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In this paper, we consider the existence of solutions for the discrete mixed boundary value problems involving (p, q)-Laplacian
operator. By using critical points theory, we obtain the existence of at least two positive solutions for the boundary value problem
under appropriate assumptions on the nonlinearity.

1. Introduction

In recent years, with the development of mechanical engi-
neering, control system, computer science, and economics,
the existence of solutions of difference equations has
attracted wide attention (see [1–6]). For example, applying
Ricceri variational principle to obtain the existence of
multiple solutions [7–9], taking the invariant sets of
descending flow to prove the existence of sign-changing
solutions [10], making the linking theorem to get the ex-
istence and multiplicity of periodic solutions [11], and using
critical point theory to obtain the existence of homoclinic
solutions [12–15] and heteroclinic solutions [16].

As we know, the fixed-point method and upper and
lower solution techniques are important tools to solve the
existence of solutions for boundary value problems (see

[17, 18]). But recently, it is more common to use critical
point theory to study Dirichlet boundary value problems
(see [19–23]). More result on difference equations by using
critical point theories can be referred to [24–27].

In [28], D’Aguı̀ et al. established the existence of at least
two positive solutions for the following discrete Dirichlet
boundary value problem:

−Δ ϕp(Δu(k − 1))􏼐 􏼑 + q(k)ϕp(u(k)) � λf(k, u(k)), k ∈ Z(1, N),

u(0) � u(N + 1) � 0,

⎧⎨

⎩

(1)

where q(k)≥ 0 for all k ∈ 1, 2, . . . , N{ }.
Unlike this, D’Aguı̀ et al. in [29] proved that there are at

least two nonzero weak solutions for the following mixed
boundary value problem:

− q(x) u′(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p−2

u′(x)􏼐 􏼑′ + s(x)|u(k)|p−2u(x) � λf(x, u(x)), x ∈ [a, b],

u(a) � u′(b) � 0,

⎧⎨

⎩ (2)

where p> 1, q, s ∈ L∞([a, b]) with q0 � ess inf [a,b]q> 0, s0 �

ess inf [a,b]s≥ 0, f: [a, b] × R⟶ R is an L1-Carathéodory
function and λ is a real positive parameter.

As a discrete analogy of the abovementioned problem,
we consider the existence of positive solutions for the fol-
lowing discrete mixed boundary value problem:
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−Δ ϕp(Δu(k − 1))􏼐 􏼑 + s(k)ϕq(u(k)) � λf(k, u(k)), k ∈ Z(1, N),

u(0) � Δu(N) � 0,

⎧⎨

⎩ D
f

λ􏼐 􏼑 (3)

where Z(a, b) denote the discrete interval a, a + 1, . . . , b{ }

for any integers a and b with a< b, N be a positive integer,
f(k, u) is continuous in u for each k ∈ Z(1, N), Δu(k) �

u(k + 1) − u(k) is the forward difference operator,
ϕr: R⟶ R is the r-Laplacian given by ϕr(u) � |u|r− 2u

with u ∈ R, 1< q≤p< +∞, s(k)≥ 0 for all k ∈ Z(1, N), and
λ is a positive parameter.

In this paper, under suitable assumptions on the non-
linearity f, we use the theory of two nonzero critical points
(see [30]) to ensure that there are at least two nonzero
solutions for problem (D

f

λ ). )e two nonzero critical points
theorem is an appropriate combination of local minimum
theorem (see [31]) and classical Ambrosetti–Rabinowitz
theorem (see [32]). An important hypothesis of mountain
pass theorem is Palais–Smale condition. It satisfies the ap-
plication of infinite dimensional space by requiring the
condition that the nonlinear term is stronger than p-
superlinearity at infinity. In order to obtain the existence of
two nonzero solutions, we can assume the classical
Ambrosetti–Rabinowitz condition and nonlinear algebraic
condition (see (40) in )eorem 2) hold, that is, more
widespread than the p-sublinearity at zero. Moreover, when
we require that f(k, 0)≥ 0 for all k ∈ Z(1, N), we can use
strongmaximum principle to obtain the existence of positive
solutions, which has been proved in Lemma 2.

