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In this paper, we focus on the asymptotic behavior of solutions to stochastic delay lattice equations with additive noise and 
deterministic forcing. We �rst show the existence of a continuous random dynamical system for the equations. �en we investigate 
the pullback asymptotical compactness of solutions as well as the existence and uniqueness of tempered random attractor in ��
space. Finally, ergodicity of the systems is achieved.

1. Introduction

We explore the asymptotic behavior of a class of stochastic 
lattice systems with time delay driven by additive white noise:

with initial data

where � ∈ Z, Z denotes the integer set, � ∈ R+. � = (��(�))�∈Z is 
a sequence in �� space (de�ned later), �, �, and � are positive 
constants, � is the intensity of noise, �(�) = (��(��))�∈Z is a 
superlinear source term, �(�(� − �)) = (��(��(� − �)))�∈Z is a 
nonlinear function satisfying certain structural conditions and 
capturing the time delay � ≥ 0, � = (��)�∈Z ∈ � (de�ned later), � = (��)�∈Z ∈ �, � = (��)�∈Z is a two-side real valued Wiener 
process on a probability space.

Lattice di�erential equations are widely adopted in phys-
ics, biology, and engineering such as pattern formation, prop-
agation of nerve pulses, electric circuits, and so on, see, e.g., 

([1–7]). Stochastic lattice dynamical systems (SLDS) arise 
naturally, while random in�uences or uncertainties (called 
noises) are taken into account. �ese noises may play an 
important role as intrinsic phenomena rather than just com-
pensation of defects in deterministic models [8].

�e theory of attractors is a powerful tool to depict the 
asymptotic dynamics of an in�nite-dimensional system. 
Random attractor is an important concept to describe asymp-
totic behavior for a random dynamical system and to capture 
the essential dynamics with possibly extremely wide �uctua-
tions. Until now, random attractors have been investigated by 
many researchers, e.g., in [9–13] for autonomous stochastic
equations, and in [14–21] for nonautonomous stochastic ones.

Lots of work have been done regarding the existence of 
global random attractors for SLDS with white noises of in�nite 
sequences, see e.g., [22–29] and the references therein. Note 
that the stochastic equations considered in these papers do 
not contain nonlinearity with time delay. �e di�erential equa-
tions with delays arise, for instance, from population dynamics 
where a time lag or a�er-e�ect is involved.

As far as we are aware, it seems that there are very few 
works in the literature dealing with random attractors of sto-
chastic lattice equations containing nonlinearity with time delay 
except [30–33].

(1)

����� = �(��−1 − 2�� + ��+1) − ��� + ��(��) + ��(��(� − �))
+ �� + ��� ����� , � > �,

(2)��(� + �) = ��,�(�), � ∈ [−�, 0],
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In the present paper, we consider the stochastic delay lat-
tice equations with superlinear nonlinearity (delay terms). 
More precisely, we �rst prove the existence and uniqueness of 
tempered random attractors of equation (1). �en we show 
the ergodicity of the systems.

Denote

Let � := ℓ2(Z)(ℓ� : � = 2) . It is known that � is a Hilbert 
space with the inner product (�, v) = ∑�∈Z ��v�, and the norm ‖�‖2� = ∑�∈Z ����������2, where � = (��)�∈Z, v = (v�)�∈Z ∈ �. �en we 
de�ne a Banach space by �� := C ([−�, 0], �) with the norm

In the sequel, we use ‖⋅‖ and (⋅, ⋅) to denote the norm and inner 
product of �, respectively. �e norm of ℓ� is written as ‖⋅‖ℓ�(� ̸= 2).

�e letters � and ��(� = 1, 2, ⋅ ⋅ ⋅) are general positive con-
stants, taking di�erent values from line to line. Since their 
values are not signi�cant, we do not care about their values 
and relationship between one and another.

�is paper is organized as follows. In Section 2, we recall 
some basic concepts and already known results related to ran-
dom dynamical systems and random attractors. In Section 3, 
we show that the stochastic delay lattice di�erential equation 
(1) generates an in�nite dimensional random dynamical sys-
tem. �e existence of the global random attractor is given in 
Section 4. Finally, the proof of ergodicity of the systems is 
�nished in Section 5.

2. Preliminaries

In the following, we recall some basic concepts on random 
dynamical systems and pullback attractors which are men-
tioned in [8, 22].

Let � be a Banach space and (Ω,F , �, {��}�∈R) be a metric 
dynamical system, (�, �) a complete separable metric space 
with Borel �-algebra B(�). Suppose D  is a collection of some 
families of nonempty subsets of �.
De�nition 1. A mapping Φ : R+ × R × Ω × � → � is called 
a continuous random dynamical system (RDS) on � over (Ω,F , �, {��}�∈R) if for all � ∈ Ω and �, � ∈ R+,

(i)    Φ(⋅, ⋅, ⋅) : R+ ×Ω × �→ � is (B(R+) ×F ×B(�),B(�))-measurable;
(ii)   Φ(0, �, ⋅) is the identity on �;
(iii)  Φ(� + �, �, ⋅) = Φ(�, ���, ⋅) ∘Φ(�, �, ⋅);
(iv)  Φ(�, �, ⋅) : �→ � is continuous.

