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We study the local and global bifurcation of nonnegative nonconstant solutions of a discrete general Brusselator model. We
generalize the linear u in the standard Brusselator model to the nonlinear f(u). Assume that f ∈ C([0,∞), [0,∞)) is a strictly
increasing function, and f′(f− 1(a)) ∈ (0,∞). Taking b as the bifurcation parameter, we obtain that the solution set of the
problem constitutes a constant solution curve and a nonconstant solution curve in a small neighborhood of the bifurcation point
(b

j
0, f− 1(a), ab/[f− 1(a)]2). Moreover, via the Rabinowitz bifurcation theorem, we obtain the global structure of the set of

nonconstant solutions under the condition that f(s)/s2 is nonincreasing in (0,∞). In this process, we also make a priori
estimation for the nonnegative nonconstant solutions of the problem.

1. Introduction

In 1968, Prigogine and Lefever [1] introduced first the
Brusselator model for a chemical reaction-diffusion of self-
catalysis as follows:

zu

zt
− d1Δu � a − (b + 1)u + u

2
v, x ∈ Ω, t> 0,

zv

zt
− d2Δv � bu − u

2
v, x ∈ Ω, t> 0,

zu

zn
�

zv

zn
� 0, x ∈ zΩ, t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Ω ⊂ RN(N≥ 1) is a smooth and bounded domain, n

denotes the outward unit normal vector on zΩ, u and v

represent the concentration of two intermediary reactants
having the diffusion rates d1, d2 ∈ (0,∞) with d2 > d1, and
a, b> 0 are the fixed concentrations. %is chemical reaction
plays an important role due to its similarities with neuronal
and biological networks. %erefore, (1) has been extensively
investigated in the last decades from both analytical and

numerical point of view (see [2–12]). Most of them are
interested in finding spatially nonconstant solutions of the
equilibrium problem

− d1Δu � a − (b + 1)u + u2v, x ∈ Ω,

− d2Δv � bu − u2v, x ∈ Ω,

zu

zn
�

zv

zn
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

From the definition of Strogatz [13], chaos sensitivity
depends on initial conditions, which shows that nearby
trajectories diverge exponentially. Continuous systems in a
2-dimensional phase space cannot experience such diver-
gence; hence, chaotic behaviors can only be observed in
deterministic continuous systems with a phase space of
dimension 3, at least. On the contrary, in a discrete map, it is
well known that chaos occurs also in one dimension.
%erefore, discrete chaotic systems exhibit chaos whatever
their dimension is.

It is worth to note that discrete models governed by
difference equations are more appropriate than the
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continuous one due to their efficient computational results
and rich dynamical behavior (see [14, 15]). %erefore, the
discrete Brusselator model has been studied by several au-
thors, and they got some results ([16–18] and the references
therein). In particular, Din [16] applied forward Euler’s
method to one-dimensional model (1) as follows:

xn+1 � xn + h α − (1 + β)xn + x2
nyn( ,

yn+1 � yn + h βxn − x2
nyn( ,

⎧⎨

⎩ (3)

where 0< h< 1 represents the step size for Euler’s method.
%e local dynamical behaviors are obtained for (3).

Note that [16–18] only studied the dynamical behaviors
of the discrete-time Brusselator model.%e reason is that the
partial difference equation is very difficult for us. Indeed, the
discrete-space Brusselator model is also worth studying due
to the discontinuity of the space.

%erefore, we will consider the discrete space, more
general form of (2) with N � 1:

− d1Δ2u(x − 1) � a − (b + 1)f(u(x)) + u2(x)v(x), x ∈ T ,

− d2Δ2v(x − 1) � bf(u(x)) − u2(x)v(x), x ∈ T ,

Δu(0) � Δu(T) � Δv(0) � Δv(T) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

whereΔu(x) � u(x + 1) − u(x), T ≔ [1, T]Z � 1, 2, . . . , T{ },
T≥ 2 is an integer, d1, d2, a> 0 are fixed parameters and

d2 >d1, and b> 0 is a bifurcation parameter. Clearly,
f(u) � (f(u)/u) · u; then, (4) is seen to be equivalent to

− d1Δ2u(x − 1) � a − (b + 1)
f(u(x))

u(x)
· u(x) + u

2
(x)v(x), x ∈ T ,

− d2Δ2v(x − 1) � b
f(u(x))

u(x)
· u(x) − u

2
(x)v(x), x ∈ T ,

Δu(0) � Δu(T) � Δv(0) � Δv(T) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where f(u)/u can be regarded as a variable coefficient. It is
well known that the linear terms (b + 1)u and bu in (2)
cannot withstand any small perturbation.

In fact, (5) has an important application value in biology
and chemistry. Xu et al. [19] said that model (1) includes a
basic assumption: the cells always live in a continuous patch
environment. However, this may not be the case in reality,
and the motion of individuals of given cells is random and
isotropic, i.e., without any preferred direction, the cells are
also absolute individuals. %e cells or units are also absolute
individuals in microscopic sense, and each isolated cell
exchanges materials by diffusion with its neighbors. %us, it
is reasonable to consider a 1D or 2D spatially discrete re-
action-diffusion system in order to explain the chemical
system.