Let s∗ � min s(k): k ∈ Z(1, N){ }, a special case of our
main result is stated as follows.

Theorem 1. Let f: R⟶ R be a continuous function such
that

lim
t⟶0+

f(t)

tp−1
4(a)

lim
t⟶+∞

f(t)

tp−1
4(b)

then, for each λ ∈ (0, (1 + s∗N
p−1/pNp)min 􏼈supc>0(cq/

max|ξ|≤c 􏽒
ξ
0 f(t)dt), supc>0(cp/max|ξ|≤c 􏽒

ξ
0 f(t)dt)􏼉), the

problem
−Δ ϕp(Δu(k − 1))􏼐 􏼑 + s(k)ϕq(u(k)) � λf(u(k)), k ∈ Z(1, N),

u(0) � Δu(N) � 0,

⎧⎨

⎩

(5)

admits at least two positive solutions.

)e structure of the article is as follows. In Section 2,
some basic definitions and properties are given. In Section 3,
we give the main results. Under suitable hypothesis, Lemma
1 is used to obtain that the problem (D

f

λ ) possesses at least
two positive solutions. Finally, some examples are given to
illustrate our main results.

2. Preliminaries

In this section, we recall some definitions, notations, and
properties. Consider the N-dimensional Banach space:

S � u : Z(0, N + 1)⟶ R : u(0) � Δu(N) � 0{ }, (6)

and define the norm

‖u‖ � 􏽘
N+1

k�1
|Δu(k − 1)|

p⎛⎝ ⎞⎠

1/p

, (7)

and ‖u‖∞ � max |u(k)| : k ∈ Z(1, N){ } is another norm in S.

Proposition 1. -e following inequality holds:

‖u‖∞ ≤max
pNp−1

1 + s∗N
p−1􏼠 􏼡

1/q
‖u‖p

p
+

􏽐
N
k�1 s(k)|u(k)|q

q
􏼠 􏼡

1/q

,
pNp−1

1 + s∗N
p−1􏼠 􏼡

1/p
‖u‖p

p
+

􏽐
N
k�1 s(k)|u(k)|q

q
􏼠 􏼡

1/p
⎧⎨

⎩

⎫⎬

⎭. (8)

Proof. Let u ∈ S, then there exist k∗ ∈ Z(1, N) such that
|u(k∗)| � max |u(k)| : k ∈ Z(1, N){ }.

Since

u k
∗

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘

k∗

k�1
Δu(k − 1)|≤ 􏽘

k∗

k�1
1)

1−1/p
􏽘

k∗

k�1
|Δu(k − 1)|

p
)
1/p ≤N

1−1/p
‖u‖,⎛⎝⎛⎝

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(9)
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then

‖u‖
p
∞ ≤N

p−1
‖u‖

p
. (10)

If ||u||∞ > 1, then

1 + s∗N
p−1( 􏼁‖u‖q

∞
p

≤
‖u‖p
∞ + Np−1 􏽐

N
k�1 s(k)|u(k)|q

p

≤
Np− 1

p
‖u‖

p
+ 􏽘

N

k�1
s(k)|u(k)|

q⎛⎝ ⎞⎠≤
Np−1

p
‖u‖

p
+

Np−1

q
􏽘

N

k�1
s(k)|u(k)|

q
,

(11)

that is,

‖u‖∞ ≤
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/q
‖u‖p

p
+

􏽐
N
k�1 s(k)|u(k)|q

q
􏼠 􏼡

1/q

.

(12)

If ‖u‖∞ ≤ 1, then

1 + s∗N
p− 1( 􏼁u

p
∞

p
≤

‖u‖p
∞ + Np− 1 􏽐

N
k�1 s(k)|u(k)|q

p

≤
Np− 1

p
‖u‖

p
+

Np− 1

q
􏽘

N

k�1
s(k)|u(k)|

q
,

(13)

that is,

‖u‖∞ ≤
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/p
||u||p

p
+

􏽐
N
k�1 s(k)|u(k)|q

q
􏼠 􏼡

1/p

.

