m. in September 2016, with a lag of RMB 5,138 per
sq.m. -erefore, the effect is an increase of RMB 5,138 per
sq.m., less than RMB 15,371 per sq.m. compared with the
original housing prices. It is conceivable that the reason for
this result is that the effects of normal market disequilibrium
and long-term trends, excluding mortgage policies and other
important events, on house prices are an increase of RMB
10,233 per sq.m. (the difference between RMB 15,371 and
RMB 5,138 per sq.m.).

4.2.4. Normal Market Disequilibrium. In addition to long-
term trends and extreme events, house prices are also
influenced by short-term market fluctuation, in particular,
the normal market disequilibrium between supply and
demand. -e effect of normal market disequilibrium is
reflected in the high-frequency component, which consists
of IMF1, IMF2, and IMF3. Table 3 shows that the shortest
and longest mean periods of these three IMFs are 2.79
months and 15.22 months, respectively. In addition, in
Table 5, themean period of the high-frequency component is
3.08 months, indicating that the effect of normal market
disequilibrium on house prices fades quickly, an average of
one year. Pearson and Kendall correlation coefficients and
variance contributions are quite low, 0.101, 0.062, and 2.29%,
respectively, revealing that the high-frequency component is
not very correlated with original house prices. -is shows
that the effect of normal market disequilibrium on house
prices is modest.

4.3. Prediction Comparison. -e recursive method that
makes use of an increasing window is used to reestimate the
predictionmodels. To be clear, in the first round, the window
size is 111, and the mentioned above procedure is executed.
In the second round, the window size increases to 112, and
the mentioned above procedure is executed again. After 56th
round, the out-of-sample forecasts are all obtained. Even
though the number of IMFs would vary with the increase in
window size, the number of prediction models is always
restricted to be 4 (three prediction models for single fore-
casting and one prediction model for ensemble forecasting)
because the three composed components, instead of

individual IMFs and residual, are modeled and forecasted in
this study.

We attempt to explore the superiority of the proposed
hybrid prediction model under the multiscale analysis
paradigm to the individual SVR, ARIMA, and polynomial
function used in the hybrid prediction model. -us, the
individual ARIMA, polynomial function, and SVR are se-
lected as benchmarks. It should be noted that these three
individual prediction models are performed on the original
dataset instead of the decomposed dataset because the main
aim of comparison is to examine the superiority of the
proposed EEMD-based hybrid approach relative to the
individual ones. To verify the effectiveness of the proposed
EEMD-based hybrid approach, we use the housing price
series in Beijing as a test sample. We use an iterative strategy
to make a six-month-ahead prediction in this study.

To investigate the performance of the proposed EEMD-
based hybrid approach and three competitors, we use two
alternative forecast accuracy measures: the root mean
squared error (RMSE) and the mean absolute percentage
error (MAPE). -ey are defined as follows:

RMSE �

����������������

􏽐
N
t�1 (x(t) − 􏽢x(t))2

N

􏽳

, (2)

MAPE �
1
N

􏽘

N

t�1

x(t) − 􏽢x(t)

x(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
∗100%, (3)

where x(t) is the observation at period t, 􏽢x(t) is the pre-
dicted value of x(t), and N is the number of forecasting
periods.

First, the original house price series is split into the
estimation sample and a hold-out sample. Data from Jan-
uary 2005 to March 2014 are used for the estimation sample
(111 observations), and 56 observations from April 2014 to
November 2018 are used as a hold-out sample. -en, the
model selections, particularly for SVR, are made with
iterated prediction strategies in the estimation sample. Fi-
nally, the out-of-sample performance of each attained model
is justified on hold-out samples. For ARIMA estimation, we
develop a package forecast (the R package forecast is
available at http://ftp.ctex.org/mirrors/CRAN/) using R
software and use LibSVM for SVRmodeling.-e radial basis
function (RBF) is selected as the kernel function through
preliminary simulation. To determine the hyperparameters,
i.e., regularization parameter C, ε in ε-insensitive loss
function, and RBF kernel parameter c, the commonly used
grid search is applied here. In addition, 5-fold cross vali-
dation is used in the training process to avoid overfitting. To
perform polynomial function estimation, we use the
MATLAB functions polyfit and polyval.

Table 7 compares the performance of different models in
all prediction horizons across two indices. -e original
house price and out-of-sample forecasts of four prediction
models for one-, three-, and six-step-ahead forecasting are
shown in Figure 7. -e results lead us to make the following
observations. Generally, the best model across two indices
and three prediction horizons is the proposed EEMD-based
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hybrid approach, indicating that it outperforms the other
approaches. SVR produces forecasts that are more accurate
than those of the ARIMA and polynomial function. In
addition, the polynomial function consistently produces the
worst forecasting model.

Using the proposed EEMD-based hybrid approach, the
six-month-ahead predictions of house prices in Beijing in
December 2018, January 2019, February 2019, March 2019,
April 2019, and May 2019 are 47,625.48, 46,298.15,
46,754.29, 47,467.85, 47,684.22, and 47,924.75 (RMB/sq. m.),

Table 7: -e forecasting performance of the proposed approach and three alternatives.

Accuracy measure Prediction horizon
Approach

Proposed approach SVR ARIMA Polynomial function

RMSE
One-month-ahead 3,174 4,021 4,282 4,412
-ree-month-ahead 3,524 4,592 4,834 4,715
Six-month-ahead 4,189 4,618 4,992 4,862

MAPE
One-month-ahead 5.62% 7.18% 8.25% 8.14%
-ree-month-ahead 7.24% 10.21% 10.13% 9.21%
Six-month-ahead 8.63% 10.15% 12.92% 10.57%
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Figure 7: -e original house price and forecasts of four prediction models on the out-of-sample period: (a) one-step-ahead forecasting; (b)
three-step-ahead forecasting; (c) six-step-ahead forecasting.
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respectively. -e results obtained show that the overall
tendency in house prices in Beijing has been steady since the
release of regulations in mid-2016.

5. Conclusions

In this study, following the “decomposition and ensemble”
principle, we conduct a behavioral mechanism analysis and
forecast house prices with a multiscale analysis. By inte-
grating an ensemble empirical mode decomposition and a
fine-to-coarse reconstruction algorithm, we decompose
original house prices into three components: short-term
fluctuations originating from the normal market disequi-
librium of supply and demand; the effects of extreme events,
such as the outbreak of a financial crisis and the release of
regulations; and a long-term trend. -en, we examine the
characteristics of these three components and develop a
four-step modeling framework to forecast house prices that
integrates EEMD, fine-to-coarse reconstruction algorithm,
ARIMA, polynomial function, and support vector regression
(SVR). -e experimental results obtained in this study in-
dicate that our proposed prediction model outperforms the
alternatives, regardless of the accuracy measure and pre-
diction horizon considered. Indeed, the RMSEs of the
proposed prediction model are 3174, 3524, and 4189 for one-,
three-, and six-step-ahead prediction, respectively, while the
RMSEs of the SVR (the best one in the three competitors) are
4021, 4592, and 4618, respectively.

-is study could be extended in many interesting di-
rections. In particular, future studies should examine the
effect of the local regulations (or the revised version) and
events on house prices in a specific city and the effect of a
specific regulation or event on house prices. An event
analysis or difference-in-differences method could be used
to explore this problem. In addition, a more sophisticated
prediction strategy should be developed to forecast long-
term housing prices.
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