De�nition 2. A family � = {�(�) : � ∈ Ω} ∈ D  is called a D
-pullback absorbing set for Φ if for all � ∈ Ω and for every � ∈ D , there exists � = �(�, �) > 0 such that

(3)ℓ� = {� = (��)�∈Z : ∑
�∈Z
|��|� < ∞ �� ∈ R, � ≥ 1}.

(4)
‖�‖�� = sup

�∈[−�,0] ‖�(�)‖�, ∀� = (�(�))�∈[−�,0] ∈ ��.

If, in addition, for all � ∈ Ω, �(�) is a closed nonempty subset 
of � and � is measurable in � with respect to F , then we say � is a closed measurable D-pullback absorbing set for Φ.

De�nition 3. �e random dynamical system Φ is said to be 
D-pullback asymptotically compact in � if for � ∈ Ω, the 
sequence

whenever �� →∞, and �� ∈ �(�−���) with {�(�) : � ∈ Ω} ∈ D.

De�nition 4. A family A = {A (�) : � ∈ Ω} ∈ D  is called a 
D-pullback attractor for Φ if for every � ∈ Ω,

(i)  A  is measurable in � with respect to F  and A (�) is 
compact in �;

(ii)  A  is invariant: Φ(�, �,A (�)) = A (�, ���) ,∀� ≥ 0;
(iii)  A  attracts every member of D : for every � ∈ D ,

where �� is the Hausdor� semi-distance in �.
We borrow the following result for random dynamical sys-

tems from [28, 34] and omit its proof.

Proposition 5. Let D  be an inclusion closed collection of some 
families of nonempty subsets of �, and Φ be a continuous RDS 
on � over R and (Ω,F , �, {��}�∈R). en Φ has a D-pullback 
attractor A  in D  if Φ is D-pullback asymptotically compact in � and Φ has a closed measurable D-pullback absorbing set � in 
D . e D-pullback attractor A  is unique and is given by, for 
each � ∈ Ω,

3. RDSs for Stochastic Delay Lattice Systems

In this section, we �rst state some assumptions that will be 
used throughout this paper. �en we illustrate the existence 
of RDSs for stochastic delay lattice systems.

From now on, the functions �, � are assumed to satisfy the 
following conditions with positive constants �, �1, �2, ��, ��, ��, and � ≥ 2.

(A1)     For all �, �, �1,�, �2,� ∈ R,

and ∑�∈Z �1,� <∞, ∑�∈Z �2,� <∞. � also possesses the local 
Lipschitz condition, i.e., for any bounded interval � ⊂ R, there 
exists a positive constant ��, such that for every �, � ∈ �,

(5)Φ(�, �−��,�(�−��)) ⊆ �(�) for all � ≥ �.

(6)
{Φ(��, �−���, ��)}∞�=1 has a convergent subsequence in �.

(7)lim
�→∞
��(Φ(�, �−��,�(�−��)),A (�)) = 0,

(8)A (�) = ⋂
�≥��(�)
⋃
�≥�
Φ(�, �−��,�(�−��)).

(9)��(�)� ≤ −�1|�|� + �1,�,
(10)������(�)���� ≤ �2|�|�−1 + �2,�,
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(A2)   � : R→ R is continuous and for all (��)�∈Z, (v�)�∈Z ∈ ℓ2,

where (��)�∈Z ∈ �, and �� is a constant satisfying ∑�∈Z ����������2 = ��.
(A3)     We also need this assumption:

(A4)     For su¦ciently large � > 0, there is a positive con-
stant � small enough, such that

(A5)     We can choose a positive constant � such that

For convenience, we now formulate system (1) as stochastic 
di�erential equations in ��. Denote by �, �∗, and � the linear 
operators from �� into �� in the following way: for any � = (��)�∈Z ∈ ��,
and

�en we have � = ��∗ = �∗�, (�∗�, v) = (�, �v), and (��, �) ≥ 0 for all �, v ∈ ��.
In the sequel, we consider the probability space (Ω,F , �) 

where

F  is the Borel �-algebra induced by the compact-open topol-
ogy of Ω, and F0 is the Borel �-algebra on Ω. � is the corre-
sponding Wiener measure on (Ω,F ).

Let us recall a �ltration over the parametric space (Ω,F , �, {��}�∈R)

which is the smallest �-algebra generated by random variable �(�2) −�(�1) for every �0 ≤ �1 ≤ �2 ≤ �. �is �-algebra has 
the property: �−1ℎ F

�
�0 = F

�+ℎ
�0+ℎ. So �(�) is adapted to F ��0.

�ere is a classical group {��}�∈R acting on (Ω,F , �), 
which is de�ned by

�en (Ω,F , �, {��}�∈R) is a parametric dynamical system (see 
[9] for more details).

Let �� ∈ �, � ∈ Z denote the element having 1 at position �
and all the other components 0. We have

(11)������(�) − ��(�)���� ≤ ��|� − �|,

(12)
������(��) − ��(v�)���� ≤ �������� − v�����,

(13)������(��)����2 ≤ �2�����������2 + ����������2,

(14)� ≥ 2√2��.

(15)� − � − 4��2���� ≥ 0.

(16)
3�2 − � − 8��2���� ≥ 0.