Kang [20] discussed the dynamics of the local map of a
discrete version of the Brusselator model. To discretize
system (1), he employed the following discretizations.

For the derivative in time, he used
zu(x, t)

zt
⟶

u(x, t + Δt) − u(x, t)

Δt
. (6)

For the space derivative, he used
zu(x, t)

zx
⟶

u(x + Δx, t) − u(x, t)

Δx
, (7)

z2u(x, t)

zx2 ⟶
u(x + Δx, t) − 2u(x, t) + u(x − Δx, t)

(Δx)2
. (8)

It is important to note that Δ in (6)–(8) is different from
Δ in this paper. Our discretization is consistent with Kang’s,
and we chose the step size to be 1. When f(u) � u, (5) is the
steady-state form of the problem studied in [19, 20].

On the contrary, the Brusselator system has been in-
vestigated from the numerical point of view (see [21] and
references therein). Most modern texts on numerical
analysis give an introduction to numerical solutions of
partial differential equations using the finite-difference ap-
proach. Twizell et al. [22] had given a second-order finite-
difference scheme for the Brusselator reaction-diffusion
system. It is well known that (2) is an important mathe-
matical dynamics model in biology and chemistry. In some
ways, (5) is even more practical than (2).
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We will study the local and global bifurcation of non-
negative nonconstant solutions of (4) under the following
assumptions:

(H1) f ∈ C([0,∞), [0,∞)) is a strictly increasing
function
(H2) f′(f− 1(a)) ∈ (0,∞)

(H3) f(s)/s2 is nonincreasing in (0,∞)

Remark 1. If f(u) � u, then (4) is the discrete version of (2)
with N � 1. Obviously, discrete Brusselator model (4) is a
second-order difference boundary value problem.

%e rest of the paper is organized as follows: in Section 2,
we give a priori estimate and some preliminary results.
Section 3 is devoted to studying the local bifurcation of
nonnegative nonconstant solutions of (4) under conditions
(H1) and (H2). Finally, in Section 4, we add condition (H3)

to obtain the global bifurcation of nonnegative nonconstant
solutions of (4).

2. Preliminary Results

At first, let us look for the constant solution of (4). To get it, it
suffices to look for the constant solution of the following
problem:

a − (b + 1)f(u(x)) + u2(x)v(x) � 0, x ∈ T ,

bf(u(x)) − u2(x)v(x) � 0, x ∈ T .
 (9)

By (H1), problem (4) has a unique constant solution
(f− 1(a), ab/[f− 1(a)]2).

We can easily obtain the following a priori estimate of
the nonnegative nonconstant solutions of (4).

Lemma 1. Let (H1), (H2), and (H3) hold. *en, any non-
negative nonconstant solution (u, v) of (4) satisfies

f
− 1 a

b + 1
 ≤ u(x)≤f

− 1
(a) +

d2

d1
·

ab

(b + 1) f− 1(a/(b + 1)) 
2, x ∈ T ,

bf f− 1(a) + d2/d1(  · ab/(b + 1) f− 1(a/(b + 1)) 
2

  

f− 1(a) + d2/d1(  · ab/(b + 1) f− 1(a/(b + 1)) 
2

  
2 ≤ v(x)≤

ab

(b + 1) f− 1(a/(b + 1)) 
2, x ∈ T .

(10)

Proof. Let x0 ∈ T be the minimum point of u. We have

u x0 + 1( ≥ u x0( ,

u x0 − 1( ≥ u x0( ,

− d1Δ
2
u x0 − 1(  � − d1 u x0 + 1(  − 2u x0( (

+ u x0 − 1( ≤ 0.

(11)

%en,

a − (b + 1)f u x0( (  + u
2

x0( v x0( ≤ 0,

a − (b + 1)f u x0( ( ≤ 0,

f u x0( ( ≥
a

b + 1
.

(12)

%en, u(x0)≥f− 1(a/(b + 1)) by (H1), and so

u(x) ≥ u x0( ≥f
− 1 a

b + 1
 , x ∈ T . (13)

Let x1 ∈ T be the maximum point of v. Similarly, we can
get that

v x1 + 1( ≤ v x1( , v x1 − 1( ≤ v(x),

− d2Δv x1 − 1(  � − d1 v x1 + 1(  − 2v x1(  + v x1 − 1( ( ≥ 0,

(14)

bf u x1( (  − u
2

x1( v x1( ≥ 0. (15)

%en,

v(x)≤ v x1( ≤
bf u x1( ( 

u2 x1( 
, x ∈ T . (16)

Combining this with (13), from (H3), we show

v(x)≤
bf u x1( ( 

u2 x1( 
≤

ab

(b + 1) f− 1(a/(b + 1)) 
2, x ∈ T .

(17)

Let w � d1u + d2v. %en, it follows from (4) that

− Δ2w(x − 1) � a − f(u(x)), x ∈ T ,

Δw(0) � Δw(T) � 0.