(14)

In summary, we have

‖u‖∞ ≤max
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/q
‖u‖p

p
+

􏽐
N
k�1 s(k)|u(k)|q

q
􏼠 􏼡

1/q

,
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/p
‖u‖p

p
+

􏽐
N
k�1 s(k)|u(k)|q

q
􏼠 􏼡

1/p
⎧⎨

⎩

⎫⎬

⎭. (15)

Put

F(k, t) ≔ 􏽚
t

0
f(k, ξ)dξ, ∀(k, t) ∈ Z(1, N) × R, (16)

and consider the function Jλ: S⟶ R for all λ> 0 by

Jλ � Φ − λΨ, (17)

where

Φ ≔ Φ1 +Φ2,Φ1(u) �
‖u‖p

p
,

Φ2(u) �
􏽐

N
k�1 s(k)|u(k)|q

q
,

Ψ(u) ≔ 􏽘
N

k�1
F(k, u(k)).

(18)

It is clear that Φ1,Φ2,Ψ ∈ C1(S,R) and their Gâteaux
derivatives at the point u ∈ S are given by

Φ1′(u)(v) � 􏽘
N+1

k�1
ϕp(Δu(k − 1))v(k)

� − 􏽘
N+1

k�1
ϕp(Δu(k − 1))v(k − 1)

� 􏽘
N

k�1
ϕp(Δu(k − 1))v(k) − 􏽘

N

k�0
ϕp(Δu(k))v(k)

� − 􏽘
N

k�1
Δϕp(Δu(k − 1))v(k),

Φ2′(u)(v) � 􏽘
N

k�1
s(k)ϕq(u(k))v(k),

Ψ′(u)(v) � 􏽘
N

k�1
f(k, u(k))v(k),

(19)
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for all u, v ∈ S. So, we have

Jλ′(u)(v) � 􏽘
N

k�1
−Δ ϕp(Δu(k − 1))􏼐 􏼑 + s(k)ϕq(u(k)) − λf(k, u(k))􏽨 􏽩v(k). (20)

Hence, a critical point u of Jλ is a solution of problem
(D

f

λ ).
Now, we recall a definition and a two nonzero critical

points theorem for the reader’s convenience. □

Definition 1. Let X be a real Banach space; we say that a
Gâteaux differentiable function Jλ: X⟶ R satisfies the
(PS)-condition, if any sequence un􏼈 􏼉n∈N⊆X such that

(i) Jλ(un)⟶ c ∈ R, as n⟶ +∞
(ii) Jλ′(un)⟶ 0, as n⟶ +∞, has a convergent

subsequence

Lemma 1. Let X be a real Banach space and Φ,Ψ ∈ C1(S,R)

such that infX(Φ) � Φ(0) � Ψ(0) � 0. Assume that there are
r ∈ R and ω ∈ X, with 0<Φ(ω)< r, such that

supu∈Φ−1(−∞,r]Ψ(u)

r
<
Ψ(ω)

Φ(ω)
, (21)

and for each

λ ∈ Λ �
Φ(ω)

Ψ(ω)
,

r

supu∈Φ−1(−∞,r]Ψ(u)
􏼠 􏼡, (22)

the functional Jλ � Φ − λΨ satisfies the (PS)-condition and it
is unbounded from below.

)en, for each λ ∈ Λ, the functional Jλ admits at least two
nonzero critical points uλ,1, uλ,2 such that Jλ(uλ,1)< 0
< Jλ(uλ,2).

In order to obtain the positive solution of problem (D
f

λ ),
we establish the following strong maximum principle.

Lemma 2. Fix u ∈ S such that either

u(k)> 0 or −Δ ϕp(Δu(k − 1))􏼐 􏼑 + s(k)ϕq(u(k))≥ 0,

(23)

for all k ∈ Z(1, N). -en, either u> 0 in Z(1, N) or u ≡ 0.