(17)(��)� = ��+1 − ��, (�∗�)� = ��−1 − ��,

(18)(��)� = −��−1 + 2�� − ��+1.

(19)Ω = {� ∈ C (R, �) : �(0) = 0},

(20)F
�
�0 = �{�(�2) −�(�1) : �0 ≤ �1 ≤ �2 ≤ �},

(21)���(⋅) = �(⋅ + �) − �(�), � ∈ Ω, � ∈ R.

(22)
∑
�∈Z
������(�) = �(�) with (��)�∈Z ∈ �,

is the white noise taking valus in � de�ned on the probability 
space (Ω,F , �).

�en problem (1) and (2) can be written as the following 
abstract form:

with the initial conditions

Next, we de�ne a continuous RDS for lattice system (1) and 
(2) in ��. �is can be achieved by transferring the stochastic 
lattice system into a deterministic one with random  parameters 
in a standard manner. Let �(���) satis�es the one-dimensional 
stochastic di�erential equation

�is equation has a random �xed point in the sense of random 
dynamical systems generating a stationary solution known as 
the stationary Ornstein–Uhlenbeck process (see [9] for more 
details)

In fact, we have that there exists a (��)�∈R-invariant subset {Ω̃} ⊆ Ω of full measure such that �(���) is continuous in �
for every � ∈ Ω̃, and the random variable |�(�)| is tempered. 
Let F̃  and 

∼� be the restrictions of F  and �, respectively. We 
will de�ne a continuous RDS for lattice system (1) and (2) in �� over R and (Ω̃, F̃ , �̃, {��}�∈R). For convenience, from now 
on, we will abuse the notation slightly and write the space (Ω̃, F̃ , �̃) as (Ω,F , �).

Given a bounded nonempty subset � of ��, the Hausdor� 
semidistance between � and the origin in �� is denoted by ‖�‖ = sup�∈����������. Let � = {�(�) : � ∈ Ω} be a family of 
nonempty subsets of ��. Such a � is said to be tempered in �� if for every � > 0,

�roughout the rest of this paper, we always use D  to denote 
the collection of all families of tempered nonempty subsets of ��.

�e system (23) may be rewritten as an integral equation 
in ��,

Theorem 6. Let � > 0, then the following three properties 
hold:

(1)  Equation (28) possesses a unique solution 
�(�, ��) ∈ L 2(Ω,C ([0, �], �));

(2)  We have the following estimate, for every � ∈ Ω:

(23)

���� + ��� + �� = �(�) + �(�(� − �)) + � + ���� , � < 
,

(24)�(� + �) = ��(�), � ∈ [−�, 0].

(25)��(���) + ��(���)�� = ��(�).

(26)�(�) = −�∫0
−∞
����(�)��.

(27)lim
�→−∞
��������(���)���� = 0.

(28)

�(�) = ��(0) + ∫
�

�
(−���(�) − ��(�) + �(�(�)) + �(�(� − �)) + )��

+ �
(�) − �
(	), � ≥ 	, � ∈ Ω.
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By (31)–(36), we get

where

By the similar way, we receive

It follows from (37)–(39) and assumption (A3) that

where �1, �2 are positive constants depending on 
�, �, �, �,�� ,�� , sup�∈[�−�,�]‖�(�)‖, sup�∈[�−�,�]‖�(�)‖.  �is 
tells us that ‖�(�)‖ is bounded by a continuous function, hence 
there exists a global solution on any [�, �]. For every � ∈ Ω,

Taking expectation on both sides of the above inequality, we 
known that �(�) ∈ L 2(Ω,C ([�, �], �)). It implies that (28) 
has a global solution �(�) ∈ L 2(Ω,C ([�, �], �)).

(2)  By (41) and �(�) = �(�) − ��(�), for every � ∈ Ω, we 
can conclude (29).

(3)  Let ��,�1(�), ��,�(�) ∈ ��, �������,�1(�)�����, ������,�(�)���� < �0 for some �0 > 0, and �1(�) =: �(�, ��,�1(�)), �(�) =: �(�, ��,�(�)) be the 
corresponding solutions of (28). �en it follows from 
(28) that

(35)−��(��(�), �(�)) ≤ �8 ‖�(�)‖2 + 2�(��)2‖�‖2‖�(�)‖2,
(36)−��(�(�), �(�)) ≤ �8 ‖�(�)‖2 + 2�(��)2‖�(�)‖2.

(37)

‖�(�)‖2 ≤ ������(0) − ��(�)����2 − �∫�
�
‖�(�)‖2��

+ 8��2�∫
�−�

�−�
‖�(�)‖2�� + 8�(���)

2∫
�−�

�−�
‖�(�)‖2��

+ 4���(� − �) + 4�∫
�

�

����
����2�� + 4�(	�)2∫
�

�
‖�‖2‖�(�)‖2��

+ 4�(��)2∫
�

�
‖�(�)‖2�� + 2�2∫�

�
(1 + ‖�(�)‖�ℓ� + ‖�(�)‖ℓ1)��,

(38)

8
��
2
�∫
�−�

�−�
‖�(�)‖2�� ≤ 8��

2
�∫
�

�−�
‖�(�)‖2��

= 8��
2
�(∫
�

�−�
‖�(�)‖2�� + ∫

�

�
‖�(�)‖2��)

≤ 8��
2
�(� sup

�∈[�−�,�]
‖�(�)‖ + ∫

�

�
‖�(�)‖2��).