⎧⎨

⎩ (18)

Now, let x2 ∈ T be the maximum point of w. Observe
that

w x2 + 1( ≥w x2( ,

w x2 − 1( ≥w x2( ,

− Δ2w x2 − 1(  � a − f u x2( ( ≥ 0.

(19)

%en, from (H1), it is easy to see u(x2)≤f− 1(a).
Combining this with (17), we know that, for any x ∈ T ,

d1u(x) ≤w(x)≤w x2( ≤d1f
− 1

(a) + d2

·
ab

(b + 1) f− 1(a/(b + 1)) 
2.

(20)
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%en,

u(x)≤f
− 1

(a) +
d2

d1
·

ab

(b + 1) f− 1(a/(b + 1)) 
2, x ∈ T .

(21)

If x3 ∈ T is the minimum point of v, then

bf u x3( (  − u
2

x3( v x3( ≤ 0, (22)

and so

v(x)≥ v x3( ≥
bf u x3( ( 

u2 x3( 
≥

bf f− 1(a) + d2/d1(  · ab/(b + 1) f− 1(a/(b + 1)) 
2

 

f− 1(a) + d2/d1(  · ab/(b + 1) f− 1(a/(b + 1)) 
2

 
2 , x ∈ T . (23)

Consequently, the proof is completed. □

Lemma 2 (see [23]). Assume T≥ 2 is an integer. *en, the
discrete second-order linear Neumann eigenvalue problem

− Δ2φ(x − 1) � μφ(x), x ∈ T ,

Δφ(0) � Δφ(T) � 0,

⎧⎨

⎩ (24)

has T real and simple eigenvalues, which can be ordered as
follows:

0 � μ0 < μ1 < μ2 < · · · < μT− 1. (25)

Moreover, for j ∈ 1, . . . , T − 1{ }, the eigenfunction φj

corresponding to the eigenvalue μj has exactly j − 1 simple
generalized zeros.

For any fixed T≥ 2, it is well known that

μj �

0, j � 0,

2 − cos
jπ
T

 , j ∈ (1, T − 1]Z,

⎧⎪⎪⎨

⎪⎪⎩
(26)

and the corresponding eigenfunctions are

φj(x) �

1, j � 0,

cos
jπ
T

x , j ∈ (1, T − 1]Z.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

Lemma 3 (see [18], %eorem 2.5). Let a be a constant. *en,
for ΔC(i) � 0,

 cos ai �
sin a(i − (1/2))

2 sin(a/2)
+ C(i), (a≠ 2nπ). (28)

Lemma 4 (see [18], %eorem 2.7). If zn is an indefinite sum
of yn, then



n− 1

k�m

yk � zk 
n
m � zn − zm. (29)

Let

X ≔ (u, v) | u, v: T⟶ R,Δu(0) � Δu(T) � Δv(0) � Δv(T) � 0 ,

X1 ≔ u | u: T⟶ R{ }, Y ≔ X1 × X1,

w1, w2( Y � 
T

x�1
u1(x)u2(x) + 

T

x�1
v1(x)v2(x),

(30)

where w1 � (u1, v1), w2 � (u2, v2) ∈ Y and T ≔ [0, T + 1]Z.

3. Local Bifurcation

By the second part, w ≔ (f− 1(a), ab/[f− 1(a)]2) is the
unique constant solution of (4).

Define the mapping P: (0,∞) × X⟶ Y:

P(b, w) �
d1Δ2u(x − 1) + a − (b + 1)f(u(x)) + u2(x)v(x)

d2Δ2v(x − 1) + bf(u(x)) − u2(x)v(x)
 .

(31)

For the fixed b> 0, w � (u, v) is a solution of (4) if and

only if (b, w) is a zero-point of P. Note that P(b, w) �
0
0 

since w is the constant solution of (4).

Let

u � f− 1(a) + 
∞

k�1
εkuk,

v �
ab

f− 1(a) 
2 + 
∞

k�1
εk

vk,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

b � b0 + 

∞

k�1
εk

bk. (33)

We also have to Taylor expand f at the point f− 1(a).
%e purpose of the rest of this section is to solve b0 and

prove that (b0, w) is the bifurcation point of P(b, w) �
0
0 .
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First of all, we substitute (32) and (33) into (4) and let the
higher-order term of ε be equal to 0. %en, we can get the
problem

− d1Δ2u1(x − 1) � − b0f′ f− 1(a)(  − f′ f− 1(a)(  +
2ab0

f− 1(a)
 u1(x) + f− 1(a) 

2
v1(x), x ∈ T ,

− d2Δ2v1(x − 1) � b0f′ f− 1(a)(  −
2ab0

f− 1(a)
 u1(x) − f− 1(a) 

2
v1(x), x ∈ T ,

Δu1(0) � Δu1(T) � Δv1(0) � Δv1(T) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

In (34), by using undetermined coefficient method, it
follows that

b0 �
f− 1(a) d1d2μ2j + d2f′ f− 1(a)( μj + d1 f− 1(a) 

2μj + f− 1(a) 
2
f′ f− 1(a)(  

2ad2μj − d2f
− 1(a)f′ f− 1(a)( μj

≔ b
j
0, j � 1, 2, . . . T − 1. (35)