Proof. Let j ∈ Z(1, N) such that

u(j) � min u(k): k ∈ Z(1, N){ }. (24)

If u(j)> 0, then it is easy know that u> 0 in Z(1, N).
If u(j)≤ 0, then by (23), we have

−Δ ϕp(Δu(j − 1))􏼐 􏼑≥ −s(j)ϕq(u(j))≥ 0, (25)

that is,

ϕp(Δu(j))≤ϕp(Δu(j − 1)). (26)

Since ϕp(u) is increasing in u, we have

Δu(j)≤Δu(j − 1). (27)

By the definition of u(j), we know that

Δu(j)≥ 0,

Δu(j − 1)≤ 0.
(28)

By combining (27) with (28), we get u(j + 1) � u(j) �

u(j − 1). If j − 1 � 0, we have u(j) � u(j − 1) � 0. Other-
wise, j − 1 ∈ Z(1, N), replacing j − 1 by j, we know
u(j − 2) � u(j − 1). Continuing in this way, we have
u(j) � u(j − 1) � · · · � u(0) � 0. Similarly, we have
u(j) � u(j + 1) � · · · � u(N + 1). )us, u(k) � u(0) � 0
and ∀k ∈ Z(1, N).

Now, put

F
+
(k, t) � 􏽚

t

0
f k, ξ+

( 􏼁dξ, ∀(k, t) ∈ Z(1, N) × R, (29)

where ξ+
� max ξ, 0{ }.

Define J+
λ � Φ1 +Φ2 − λΨ+ and

Ψ+(u): � 􏽐
N
k�1 F+(k, u(k)). Standard arguments show that

J+
λ ∈ C1(S, R) and the critical points of J+

λ are precisely the
solutions of the following problem:

−Δ ϕp(Δu(k − 1))􏼐 􏼑 + s(k)ϕq(u(k)) � λf k, u+(k)( ), k ∈ Z(1, N),

u(0) � Δu(N) � 0.

⎧⎨

⎩ D
f+

λ􏼐 􏼑 (30)

□
Lemma 3. If f(k, 0)≥ 0 for each k ∈ Z(1, N), any nonzero
critical point of the functional J+

λ is a positive solution of
problem (D

f

λ ).

Proof. Since a critical point of J+
λ is a solution of problem

D
f+

λ , the conclusion follows by the discrete maximum
principle ([33], Proposition 1).
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Next, we suppose that f(k, 0)≥ 0 and f(k, x) � f(k, 0)

for all x≤ 0 and for all k ∈ Z(1, N). Put

L∞ ≔ min
k∈Z(1,N)

liminf
t⟶+∞

F(k, t)

tp
,

􏽥s � 􏽘

N

k�1
s(k),

(31)

we have the following result. □

Lemma 4. If L∞ > 0, then Jλ satisfies (PS)-condition and it is
unbounded from below for all λ ∈ (2pN + 􏽥s − 2p−1/
qL∞, +∞).

Proof. Let λ> 2pN + 􏽥s − 2p− 1/qL∞. We consider a sequence
un􏼈 􏼉n∈N⊆ S such that Jλ(un)⟶ c ∈ R and Jλ′(un)⟶ 0, as

n⟶ +∞. Let u+
n � max un, 0􏼈 􏼉 and u−

n � max −un, 0􏼈 􏼉 for
all n ∈ N. We first prove that u−

n􏼈 􏼉 is bounded. On one hand,
we have

Δu−
n (k − 1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p ≤ − ϕp Δun(k − 1)( 􏼁Δu−

n (k − 1),

s(k)∣u−
n (k)∣q � −s(k)∣un(k)∣q−2

un(k)u
−
n (k),

(32)

for all k ∈ Z(1, N). So,

u
−
n

����
����

p
� 􏽘

N+1

k�1
Δu−

n (k − 1)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

≤ − 􏽘
N+1

k�1
ϕp Δun(k − 1)( 􏼁u

−
n (k) + 􏽘

N�1

k�1
ϕp Δun(k − 1)( 􏼁u

−
n (k − 1)

� − 􏽘
N

k�1
ϕp Δun(k − 1)( 􏼁u

−
n(k) + 􏽘

N

k�1
ϕp Δun(k)( 􏼁u

−
n(k)

� 􏽘
N

k�1
Δϕp Δun(k − 1)( 􏼁u

−
n (k) � −Φ1′ un( 􏼁 u

−
n( 􏼁,

􏽘

N

k�1
s(k) u

−
n(k)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

� − 􏽘
N

k�1
s(k)ϕq un(k)( 􏼁u

−
n (k) � −Φ1′ un( 􏼁 u

−
n( 􏼁.