(39)

8�(���)2∫
�−�

�−�
‖�(�)‖2�� ≤ 8�(���)2(� sup

�∈[�−�,�] ‖�(�)‖ + ∫
�

�
‖�(�)‖2��).

(40)

‖�(�)‖2 ≤ �2������(0) − ��(�)����2
+ �1∫�

�
(‖�(�)‖2 + ‖�(�)‖�ℓ� + ‖�(�)‖ℓ1 + ���������2 + 1)��,

(41)
sup
�∈[�,�]
‖�(�)‖2 ≤�(������(0) − ��(�)����2 + ∫�

�
(‖�(�)‖2

+ ‖�(�)‖�ℓ� + ‖�(�)‖ℓ1 + ���������2)��).

  

(3)  e solution of (28) depends continuously on the ini-
tial data ��, that is to say, for all � ∈ Ω, the mapping 
�� ∈ � �→ �(⋅, �, ��) ∈ C ([0, �], �) is continuous.  

Proof.     

(1)  Set �(�) = �(�) − ��(�). For every � ∈ Ω, equation (28) 
has a solution � ∈ L 2(Ω,C ([�, �], �)) if and only if

has a solution � ∈ L 2(Ω,C ([�, �], �)) for every � ∈ [0, �] and 
every � ∈ Ω. For each �xed � ∈ Ω, (30) becomes a determin-
istic equation. As we know, it has a local solution � ∈ C ([�, ����], �), where [�, ����] is the maximal interval 
of the existence of the solution. Next we prove this local solu-
tion is a global one.

Suppose � ∈ Ω, from (30) we have

By the assumption (A1) and Young’s inequality, we obtain 

It follows from assumption (A2) and Young’s inequality that

Utilizing Young’s inequality, we gain the following three 
inequalities:

(29)

sup
�∈[�,�]
‖�(�)‖2 ≤ �(������(0) − ��(�)����2 + �2 sup

�∈[�,�]
‖�(�)‖2

+∫�
�
(‖�(�)‖2 + ‖�(�)‖�ℓ� + ‖�(�)‖ℓ1 + ���������2)�);

(30)

�(�) = ��(0) + ∫
�

�
(−���(�) − ��(�) + �(�(�) + ��(�)) + (�(� − �)

+��(� − �)) + 
 − ����(�) − ���(�))	� − ��(�),

(31)

‖�(�)‖2 = ������(0) − ��(�)����2 + 2∫�
�
[−�(��(�), �(�)) − �‖�(�)‖2

+(�(�(�) + ��(�)), �(�)) + (	(�(� − �) + ��(� − �)), �(�))
+(�, �(�)) − ��(��(�), �(�)) − ��(�(�), �(�))]��.

(32)

(�(�(�) + ��(�)), �(�))
= (�(�(�) + ��(�)), �(�) + ��(�)) − (�(�(�) + ��(�)), ��(�))
≤ ∑
�∈Z
(−�1������� + ������(�)������ + �1,�)
+ �∑
�∈Z
((�2������� + ������(�)������−1 + �2,�)����������(�)�����)

≤ ∑
�∈Z
�1,� + 
1∑

�∈Z

����������(�)�������∑
�∈Z
(�2,�����������(�)�����)

≤ 
2(1 + ‖�(�)‖�ℓ� + ‖�(�)‖ℓ1),

(33)

(�(�(� − �) + ��(� − �)), �(�)) ≤ �8 ‖�(�)‖2 + 4�2�∑�∈Z
������(� − �)����2

+ 4�(��)
2∑
�∈Z

�����������(� − �)�����2 + 2��.

(34)(�, �(�)) ≤ �8 ‖�(�)‖
2 + 2�
���������2,
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4. Existence of Pullback Attractors

�is section is devoted to the proof of existence of tempered 
pullback attractors for the systems (1) and (2) in ��. We �rst 
show the existence of the absorbing set for the system (23). 
�en we make uniform estimate on the tails of solutions of 
systems (1) and (2). Finally we derive the theorem for the 
existence of the tempered pullback attractors.

Theorem 8. ere exists a ��-invariant set Ω� ⊂ Ω with full P
measure and an absorbing set �(�), � ∈ Ω�, for Φ(�, �, �, ��(�)), 
that is to say, there is an absorbing time � = �(�, �) > 0, for 
each � ∈ D , � ∈ Ω� and � ≥ � such that

what is more, � ∈ D .

Proof. We apply an Ornstein–Uhlenbeck process on metric 
dynamical system (Ω,F , �, {��}) in �. Suppose

Moreover, there is a ��-invariant set Ω� ⊂ Ω with full P measure 
such that, for all � ∈ Ω�, (1) the mapping �→ �(���) is con-
tinuous; (2) the random variable �����(�)���� is tempered.

Set v(�) = �(�) − ��(���), where �(�) is a solution of (23). 
We have

with the initial conditions

Taking the inner product of (54) with v(�), we can obtain

By using the assumption (A1) and Young’s inequality, we arrive 
at

where � is a positive constant depending only on �, �, �1, �2,∑�∈Z �1,�,∑�∈Z �2,�.