Moreover, it is not difficult to prove (34) has a nontrivial
solution (u1, v1):

u1 � c1(j)cos
jπ
l

x  � c1(j)φj(x), c1(j) � −
d2μj

d1μj + f′ f− 1(a)( 
,

v1 � cos
jπ
l

x  � φj(x).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)

Next, we substitute (32) and (33) into (4) and let the
higher-order term of ε2 be equal to 0; then, (4) becomes the
following system:

d1Δ2u2(x − 1) + − b0f′ f− 1(a)(  − f′ f− 1(a)(  +
2ab0

f− 1(a)
 u2(x) + f− 1(a) 

2
v2(x) � − F1, x ∈ T ,

d2Δ2v2(x − 1) + b0f′ f− 1(a)(  −
2ab0

f− 1(a)
 u2(x) − f− 1(a) 

2
v2(x) � F1, x ∈ T ,

Δu2(0) � Δu2(T) � Δv2(0) � Δv2(T) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

where

F1 �
2ab1

f− 1(a)
− b1f′ f

− 1
(a)  u1 + 2f

− 1
(a)u1v1 +

ab0

f− 1(a) 
2u

2
1. (38)

In order to solve b1 from (37), let us consider the fol-
lowing adjoint system of the homogeneous system related to
(37):

Discrete Dynamics in Nature and Society 5



d1Δ2y2(x − 1) + − b0f′ f− 1(a)(  − f′ f− 1(a)(  +
2ab0

f− 1(a)
 y2(x) + b0f′ f− 1(a)(  −

2ab0

f− 1(a)
 z2(x) � 0, x ∈ T ,

d2Δ2z2(x − 1) + f− 1(a) 
2
y2(x) − f− 1(a) 

2
z2(x) � 0, x ∈ T ,

Δy2(0) � Δy2(T) � Δz2(0) � Δz2(T) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

It is not difficult to verify that (39) has a solution (y2, z2):

y2 � c2(j)cos
jπ
l

x  � c2(j)φj(x), c2(j) � 1 +
d2μj

f− 1(a) 
2,

z2 � cos
jπ
l

x  � φj(x).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(40)

By virtue of the solvability condition for (37), it is ob-
vious that


T

x�1
z2(x) − y2(x)( F1 � 0. (41)

In fact,



T

x�1
z2(x) − y2(x)( F1

� 
T

x�1
−

d2μj

f− 1(a) 
2 · φj(x) 

2ab1

f− 1(a)
− b1f′ f

− 1
(a)   · −

d2μj

d1μj + f′ f− 1(a)( 
· φj(x)⎛⎝ ⎞⎠⎡⎢⎢⎣

+ 2f
− 1

(a) −
d2μj

d1μj + f′ f− 1(a)( 
⎛⎝ ⎞⎠φ2

j(x) +
ab0

f− 1(a) 
2 ·

d2
2μ2j

d1μj + f′ f− 1(a)(  
2 · φ2

j(x)⎤
⎥⎥⎥⎥⎦ � 0.

(42)

We know that



T

x�1
φ3

j(x) � 
T

x�1
cos3

jπ
T

x �
1
4



T

x�1
cos

3jπ
T

x + 3 cos
jπ
T

x .

(43)

From Lemmas 3 and 4, for any j ∈ 1, 2, . . . , T − 1{ } and
j≠ (2nT/3), n ∈ 1, 2, . . .{ }, we obtain

6 Discrete Dynamics in Nature and Society





T

x�1
φ3

j(x) �
1
4

sin(3jπ/T)(x − (1/2))

2 sin(3jπ/2T)
 

T+1

1
+
3
4

sin(jπ/T)(x − (1/2))

2 sin(jπ/2T)
 

T+1

1

�
1
4

·
sin((2T + 1)3jπ/2T) − sin(3jπ/2T)

2 sin(3jπ/2T)
+
3
4

·
sin((2T + 1)jπ/2T) − sin(jπ/2T)

2 sin(jπ/2T)

�
1
4

·
cos((2T + 2)3jπ/2T) · sin(2T · 3jπ/2T)

sin(3jπ/2T)
+
3
4

·
cos((2T + 2)jπ/2T) · sin(2T · jπ/2T)

sin(jπ/2T)
� 0.

(44)

%en b
j
1 ≔ b1 � 0, and so F1 will reduce to

F1 � 2f
− 1

(a)c1(j)φ2
j(x) +

ab0

f− 1(a) 
2c

2
1(j)φ2

j(x)

� 2f
− 1

(a)c1(j)cos2
jπ
l

x  +
ab0

f− 1(a) 
2c

2
1(j)cos2

jπ
l

x 

� f
− 1

(a)c1(j) cos
2jπ

l
x  + 1  +

1
2

·
ab0

f− 1(a) 
2c

2
1(j) cos

2jπ
l

x  + 1 

�
1
2

2f
− 1

(a)c1(j) +
ab0

f− 1(a) 
2c

2
1(j)  +

1
2

2f
− 1

(a)c1(j) +
ab0

f− 1(a) 
2c

2
1(j) φ2j(x).