(33)

On the other hand, we assume that

f(k, u) �
f(k, u), if u> 0,

f(k, 0), if u≤ 0,
􏼨 (34)

for each k ∈ Z(1, N), then

Ψ′ un( 􏼁 u
−
n( 􏼁 � 􏽘

N

k�1
f k, un(k)( 􏼁u

−
n (k)≥ 0. (35)

)erefore,

u
−
n

����
����

p ≤ u
−
n

����
����

p
+ 􏽘

N

k�1
s(k)|u(k)|

q

≤ −Φ1′ un( 􏼁 u
−
n( 􏼁 −Φ2′ un( 􏼁 u

−
n( 􏼁 + λΨ′ un( 􏼁 u

−
n( 􏼁

� −Jλ′ un( 􏼁 u
−
n( 􏼁,

(36)

for all n ∈ N, which leads to ‖u−
n ‖p− 1⟶ 0 as n⟶ +∞.

So, we have ‖u−
n ‖⟶ 0 as n⟶ +∞. It means that there

exists an M> 0 such that u−
n ≤M. From (10) we know that

‖u−
n ‖∞ ≤N1− 1/pM � c, for all k ∈ Z(1, N).

Next, we suppose that the sequence un􏼈 􏼉 is unbounded,
that is, u+

n􏼈 􏼉 is unbounded.
As L∞ > 0, we know that there exists an l ∈ R such that

L∞ > l> 2pN + 􏽥s − 2p− 1/λq. From the definition of L∞, there
is δk > 0 such that F(k, t)> l|t|p for all t> δk. Furthermore,
since F(k, t) is a continuous function, there exists a constant
C(k)≥ 0 such that F(k, t)≥ l|t|p − C(k) with t ∈ [−c, δk].

)us, F(k, t)≥ l|t|p − C(k) for all s≥ − c and k ∈ Z(1, N).

We can obtain that

􏽘

N

k�1
F k, un(k)( 􏼁≥ 􏽘

N

k�1
l un(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p

− C≥ l un

����
����

p

∞ − C, (37)

for all k ∈ Z(1, N), where C � 􏽐
N
k�1 C(k), that is,

Ψ un( 􏼁≥ l un

����
����

p

∞ − C. (38)

Hence, for all un such that ‖un‖∞≥ 1, we conclude that

Discrete Dynamics in Nature and Society 5



Jλ un( 􏼁 �
􏽐

N+1
k�1 Δun(k − 1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

p
+

􏽐
N
k�1s(k) un(k)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

q
− λΨ un( 􏼁

≤
2p− 1

p
􏽘

N

k�1
un(k)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+ 􏽘
N

k�1
un(k − 1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p⎛⎝ ⎞⎠

+
1
q

􏽘

N

k�1
s(k)∣un(k) ∣q − λΨ un( 􏼁

≤
2p− 1(2N − 1)

p
un

����
����

p

∞ +
􏽥s

q
un

����
����

q

∞ − λΨ un( 􏼁

≤
2pN + 􏽥s − 2p− 1

q
− λl􏼠 􏼡 un

����
����

p

∞ + λC.

(39)

Since 2pN + 􏽥s − 2p− 1/q − λl< 0, we can get
limn⟶+∞ Jλ(un) � −∞ and this is absurd. Hence, Jλ sat-
isfies (PS)-condition.

Let un􏼈 􏼉 be such that u−
n􏼈 􏼉 is bounded and u+

n􏼈 􏼉 is un-
bounded. From the proof above we can see that Jλ is un-
bounded from below. □

3. Main Results

)e main results of this paper are as follows.

Theorem 2. Let f: Z(1, N) × R⟶ R be a continuous
function satisfying f(k, 0)≥ 0 for all k ∈ Z(1, N). If there are
two constants c and d with d< c such that

pNp− 1

1 + s∗N
p−1 􏽘

N

k�1
max
|ξ∣ ≤c

F(k, ξ)max
1
cq

,
1
cp

􏼚 􏼛

<min
􏽐

N
k�1 F(k, d)

dpp−1 + dqq−1􏽥s
,

qL∞
2pN + 􏽥s − 2p−1􏼨 􏼩.