(51)Φ(�, �−��,�(�−��)) ⊂ �(�),

(52)�(���) =: −�∫0
−∞
������(�)�� � > �, � > 0,

(53)�� + ���� = �w(�) � > �.

(54)
�v�� = − ��v − �v + �(v(�) + ��(���)) + �(�, v(� − �)+��(��−��)) + 	 − ����(���), � > �,

(55)v(� + �) = v�(�), � ∈ [−�, 0].

(56)

12 ���‖v‖2 + �(�v, v) + �‖v‖2 = (�(v + ��), v)+ (�(�, v(� − 
) + ��(	�−��)), v)+ (�, v) − ��(��, v).

(57)

(�(v + ��), v) = (�(v + ��), v + ��) − (�(v + ��), ��)
≤ ∑
�∈Z
(−�1����v� + �������� + �1,�)
+∑
�∈Z
((�2����v� + ��������−1 + �2,�)�����������)

≤ �(1 + ����������ℓ� + ���������ℓ1),

Set

By the assumption of local Lipschitz condition of �, we know 
there exists a constant �� such that on the ball �(0, �),
So

By Schwarz inequality, Young’s inequality and the assumption 
(A2), we get

where �1 = (1/2)∫��−��2������1(�) − �(�)����2��. �erefore, we infer

By Gronwall’s inequality, we �nd

Hence

�is inequality implies the uniqueness and continuous 
dependence on the initial data of the solution of (30). �is 
proof is completed.

Similar to the proof of the �eorem 7 in [8] with minor 
modi�cations, we can prove. ☐

Theorem 7. System (27) generates a continuous RDS (Φ(�, �))�≥� over (Ω,F , �, {��}�∈R) and R, where

for each � ≥ �, � ∈ Ω.

(42

�����1(�) − �(�)����2 = �������,�1(�) − ��,�(�)�����2 + 2∫
�

�
[−�(�(�1(�) − �(�)), �1(�) − �(�))

− ������1(�) − �(�)����2 + (�(�1(�)) − �(�(�)), �1(�) − �(�))+((�1(� − �)) − (�(� − �)), �1(�) − �(�))]
�.

(43)

� = �(�20 + �2 sup
�∈[�,�]
‖�(�)‖2 + ∫�

�
(‖�(�)‖2 + ‖�(�)‖�ℓ�

+‖�(�)‖ℓ1 + ���������2)��).

(44)�����(�1(�)) − �(�(�))���� ≤ �������1(�) − �(�)����.

(45)
(�(�1(�)) − �(�(�)), �1(�) − �(�)) ≤ �������1(�) − �(�)����2.

(46)

∫
�

�
(�(�1(� − �)) − �(�(� − �)), �1(�) − �(�))��

≤ 12∫
�

�
(�����(�1(� − �)) − �(�(� − �))����2 + �����1(�) − �(�)����2)��

≤ 12∫
�

�
(�2������1(� − �) − �(� − �)����2 + �����1(�) − �(�)����2)��

≤ 12∫
�

�
(�2� + 1)�����1(�) − �(�)����2�� + 1,

(47)

�����1(�) − �(�)����2 ≤ (��2� + 1)�������,�1(�) − ��,�(�)�����2
+ (2�� + �2� − 2� + 1)∫�

�

�����1(�) − �(�)����2��.

(48)

�����1(�) − �(�)����2 ≤ �������,�1(�) − ��,�(�)�����2�|2��+�2�−2�+1|(�−�) , � ∈ [�, �].

(49)
sup
�∈[�,�]

�����1(�) − �(�)����2 ≤ �������,�1(�) − ��,�(�)�����2�|2��+�2�−2�+1|(�−�).

(50)Φ(�, �, �, ��(�)) = �(�, �, �, ��(�)) � ∈ [−�, 0],
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In (65), with � replaced by �−��, from (66), we have

Choose

�en, �(�) is tempered and 
∼� (�) = {v��� : ‖v‖2 ≤ �(�)} is 

an absorbing set for v(�, �, v�(�, �)). i.e., there is an absorbing 
time � = �(�, �) > 0, for each � ∈ D , � ∈ Ω�, and � ≥ � such 
that v(�, �−��,�(�−��)) ⊂ ∼� (�). Furthermore, 

∼� ∈ D .
Let

�en �(�) is an absorbing set for Φ(�, �, ��(�)) because Φ(�, �, ��(�)) = v(�, �, ��(�) − ��(���)) + ��(���) and � ∈ D . 
�is completes the proof of the theorem.  ☐

In order to prove that the random dynamical system Φ(�, �, ��(�, �)) is asymptotic compact, we require the follow-
ing lemma.

Lemma 9. Let �(�) be the absorbing set and ��(�, �) ∈ �(�) 
the initial data. en for each � > 0, there exist an absorbing 
time �(�, �) > 0 and �(�, �) > 0 such that for every � ≥ �(�, �), the solution of (1) meets

Proof. Let �(�) be a smooth cut-o� function with

where 0 ≤ �(�) ≤ 1, � ∈ R+, and with a constant � such that ������(�)���� ≤ �.
With � ∈ Z+, taking the inner product of (54) with the 

sequence (�(|�|/�)v�)�∈Z , we obtain

(66)
1 + �����(���)�����ℓ� + �����(���)����ℓ1 + �����(���)����2 ≤ �(���) ≤ �(�)�(�/2)|�|.