(45)

%erefore, a particular solution (u2, v2) of (37) can be
obtained as follows:

u2 � a1(j) + a2(j)cos
2jπ

l
x  � a1(j) + a2(j)φ2j(x),

v2 � a3(j) + a4(j)cos
2jπ

l
x  � a3(j) + a4(j)φ2j(x),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

where

a2(j) �
f− 1(a) 

2
c1d2μ2j + ab0d2μ2jc

2
1/2f− 1(a) 

d1d2μ22jf
− 1(a) + f′ f− 1(a)( f− 1(a) f− 1(a) 

2
+ d2μ2j 1 + b0(   − 2ab0d2 − d1 f− 1(a) 

3
 μ2j

,

a1(j) � 0,

a3(j) � −
c1

f− 1(a) 
2 f

− 1
(a) +

ab0

2 f− 1(a) 
2c1 ,

a4(j) � −
d1μ2j + f′ f− 1(a)( 

d2μ2j

a2(j).

(47)

Since b1 � 0, we have to solve b2. We substitute (32) and
(33) into (4) and let the higher-order term of ε3 be equal to 0;
then, a problem similar to (37) is obtained:
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d1Δ2u3(x − 1) + − b0f′ f− 1(a)(  − f′ f− 1(a)(  +
2ab0

f− 1(a)
 u3(x) + f− 1(a) 

2
v3(x) � − F2, x ∈ T ,

d2Δ2v3(x − 1) + b0f′ f− 1(a)(  −
2ab0

f− 1(a)
 u3(x) − f− 1(a) 

2
v3(x) � F2, x ∈ T ,

Δu3(0) � Δu3(T) � Δv3(0) � Δv3(T),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

where

F2 � − b2f′ f
− 1

(a)  +
2ab2

f− 1(a)
 u1 + 2f

− 1
(a)u1v2 + 2f

− 1
(a)u2v1 + u

2
1v1 +

2ab0

f− 1(a) 
2u1u2. (49)

Clearly, (39) is also the adjoint system of the homoge-
neous system related to (48); then,



T

x�1
z2(x) − y2(x)( F2 � 0. (50)

According to values of u1, u2, v1, and v2, we have



T

x�1
z2(x) − y2(x)( F2

� 
T

x�1
−

d2μj

f− 1(a) 
2φj(x) 

2a − f′ f− 1(a)( f− 1(a)

f− 1(a)
· b2c1φj(x) + 2f

− 1
(a)c1φj(x) a3 + a4( φ2j(x)

+ 2f
− 1

(a)a2φ2j(x)φj(x) + c
2
1φ

3
j(x) +

2ab0a2c1

f− 1(a) 
2φj(x)φ2j(x).

(51)

From Lemmas 3 and 4, for any j ∈ 1, 2, . . . , T − 1{ } and
j≠ (nT/2), n ∈ 1, 2, . . .{ }, we know that



T

x�1
φ2

j(x)φ2j(x) � 

T

x�1
cos2

jπ
T

x  · cos
2jπ
T

x  �
1
2



T

x�1

1
2
cos

4jπ
T

x + cos
2jπ
T

x  +
T

4

�
1
4

·
sin(4jπ(x − (1/2))/T)

2 sin(4jπ/2T)
 

T+1

1
+
1
2

·
sin(2jπ(x − (1/2))/T)

2 sin(2jπ/2T)
 

T+1

1
+

T

4

�
1
4

·
2 cos((2T + 2)2jπ/T)sin((2jπ · 2T)/T)

2 sin(2jπ/T)
+
1
2

·
2 cos((2T + 2)jπ/T)sin((jπ · 2T)/T)

2 sin(2jπ/T)
+

T

4
�

T

4
≠ 0.

(52)

%us,

b
j
2 ≔ b2 ≠ 0, j � 1, 2, . . . T − 1. (53)

From the above analysis, we obtain themain result of this
section.

Theorem 1. Assume that (H1) and (H2) hold. *en, for any
positive integer j<T, j≠ (nT/2) and j≠ (2nT/3), n ∈ 1, 2,{

. . .}, (b
j
0, w) is a bifurcation point of P(b, w) �

0
0 .

Moreover, there is a nontrivial solution ϕ(ε) � (b(ε),

8 Discrete Dynamics in Nature and Society



u(ε), v(ε)) of (4) if ε is small enough, where b, u, and v are
continuous with respect to ε:

u(ε) � f
− 1

(a) + εc1(j)φj + ε2 a1(j) + a2(j)φ2j  + o ε2 ,

v(ε) �
ab

f− 1(a) 
2 + εφj + ε2 a3(j) + a4(j)φ2j  + o ε2 ,

b(ε) � b
j
0 + ε2bj

2 + o ε2 .

(54)

%e set of zero-points of P constitutes two curves in a
neighborhood of bifurcation point (b

j
0, w).

Let C be the closure of the nonconstant solution set of

P(b, w) �
0
0  and Γj be a connected component of

C∪ (b
j
0, w)  and (b

j
0, w) ∈ Γj. In a small neighborhood of

bifurcation point (b
j
0, w), the curve Γj is determined by the

eigenfunction φj, where φj has exactly j − 1 simple gener-
alized zeros.