(40)

)en, for each λ ∈ Λ1 with

Λ1 ≔ max
dpp− 1 + dqq− 1􏽥s

􏽐
N
k�1 F(k, d)

,
2pN + 􏽥s − 2p− 1

qL∞
􏼨 􏼩,

1 + s∗N
p− 1/pNp− 1( 􏼁min cq, cp{ }

􏽐
N
k�1 max |ξ∣≤cF(k, ξ)

⎛⎝ ⎞⎠, (41)

the problem (D
f

λ ) admits at least two positive solutions.

Proof. Put Φ,Ψ as in (18). It is clear that infX(Φ) � Φ(0) �

Ψ(0) � 0. According to Lemma 3, we know that a nonzero
critical point in S of the functional J+

λ is precisely a positive
solution of problem (D

f

λ ). Next, we just need to prove
condition (21) of Lemma 1.

We observe that L∞ > 0 from (40) and Λ1 is nonde-
generate. Fix λ ∈ Λ1, Lemma 4 ensures that Jλ satisfies

(PS)-condition for all λ> 2pN + 􏽥s − 2p− 1/qL∞ and it is
unbounded from below. We let u ∈ Φ− 1(−∞, r], that is,
(‖u‖p/p) + (􏽐

N
k�1 s(k)|u(k)|q/q)≤ r. Put

r �
1 + s∗N

p− 1

pNp−1 min c
q
, c

p
􏼈 􏼉. (42)

If r � (1 + s∗N
p− 1/pNp− 1)cq, it means that c≥ 1.

According to (8), we obtain

|u(k)|≤ ‖u‖∞ ≤max
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/q

r
1/q

,
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/p

r
1/p⎧⎨

⎩

⎫⎬

⎭ � max c, c
q/p

􏽮 􏽯 � c. (43)

If r � (1 + s∗N
p− 1/pNp− 1)cp, we know 0< c< 1, then

|u(k)|≤ ‖u‖∞ ≤max
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/q

r
1/q

,
pNp− 1

1 + s∗N
p−1􏼠 􏼡

1/p

r
1/p⎧⎨

⎩

⎫⎬

⎭ � max c
p/q

, c􏽮 􏽯 � c. (44)

To sum up, we know that |u(k)|≤ c for all k ∈ Z(1, N).

Furthermore, we have

Ψ(u) � 􏽘
N

k�1
F(k, u(k))≤ 􏽘

N

k�1
max
|ξ|≤c

F(k, ξ), (45)

for all u ∈ S with Φ(u)≤ r. Hence,

supu∈Φ−1(−∞,r]Ψ(u)

r
≤

pNp− 1

1 + s∗N
p−1 􏽘

N

k�1
max
|ξ|≤c

F(k, ξ)max
1
cq

,
1
cp

􏼚 􏼛.

(46)
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Now, let ω(k) � d for all k ∈ Z(1, N) and ω(0) �

Δω(N) � 0. Clearly, ω ∈ S. It is easy to account that Φ(ω) �

dpp− 1 + dqq− 1􏽥s, then

Ψ(ω)

Φ(ω)
�

􏽐
N
k�1 F(k, d)

dpp−1 + dqq−1􏽥s
. (47)

Consequently, from (46), (47), and assumption (40), we
can obtain

sup
u∈Φ− 1(−∞,r]

Ψ(u)

r
<
Ψ(ω)

Φ(ω)
.

(48)

Moreover, because 0< d< c and from (40), we obtain

0<d
p
p

− 1
+ d

q
q

− 1
􏽥s<

1 + s∗N
p− 1

pNp−1 min c
q
, c

p
􏼈 􏼉, (49)

that is mean that 0<Φ(ω)< r.