(67)

����v(�, �−��, v�(�, �−��))����2 ≤ ����v�(�, �−��)����2��(�−�)

+ �∫
�

�
��(�−�)(1 + �����(��−��)�����ℓ� +�����(��−��)����ℓ1 + �����(��−��)����2)�

+ 2��(�� + 2
����
����2) ≤ ����v�(�, �−��)����2�−�(�−�)

+ �∫
0

�−�
���(1 + ������(���)

�����
�
ℓ� +
������(���)

�����ℓ1 +
������(���)

�����
2)��

+ 2��(�� + 2
����
����2) ≤ ����v�(�, �−��)����2�−�(�−�) + 2��(�)� +

2
��(�� + 2

����
����2).

(68)�(�) = 4��(�)� + 4��(�� + 2���������2).

(69)�(�) = {� ∈ �� : ‖�‖2 ≤ 2�(�) + 2(������(�)����)2}.

(70)sup
−�≤�≤0
∑
|�|≥�

������(�, �−��, ��(�, �−��))����2 ≤ �.

(71)�(�) = {{{
0, 0 ≤ � ≤ 1,�(�), 1 ≤ � ≤ 2,1, � ≥ 2,

(72)

12 ��� ∑�∈Z �(
|�|� )����v�����2 + �∑�∈Z �(

|�|� )(�v)�v�
+ �∑
�∈Z
�( |�|� )����v�����2 = ∑�∈Z �(

|�|� )��(v� + 
	�)v�
+ ∑
�∈Z
�( |�|� )��(v�(� − �) + 
	�(��−���))v�

+ ∑
�∈Z
�( |�|� )��v� − �
∑�∈Z �(

|�|� )(�	)�v�

Young’s inequality and the assumption (A2) also yield

Using (56)–(60), we have

Integrating (61) from � to � and estimating the following terms, 
we �nd that

and similarly,

It follows from (61)–(63) and the assumption (A4) that

�erefore,

Since �(���) is continuous and �����(�)���� is tempered, (1 + ����������ℓ� + ���������ℓ1 + ���������2) is tempered. From proposition 4.3.3 
[13] P187, there is a tempered function �(�) > 0 such that

(58)

(�(v(� − �) + ��(��−��)), v)
≤ 1�������(v(� − �) + ��(��−��))�����2 + �4 ‖v‖2
≤ �4 ‖v‖2 + 1� ∑�∈Z (�

2
�
����v�(� − �) +���(��−���)�����2 + ����������2)

≤ �4 ‖v‖2 + 2��2�����v(� − �)����2 + 2�(���)2∑�∈Z
�������(��−���)�����2 + 1���,

(59)(�, v) ≤ �8 ‖v‖
2 + 2�
���������2,

(60)−��(��, v) ≤ �8 ‖v‖2 + 2�(��)2‖�‖2���������2.

(61)

���(���‖v‖2) + (� − �)���‖v‖2
≤ ���[2�(1 + ����������ℓ� + ���������ℓ1) +4��2�����v(� − �)����2
+4�(���)2������(
�−�	)�����2 +2��� + 4����������2 + 4�(��)2‖�‖2���������2].

(62)

4
��
2
�∫
�

�
�������v(� − �)����2�� ≤ 4��2�(∫

�

�−�
��(�+�)‖v(�)‖2��

+∫�
�
��(�+�)‖v(�)‖2��) ≤ 4��2�� sup

�∈[�−�,�]
��(�+�)‖v(�)‖2

+ 4��2�∫
�

�
��(�+�)‖v(�)‖2��,

(63)

4�(���)2∫
�

�
���������(��−��)�����2�� ≤ �1 + 4�(���)2∫

�

�
��(�+�)�����(���)����2��.

(64)

���‖v(�)‖2 ≤ ���‖v(�)‖2 + �∫�
�
���(1 + ����������ℓ� + ���������ℓ1 + ���������2)��+

+ 2�(�� + 2���������2)���.

(65)

����v(�, �, v�(�, �))����2 ≤ ����v�(�, �)����2��(�−�) + �∫
�

�
��(�−�)(1 + �����(���)�����ℓ�

+�����(���)����ℓ1 + �����(���)����2)�� + 2	�(�� + 2
���������2).
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By (72), (73), (75)–(78), we arrive at

where ∑�∈Z�(|�|/�)����������2 ≤ ∑�∈Z����������2 = ��.
Integrating the above inequality from �� to �, we have

It’s easy to know that

where �1 = � ∑
�∈Z
�(|�|/�)sup�∈[��−�,��]��(�+�)����v�(�)����2. And

where �2 = �∑�∈Z�(|�|/�)sup�∈[��−�,��]��(�+�)������(����)����2.
Hence, from (80)–(82) and the assumption (A5), then mul-

tiplying both sides of it by �−��, we get, for � ≥ �� = ��(�) > �,

(79)

12 ������∑�∈Z �(
|�|� )����v�����2 + (3�4 − �2)���∑�∈Z �(

|�|� )����v�����2

≤ ���[2��� ‖v‖2 + �∑�∈Z �(
|�|� )(1 + ����������� + ����������)