4. Global Bifurcation

Theorem 2. Let (H1), (H2), and (H3) hold. If
μj ≠ [f− 1(a)]2/d2, j � 1, 2, . . . , T, then projection of con-
tinuum Γj is unbounded on the b-axis.

Proof. (4) can be written as follows:

− Δ2u(x − 1) � g(u(x), v(x)), x ∈ T ,

− Δ2v(x − 1) � h(u(x), v(x)), x ∈ T ,

Δu(0) � Δu(T) � Δv(0) � Δv(T) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(55)

where

g(u, v) �
1
d1

a − (b + 1)f(u) + u
2
v ,

h(u, v) �
1
d2

bf(u) − u
2
v .

(56)

Let u � u − f− 1(a), v � v − ab/[f− 1(a)]2. %en, (55) is
equivalent to the following problem:

− Δ2u(x − 1) � g0u(x) + g1v(x) + g(u(x), v(x)), x ∈ T ,

− Δ2v(x − 1) � h0u(x) + h1v(x) + h(u(x), v(x)), x ∈ T ,

Δu(0) � Δu(T) � Δv(0) � Δv(T) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(57)

where g and h are higher-order terms of u, v and

g0 � gu(u, v)


f− 1(a),ab/ f− 1(a)[ ]
2( 

�
1
d1

− (b + 1)f′ f
− 1

(a)  +
2ab

f− 1(a)
 ,

g1 � gv(u, v)


f− 1(a),ab/ f− 1(a)[ ]
2( 

�
f− 1(a) 

2

d1
,

h0 � hu(u, v)


f− 1(a),ab/ f− 1(a)[ ]
2( 

�
1
d2

bf′ f
− 1

(a)  −
2ab

f− 1(a)
 ,

h1 � hv(u, v)


f− 1(a),ab/ f− 1(a)[ ]
2( 

� −
f− 1(a) 

2

d2
.

(58)

In this way, we convert the constant solution
w � (f− 1(a), ab/[f− 1(a)]2) of (4) to the trivial solution θ �

(0, 0) of (57).
Let H1: Y⟶ X and H2: Y⟶ X be the inverse of

operators (f′(f− 1(a))/d1)I − A and ([f− 1(a)]2/d2)I − A

with Neumann boundary conditions, respectively, where
A: [0,∞)⟶ (− ∞, 0] and Au(x) � Δ2u(x − 1). Set
U � (u, v):

K(b)U �
1
d1

− bf′ f
− 1

(a)  +
2ab

f− 1(a)
 H1(u) +

f− 1(a) 
2

d1
H1(v),

1
d2

bf′ f
− 1

(a)  −
2ab

f− 1(a)
 H2(u) ,

W(U) � H1(g(u, v)), H2(
h(u, v)) .

(59)
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It can be verified that (57) is equivalent to

U � K(b)U + W(U), (60)

in X. For any fixed b> 0, K(b) and W(U) are linear compact
operators in X and W(U) � o(‖U‖). By the Rabinowitz
global bifurcation theorem [24], we need to verify

(i) 1 is an eigenvalue of K(b
j
0), and its algebraic mul-

tiplicity is 1

(ii) %e index of I − K(b) − W changes when b crosses
b

j
0

Now, we will prove (i). Suppose Ψ �
ξ
ψ , ξ �  ajφj,

ψ �  cjφj. Let

(K(b) − I)Ψ �
0

0
 , (61)

i.e.,

1
d1

− (b + 1)f′ f
− 1

(a)  +
2ab

f− 1(a)
  + A

f− 1(a) 
2

d1

1
d2

bf′ f
− 1

(a)  −
2ab

f− 1(a)
  −

f− 1(a) 
2

d2
+ A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ψ �
0

0
⎛⎝ ⎞⎠, (62)

%us,


∞

j�0
Lj

aj

cj

⎛⎝ ⎞⎠φj �
0

0
 , (63)

where

Lj �

1
d1

− (b + 1)f′ f
− 1

(a)  +
2ab

f− 1(a)
  − μj

f− 1(a) 
2

d1

1
d2

bf′ f
− 1

(a)  −
2ab

f− 1(a)
  −

f− 1(a) 
2

d2
− μj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (64)

By computation, detLj � 0 if and only if b � b
j
0; taking

b � b
j
0 leads to

Lj

aj

cj

⎛⎝ ⎞⎠ �
0 0

f′ f− 1(a)(  + d1μj d2μj

⎛⎝ ⎞⎠
aj

cj

⎛⎝ ⎞⎠. (65)

%en, ker(K(b
j
0) − I) � span(Ψ), Ψ �− d2μj

f′(f− 1(a)) + d1μj

 φj. %is implies that 1 is the

eigenvalue of K � K(b
j
0) and dimker (K − I) � 1. %e al-

gebraic multiplicity of eigenvalue 1 is the dimension of the
generalized null space ∪∞i�1ker(K − I)i; therefore, ker(K − I)

∩ Im(K − I) � θT
 .