Hence, the problem (D
f

λ ) admits at least two positive
solutions by Lemma 1 and Lemma 3 for all λ ∈ Λ1. □

Remark 1. If f(k, t) is a nonnegative function and there are
two positive constants c, d with d< c such that

pNp− 1

1 + s∗N
p−1 max

􏽐
N
k�1 F(k, c)

cq
,
􏽐

N
k�1 F(k, c)

cp
􏼨 􏼩

<min
􏽐

N
k�1 F(k, d)

dpp−1 + dqq−1􏽥s
,

qL∞
2pN + 􏽥s − 2p−1􏼨 􏼩,

(50)

then the result of)eorem 2 is also valid for each λ ∈ Λ2 with

Λ2 ≔ max
dpp− 1 + dqq− 1􏽥s

􏽐
N
k�1 F(k, d)

,
2pN + 􏽥s − 2p− 1

qL∞
􏼨 􏼩,

1 + s∗N
p− 1

pNp−1 min
cq

􏽐
N
k�1 F(k, c)

,
cp

􏽐
N
k�1 F(k, c)

􏼨 􏼩􏼠 􏼡. (51)

)ere are some consequences of )eorem 2 as follows.

Corollary 1. Let g: R⟶ [0, +∞) be a continuous function
such that f(k, t) � α(k)g(t), where α(k)> 0 for all
k ∈ Z(1, N). Put A � 􏽐

N
k�1 α(k), G(t) � 􏽒

t

0 g(ξ)dξ for all
t ∈ R and L∗∞:� min

k∈[1,N]
α(k) liminf

t⟶+∞
(G(t)/tp)> 0.

If there exists c> d> 0 such that

pNp− 1

1 + s∗N
p−1 AG(c)max

1
cq

,
1
cp

􏼚 􏼛

<min
AG(d)

dpp−1 + dqq−1􏽥s
,

qL∗∞
2pN + 􏽥s − 2p−1􏼨 􏼩,

(52)

then the problem D
f

λ has at least two positive solutions for
each λ ∈ Λ3 with

Λ3 ≔ max
dpp− 1 + dqq− 1􏽥s

AG(d)
,
2pN + 􏽥s − 2p− 1

qL∗∞
􏼨 􏼩,

1 + s∗N
p− 1

pNp−1
min cq, cp{ }

AG(c)
􏼠 􏼡. (53)

Proof. Consider the function f: Z(1, N) × R⟶ R is
given as

f(k, ξ) � α(k)g(ξ), ∀k ∈ Z(1, N), ξ ∈ R, (54)

so that

􏽘

N

k�1
max
|ξ|≤c

F(k, ξ) � AG(c), 􏽘
N

k�1
F(k, d) � AG(d). (55)

)en, the conclusion can be obtained by)eorem 2. □

Corollary 2. Assume f be a continuous function with
f(k, 0)≥ 0 and

limsup
t⟶0+

F(k, t)

tp
� +∞, (56)

lim
t⟶+∞

F(k, t)

tp
� +∞, (57)

for all k ∈ Z(0, N). Put λ∗ � (1 + s∗N
p− 1/pNp− 1)min supc>0􏼈

(cq/􏽐N
k�1max |ξ∣≤cF(k, ξ)), supc>0(cp/ 􏽐

N
k�1 max |ξ∣≤cF(k, ξ))}.

-en, for each λ ∈ (0, λ∗), the problem (D
f

λ ) admits at least two
positive solutions.

Proof. We know that L∞ � +∞ from (57). Fix λ ∈ (0, λ∗),
and then there exists c> 0 such that

λ<
1 + s∗N

p− 1

pNp−1

· min sup
c>0

cq

􏽐
N
k�1 max|ξ|≤cF(k, ξ)

, sup
c>0

cp

􏽐
N
k�1 max|ξ|≤cF(k, ξ)

⎧⎨

⎩

⎫⎬

⎭.

(58)

From (56), we can also obtain

limsup
t⟶0+

􏽐
N
k�1 F(k, t)

tp
� +∞, (59)

and then there exists d ∈ (0, c) such that (􏽐
N
k�1 F(k, d)/

dpp− 1 + dqq− 1􏽥s)> (1/λ). )erefore, )eorem 2 ensures the
conclusion. □
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Remark 2. If f(k, t) is a nonnegative function for all
(k, t) ∈ Z(1, N) × [0, +∞) As long as condition (56) holds
for at least one k ∈ Z(1, N), then Corollary 2 ensures that
the solutions are obtained for each

λ ∈ 0,
1 + s∗N

p− 1

pNp−1 min sup
c>0

cq

􏽐
N
k�1 F(k, c)

, sup
c>0

cp

􏽐
N
k�1 F(k, c)

􏼨 􏼩􏼠 􏼡.