+ 4��2�∑�∈Z �(
|�|� )����v�(� − �)����2 + 4�(���)2∑�∈Z �(

|�|� )�������(��−���)�����2

+ 2��� + 2� ∑|�|≥� ����������
2],

(80)

���∑
�∈Z
�( |�|� )
����v�����2 + (3�2 − �)∫

�

��
���∑
�∈Z
�( |�|� )
����v�����2�

≤ ���� ∑
�∈Z
�( |�|� )
����v�(	�, ω, v�(�, �))����2

+ 4��� ∫
�

��
�������v(�, �, v�(�, �))����2� + 2�∫

�

��
���∑
�∈Z
�( |�|� )

⋅ (1 + ����������� + ����������)� + 8��
2
�∫
�

��
���∑
�∈Z
�( |�|� )
����v�(� −  )����2�

+ 8�(��)
2∫
�

��
���∑
�∈Z
�( |�|� )
�������(��−���)

�����
2�

+ 4�∫
�

��
���(�� + ∑

|�|≥�

����������2)�.

(81)

∫
�

��
���∑
�∈Z
�( |�|� )
����v�(� − �)

����
2�� ≤ ∫

�

��−�
��(�+�) ∑

�∈Z
�( |�|� )
����v�(�)
����
2��

= ∫
��

��−�
��(�+�) ∑

�∈Z
�( |�|� )
����v�(�)
����
2�� + ∫

�

��
��(�+�) ∑

�∈Z
�( |�|� )
����v�(�)
����
2��

≤ 
1 + ∫
�

��
��(�+�) ∑

�∈Z
�( |�|� )
����v�(�)
����
2��,

(82)
∫
�

��
���∑
�∈Z
�( |�|� )�������(��−���)�����

2�� ≤ �2 + ∫�
��
��(�+�)∑

�∈Z
�( |�|� )������(����)����2��,

(83)

∑
�∈Z
�( |�|� )
����v�(�, �, v�(�, �))����2 ≤ ��(��−�) ∑

�∈Z
�( |�|� )
����v�(�, �, v�(�, �))����2

+ 4
	� �
−��∫
�

��
�������v(�, �, v�(�, �))����2��

+ 2
�−��∫
�

��
���∑
�∈Z
�( |�|� )(1 +

����������� + ����������)��

+ 8�(
��)
2�−��∫

�

��
��(�+�) ∑

�∈Z
�( |�|� )
����������2��

+ 4��(
� + ∑|�|≥�
���� �����2)(1 − ��(��−�)) + (
3 + 
4)�−��,

We now make the following estimate.

Using the property of the smooth cut-o� function �(�), we 
have

which tells us that

It follows from the assumption (A1) and Young’s inequality 
that

where � is a positive constant depending on �, �, �1, �2,∑�∈Z �1,�,∑�∈Z �2,�, �(|�|/�) only.
By the assumption (A2) and Young’s inequality, we get

(73)

�∑
�∈Z
�( |�|� )(�v)�v� = �∑�∈Z (v�+1 − v�)
⋅ [(�( |� + 1|� ) − �( |�|� ))v�+1 + �(|�|� )(v�+1 − v�)]
= �∑
�∈Z
(�(|� + 1|� ) − �( |�|� ))(v�+1 − v�)v�+1

+ �∑
�∈Z
�( |�|� )(v�+1 − v�)2

≥ �∑
�∈Z
(�(|� + 1|� ) − �( |�|� ))(v�+1 − v�)v�+1.

(74)

����������∑�∈Z (�(
|� + 1|� ) − �( |�|� ))(v�+1 − v�)v�+1

����������
≤ ∑
�∈Z

������(��)����� ����v�+1 − v���������v�+1����
≤ �� ∑�∈Z (����v�+1����

2 + ����v���������v�+1����) ≤ 2�� ‖v‖2,

(75)�∑
�∈Z
�( |�|� )(�v)�v� ≥ −2��� ‖v‖2.

(76)

∑
�∈Z
�( |�|� )��(v� + ���)v� = ∑�∈Z �(

|�|� )��(v� + ���)(v� + ���)
−∑
�∈Z
�( |�|� )��(v� + ���)���

≤ ∑
�∈Z
�( |�|� )(−�1v� + ���� + �1,�)
+ �∑
�∈Z
�( |�|� )((�2v� + ����−1 + �2,�)��)

≤ 
∑
�∈Z
�( |�|� )(1 + ��� + ��),

(77)

∑
�∈Z
�( |�|� )��(v�(� − �) + ���(��−��))v�
≤ 
8 ∑�∈Z �(

|�|� )����v�����2 + 4
 ∑�∈Z �(
|�|� )

⋅ �2�(����v�(� − �)����2 + ��������(��−��)�����2) + 2
 ∑�∈Z �(
|�|� )����������2,

(78)

∑
�∈Z
�( |�|� )��v� = ∑|�|≥�

�( |�|� )��v� ≤
�
8 ∑|�|≥�
�( |�|� )
����v�����2 + 2� ∑|�|≥�

����������2.
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Since � ∈ �, there is �3(�, �) > 0, we obtain, for � > �3(�, �) > 0,

By the same argument, we have �5(�, �) > ��(�), when � > �5, 
satisfying

Obviously, there is a �6(�, �) > ��(�), when � > �6, ful�lling

Take �(�, �) = max{�1, �2, �3, �4, �5, �6} < ��(�),�(�, �) =
max{�1, �2, �3} < 0. We collect (83)–(94) to yield, for every � > �, � > �,

which concludes the proof.
With the same method like the proof of the �eorem 11 in 

[8], we can obtain the asymptotic compactness of the contin-
uous RDS Φ.