Let KT be the transposed matrix of K:

K
T

�

1
d1

− bf′ f
− 1

(a)  +
2ab

f− 1(a)
 H1

1
d2

bf′ f
− 1

(a)  −
2ab

f− 1(a)
 H2

f− 1(a) 
2

d1
H1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (66)

and Ψ∗ �
ξ∗

ψ∗ , ξ∗ �  a∗j φj, ψ∗ �  c∗j φj. Suppose

Ψ∗ ∈ ker(KT − I). %en,
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1
d1

− bf′ f
− 1

(a)  +
2ab

f− 1(a)
 H1 ξ∗(  +

1
d2

bf′ f
− 1

(a)  −
2ab

f− 1(a)
 H2 ψ∗(  � ξ∗,

f− 1(a) 
2

d1
H1 ξ∗(  � ψ∗.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(67)

From the definition of H1 andH2, (67) can also be
written as

− d1d2Δ2ξ
∗
(x − 1) � d2  − bf′ f− 1(a)(  +

2ab

f− 1(a)
  − f− 1(a) 

2
d1 ξ∗ −

d2f′ f− 1(a)( 

f− 1(a) 
2 − bf′ f

− 1
(a)  +

2ab

f− 1(a)
 ψ∗,

− d1Δ2ψ∗(x − 1) � f− 1(a) 
2ξ∗(x) − f′ f− 1(a)( ψ∗(x).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(68)

%at is to say,



∞

j�0
Bj

a∗j

c∗j

⎛⎝ ⎞⎠φj �
0

0
 , (69)

where

Bj �

d2 − bf′ f− 1(a)(  +
2ab

f− 1(a)
  − f− 1(a) 

2
d1 − d1d2μj −

d2f′ f− 1(a)( 

f− 1(a) 
2 − bf′ f

− 1
(a)  +

2ab

f− 1(a)
 

f− 1(a) 
2

− d1μj − f′ f− 1(a)( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (70)

Similarly, detBj � 0 if and only if b � b
j
0; taking b � b

j
0

leads to

Bj

a∗j

c∗j

⎛⎝ ⎞⎠ �
0 0

f− 1(a) 
2

− d1μj − f′ f− 1(a)( 
⎛⎝ ⎞⎠

a∗j

c∗j

⎛⎝ ⎞⎠. (71)

%en, ker(K∗ − I) � span
d1μj + f′(f− 1(a))

[f− 1(a)]2
 φj.

According to μj ≠ [f− 1(a)]2/d2, we obtain

Ψ,Ψ∗( Y � 
T

x�1
− d2μj  d1μj + f′ f

− 1
(a)  φj(x) + 

T

x�1
f′ f

− 1
(a)  + d1μj  f

− 1
(a) 

2
φ2

j(x)

� d1μj + f′ f
− 1

(a)   f
− 1

(a) 
2

− d2μj  

T

x�1
φ2

j(x)

� d1μj + f′ f
− 1

(a)   f
− 1

(a) 
2

− d2μj  

T

x�1
cos2

jπ
T

x 

� d1μj + f′ f
− 1

(a)   f
− 1

(a) 
2

− d2μj  ·
1
2



T

x�1
cos

2jπ
T

x  + 1 

� d1μj + f′ f
− 1

(a)   f
− 1

(a) 
2

− d2μj 
1
2

·
cos((2T + 2)jπ/T)sin 2 π

sin(jπ/T)
+

T

2
 ≠ 0.

(72)
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%is suggests that Ψ ∉ (ker(K∗ − I))⊥ � Im(K − I), and
so (i) is proved.

Now, we will prove (ii). From (i), for any b> 0, b≠ b
j
0 and

b belongs to a small neighborhood of b
j
0, and

K(b) − I: X⟶ X is a bijection. Fix b> 0; then, θ is a
solution of (60), and θ is isolated. From Leray–Schauder
fixed point theory, we can get

index(I − K(b) − W, (b, θ)) � deg(I − K(b), B, θ) � (− 1)
c
,

(73)

where B is a sufficiently small ball centered at θ, c is the sum
of the algebraic multiplicity of the eigenvalues of K(b), and
c> 1.

We are going to verify that, for ε> 0 is small enough,

index I − K b
j
0 − ε  − W, b

j
0 − ε, θ  ≠ index I − K b

j
0 + ε  − W, b

j
0 + ε, θ  . (74)

If τ is an eigenvalue of K(b) and Ψ �
ξ
ψ  is the

corresponding eigenfunction, then

(K(b) − I)Ψ �
0

0
 , (75)

i.e.,

− τd1Δ2ξ(x − 1) � − bf′ f− 1(a)(  +
2ab

f− 1(a)
− τf′ f

− 1
(a)  ξ(x) + f− 1(a) 

2ψ(x), x ∈ T ,

− τd2Δ2ψ(x − 1) � bf′ f− 1(a)(  −
2ab

f− 1(a)
 ξ(x) − f− 1(a) 

2τψ(x), x ∈ T .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(76)