(60)

Remark 3. When f(k, t) � f(t) for all k ∈ Z(1, N), )e-
orem 1 can be ensured by Corollary 2. Obviously, condition
(4(a)) implies f(0)≥ 0. Specially, if f is nonnegative, we
only need condition (4(a)) to get the corresponding so-
lution for each

λ ∈ 0,
1 + s∗N

p− 1

pNp
min sup

c>0

cq

F(c)
, sup

c>0

cp

F(c)
􏼨 􏼩􏼠 􏼡. (61)

Example 1. Let p � 4, q � 2, N � 3, s(k) � 12, andf(k, t)

� et.

Put

x(c) �
c2

ec − 1
. (62)

)en,

x′(c) �
c (2 − c)ec − 2( )

ec − 1( )2
. (63)

Let z(c) � (2 − c)ec − 2, then z′(c) � (1 − c)ec. So, z(c)

is increasing in c ∈ (0, 1) and decreasing in c ∈ (1, +∞).
Since z(0) � 0 and z(+∞) � −∞, there exists an unique
c1 ∈ (1, +∞) such that z(c1) � 0. )us, x(c) in increasing in
c ∈ (0, c1) and decreasing in c ∈ (c1, +∞). )is means that
supc>0 x(c) � x(c1). In fact, c1 ≈ 1.5936.

Similarly, put y(c) � c4/ec − 1, we can show that there
exists a unique c2 ∈ (3, +∞) such that supc>0y(c) � y(c2).

In fact, c2 ≈ 3.9207.

Since

y c2( 􏼁 �
c42

ec2 − 1
>

c41
ec1 − 1

� c
2
1x c1( 􏼁> x c1( 􏼁, (64)

then

1 + s∗N
p− 1

pNp
min sup

c>0
x(c), sup

c>0
y(c)􏼨 􏼩

�
1 + s∗N

p− 1

pNp
x c1( 􏼁 ≈ 0.6496.

(65)

)erefore, for each λ ∈ (0, 0.6496), the problem

−Δ ϕ4(Δu(k − 1))( 􏼁 + 12ϕ2(u(k)) � λeu(k), k � 1, 2, 3,

u(0) � Δu(3) � 0,

⎧⎨

⎩

(66)

admits at least two positive solutions.

Example 2. Let N � 3, p � 3, and q � 2 and f be a function
as follows:

f(k, t) �

0, if t< 0,
��
kt

3
√

, if 0≤ t≤ 1,
��
kt

3
√

+ 225t2 − 225, if t> 1.

⎧⎪⎪⎨

⎪⎪⎩
(67)

From Remark 1, we can choose c � 1 and d � 0.02. Easy
calculation shows that

pNp− 1

1 + s∗N
p−1 􏽘

N

k�1
F(k, c)max

1
cq

,
1
cp

􏼚 􏼛 �
pNp− 1

1 + s∗N
p−1 􏽘

3

k�1
􏽚
1

0

��
kt

3
√

dt

≈ 1.3693,

􏽐
N
k�1 F(k, d)

dpp−1 + dqq−1􏽥s
�

􏽐
3
k�1 􏽚

0.02

0

��
kt

3
√

dt

dpp−1 + dqq−1􏽥s
≈ 3.1386,

qL∞
2pN + 􏽥s − 2p−1 �

1
66

lim
t⟶+∞

��
kt

3
√

+ 225t2 − 225
t2

≈ 3.4091,

(68)

which satisfy condition (50). )us, for each λ ∈
(0.3186, 0.7303), the problem

−Δ ϕ3(Δu(k − 1))( 􏼁 + 8ϕ2(u(k)) � λf(k, u(k)), k � 1, 2, 3,

u(0) � Δu(3) � 0,
􏼨

(69)

admits at least two positive solutions.
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