Theorem 10. Φ is asymptotically compact for all � ∈ Ω�: 
each sequence �� ∈ Φ(��, �−���,�(�, �−���)) has a convergent 
subsequence in �� as �� →∞.

We are now in a position to present our main result about 
the existence of D-pullback attractor.

Theorem 11. Suppose that assumptions (A1)–(A6) hold. en 
the continuous RDS Φ associated with problems (1) and (2) 
has a unique D-pullback attractor, which is characterized by, 
for each � ∈ Ω, 

Proof. Note that the existence, uniqueness and 
characterization of the D-pullback attractor of Φ follows from 
Proposition 5 immediately, based on �eorem 8. Lemma 9. 
and �eorem 10. ☐

5. Ergodicity of the Systems

We discuss the ergodicity of the systems in this section.
�ere exists at least an invariant measure for the random 

dynamical system Φ(�, �, ��(�, �)) induced by (23) and (24) 
(see [10]). �e Markov semigroup {��}�≥0  associated with them 
is denoted by

(92)
4��(�� + ∑|�|≥�

����������2) ≤ 128�.

(93)
����������−
4��(�� + ∑|�|≥�

����������2)��(��−�)
���������� ≤
128.

(94)(�3 + �4)�−�� ≤ 128�.

(95)

sup
−�≤�≤0
∑
|�|≥2�

������(�, �−��, ��(�, �−��))����2

≤ sup
−�≤�≤0
∑
�∈Z
�( |�|� )
������(�, �−��, ��(�, �−��))����2

≤ 2 sup
−�≤�≤0
∑
|�|≥�
(����v�(�, �−��, v�(�, �−��))����2 + �2������(�−��)����2) ≤ 	,

(96)A(�) = ⋂
�≥��(�)
⋃
�≥�
Φ(�, �−��,�(�−��)).

where �3 = (8/�)�2��1, �4 = (8/�)(���)2�2.
We replace � by �−��, and estimate each term on the right-

hand side of the above inequality. With � instead of �� in (65), 
we have

As we know, v�(�, �−��) ∈ �(�−��), namely, ����v�(�, �−��)���� ≤ �(�−��) (tempered), so there exists a �1(�, �) > ��(�), such that when � > �1,

Also by (65), we estimate

where � − � ̸= 0. �erefore there exist �2(�, �) > ��(�) and �1(�, �) > 0, such that as � > �2, � > �1,

Using (66), for � > �2(�, �) > 0 we deduce

so there is a �3(�, �) > ��(�), such that as � > �3,

Applying (66), we also get

�us there exists �4(�, �) > ��(�), such that as � > �4,

(84)

��(��−�) ∑
�∈Z
�( |�|� )
����v�(��, �−��, v�(�, �−��))����2

≤ ��(��−�)����v(��, � − ��, �−��, v�(�, �−��))����2
≤ ��(��−�)(����v�(�, �−��)����2�−�(��−�) + 2	�(�)� + 2��(	� + 2���������2)).

(85)��(��−�) ∑
�∈Z
�( |�|� )����v�(��, �−��, v�(�, �−��))����2 ≤ 128�.

(86)

4��
� �
−��∫
�

��
�������v(�, �−��, v�(�, �−��))����2��

≤ 4��� �
−��[ �

��

� − ����v�(�, �−��)����2 (�(�−�)� −�(�−�)��)
+ (2��(�)� + 2��(�� + 2���������2))(��� − ����)],

(87)
4��
� �
−��∫�
��
�������v(�, �−��, v�(�, �−��))����2�� ≤ 128�.

(88)

2��−��∫
�

��
���∑
�∈ℤ
�( |�|� )(1 +

������(�−�)����� + ������(�−�)����)
	

≤ 2�	()� �
−(�/2)�(1 − ��(��−�)),

(89)

2��−��∫�
��
���∑
�∈Z
�( |�|� )(1 + ������(�−��)����� + ������(�−��)����)�� ≤ 128�.

(90)

8
�(���)

2�−��∫
�

��
��(�+�) ∑

�∈ℤ
�( |�|� )
�����(�−�
)����2��

≤ 8�(���)
2�−��∫

�

��
��(�+�)�(
)�−(�/2)���

= 8��(���)
2�(
)�−��−(�/2)�(��(�+�) − ��(��+�)).

(91)
8�(���)

2�−��∫�
��
��(�+�)∑

�∈Z
�( |�|� )������(�−��)����2�� ≤ 128.
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For �0 ∈ R and �0 ≤ � < 2� ≤ �, we obtain

Hence, we know there is a random variable � such that

For arbitrary �� ∈ ��, we are led to

�is tells us that, the law � = L (�) is the unique invariant 
measure for Markov semigroup {��}�≥0. �is accomplishes the 
proof. ☐
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