By virtue of ξ �  ajφj and ψ �  cjφj, we can get



∞

j�0

τμjd1 + bf′ f− 1(a)(  −
2ab

f− 1(a)
+ τf′ f

− 1
(a)  − f− 1(a) 

2

− bf′ f− 1(a)(  +
2ab

f− 1(a)
τμjd2 + τ f− 1(a) 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

aj

cj

⎛⎜⎝ ⎞⎟⎠φj �
0

0
⎛⎝ ⎞⎠. (77)

%en, the characteristic equation is

d1d2μ
2
j + d2μif′ f

− 1
(a)  + d1μj f

− 1
(a) 

2
+ f′ f

− 1
(a)  f

− 1
(a) 

2
 τ2

+ b d2f′ f
− 1

(a) μj −
2ad2μj

f− 1(a)
+ f′ f

− 1
(a)  f

− 1
(a) 

2
− 2af

− 1
(a) τ + f

− 1
(a) 

2
− bf′ f

− 1
(a)  +

2ab

f− 1(a)
  � 0,

j � 0, 1, 2, . . . , T.

(78)
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If τ � 1, b can be solved from (78):

b �
f− 1(a) d1d2μ2j + d2f′ f− 1(a)( μj + d1 f− 1(a) 

2μj + f− 1(a) 
2
f′ f− 1(a)(  

2ad2μj − d2f
− 1(a)f′ f− 1(a)( μj

� b
j
0. (79)

%erefore, by calculating the corresponding eigenvalues
of (78), we can obtain that when b passes through b

j
0, the

number of eigenvalues of K(b) which is greater than 1 is the

same, and their algebraic multiplicity are equal. By plugging
(79) into (78), we have

2ad2μj − d2f
− 1(a)f′ f− 1(a)( μj

f− 1(a)
τ2 + f′ f

− 1
(a)  d2μj + f

− 1
(a) 

2
  −

2ad2μj

f− 1(a)
− 2af

− 1
(a) τ

+ f
− 1

(a) 
2

− f′ f
− 1

(a)  +
2a

f− 1(a)
  � 0.

(80)

%en,

d2f′ f
− 1

(a) μj −
2ad2μj

f− 1(a)
+ f′ f

− 1
(a)  f

− 1
(a) 

2
− 2af

− 1
(a) 

2

− 4 2ad2μj − d2f
− 1

(a)f′ f
− 1

(a) μj 

· − f′ f
− 1

(a) f
− 1

(a) + 2a  � d2f′ f
− 1

(a) μj −
2ad2μj

f− 1(a)
  − f′ f

− 1
(a)  f

− 1
(a) 

2
− 2af

− 1
(a)  

2

> 0,

(81)

and so (80) has two different roots τ1 � 1, τ2 � [f− 1(a)]2/
d2μj. %us, two things will happen:

(a) If μj > [f− 1(a)]2/d2, then τ1(b
j
0) � 1, τ2(b

j
0)< 1.

(b) If μj < [f− 1(a)]2/d2, then τ1(b
j
0) � 1, τ2(b

j
0)> 1.

When scenario (a) occurs, b passes through b
j
0 and

τ2(b)< 1. From (78), τ1(b
j
0 + ε)> 1, τ1(b

j
0 − ε)< 1. %ere-

fore, the matrix K(b
j
0 + ε) has exactly one more eigenvalue

that is > 1 than K(b
j
0 − ε) does, and its algebraic multiplicity

is 1.%en, (74) holds.%at is to say, the index jumps as b goes
through b

j
0.

When scenario (b) occurs, b passes through b
j
0 and

τ2(b)> 1. From (78), τ1(b
j
0 + ε)> 1, τ1(b

j
0 − ε)< 1. Similarly,

the index jumps as b goes through b
j
0. %erefore, (ii) is true

regardless of (a) or (b).
%us, by the index jump principle and [24],%eorem 1.3,

it follows that there exists a connected component Γj of
nontrivial solutions of (60), and Γj comes from the bifur-
cation point (b

j
0, θ). We know that Γj is also the connected

component Γj of the nonconstant solution of (4) from
(b

j
0, w). Γj and Γj are both in R × X. By the Rabinowitz

global bifurcation theorem, the connected component Γj
joins (b

j
0, w) to either ∞ or (bk

0, w) in R × X, where k≠ j.
We first prove that the latter situation will not happen.

According to %eorem 1, the solution on the connected
component sent from (b

j
0, w) is related to φj, and φj has

exactly j − 1 simple generalized zeros. In the same way, the
solution on the connected component sent from (bk

0, w) is
related to φk, and φk has k − 1 simple generalized zeros. If the
connected component sent Γj joining (b

j
0, w) to (bk

0, w), the
solution (b, w) ∈ Γj is related to both φj and φk, which is
impossible. On the contrary, Lemma 1 shows that if
b � bc ∈ (0,∞), then the solutions u and v of (4) are both
bounded. So, the connected component Γj will not join
(b

j
0, w) to (bc,∞). %erefore, the connected component Γj

can only join (b
j
0, w) to either (∞,∞) or (∞, m), where

m ∈ (0,∞). But, in any case, the projection of continuum Γj
is unbounded on the b-axis. □
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