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Many applications using discrete dynamics employ either q-difference equations or h-difference equations. In this work, we
introduce and study the Hyers–Ulam stability (HUS) of a quantum (q-difference) equation of Euler type. In particular, we show a
direct connection between quantum equations of Euler type and h-difference equations of constant step size h with constant
coefficients and an arbitrary integer order. For equation orders greater than two, the h-difference results extend first-order and
second-order results found in the literature, and the Euler-type q-difference results are completely novel for any order. In many
cases, the best HUS constant is found.

1. Introduction

Recently, there has been much interest in questions of
Hyers–Ulam stability for differential equations and h-dif-
ference equations, but little has been published specifically
on q-difference (quantum) equations [1], in particular, on
quantum equations of Euler type. In this work, we introduce
a new and direct connection between Hyers–Ulam stability
results for h-difference equations with constant coefficients,
of first, second, and all higher orders, with Hyers–Ulam
stability results for quantum equations of Euler type, of all
integer orders, through a change of variables. First, we will
connect the two types of equations and then introduce
Hyers–Ulam stability.

(e results in this paper connecting h-difference equa-
tions and q-difference equations of Euler type are novel.
Even if we just consider the higher-order h-difference results
independently, they extend first-order and second-order
results found in [2, 3] to nth order and are not the same as
the results in [4–6], where h � 1 and different techniques are
used. For a great introduction to quantum calculus, see the
monograph [1], which has sections on both q-calculus and
h-calculus, but does not show the nexus that we do here.

(e rest of the paper will develop as follows. In Section 2,
we establish the connection between q-difference equations

of the Euler type and h-difference equations, via a change of
variable. We then define Hyers–Ulam stability (HUS) and
prove for which the parameter values the first-order
q-difference equation of the Euler type has HUS; in the case
that it does exhibit HUS, a minimumHUS constant is found.
In Section 3, the Hyers–Ulam stability of second-order
quantum equations of the Euler type is established from
known results for h-difference equations. In Section 4, the
stability of both higher-order quantum equations of the
Euler type and higher-order h-difference equations with
constant coefficients is proven by mathematical induction;
these results are new in each context. For some cases, the best
HUS constant is found. In Section 5, higher-order perturbed
quantum equations of the Euler type and higher-order
perturbed h-difference equations with constant (complex)
coefficients are analyzed, and HUS with specific HUS
constants is established for each setting.

2. Connections and First-Order Stability

Lemma 1. Assume q> 1 and h> 0 and set

q
Z

� . . . , q
− 2

, q
− 1

, 1, q, q
2
, . . .􏽮 􏽯,

hZ � . . . , − 2h, − h, 0, h, 2h, . . .{ }.
(1)
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Let α ∈ C\ − 1/(q − 1)􏼈 􏼉 and λ ∈ C\ − 1/h{ } be given, and
let I be the identity operator. (en, the (factored) quantum
equation of the Euler type

sDq − αI􏼐 􏼑y(s) � g(s),

Dqy(s) ≔
y(qs) − y(s)

(q − 1)s
,

(2)

has a solution y for s ∈ qZ if and only if the (factored)
h-difference equation

Δh − λI( 􏼁x(t) � f(t),

Δhx(t) ≔
x(t + h) − x(t)

h
,

(3)

has a solution x for t ∈ hZ, where

t � h logqs and λ �
α(q − 1)

h
, equivalently

s � q
t/h and α �

λh

q − 1
,

(4)

is a change of variables between s and α to t and λ, while

x(t) �
h

q − 1
y q

t/h
􏼐 􏼑&f(t) � g q

t/h
􏼐 􏼑, i.e.

y(s) �
q − 1

h
x h logqs􏼐 􏼑&g(s) � f h logqs􏼐 􏼑,

(5)

is a change of functions between the variables.

Proof. Let y be a solution of (sDq − αI)y(s) � g(s) for
α ∈ C\ − 1/(q − 1)􏼈 􏼉. (en, the change of variables (4) con-
verts this equation to

h

q − 1
y q(t+h)/h( 􏼁 − y qt/h( 􏼁

h
􏼠 􏼡 −

hλ
q − 1

y q
t/h

􏼐 􏼑 � g q
t/h

􏼐 􏼑,

(6)

where λ ∈ C\ − 1/h{ }. Now, make the change of functions (5).
(en, the function x is a solution of (Δh − λI)x(t) � f(t).
Using (4) and (5), this process is reversible, yielding the
converse. □

Definition 1. Assume q> 1 and α ∈ C\ − 1/(q − 1)􏼈 􏼉. (e
Euler-type quantum equation

sDq − αI􏼐 􏼑y(s) � 0, (7)

has Hyers–Ulam stability (HUS) if and only if there exists a
constant K> 0 with the following property. For an arbitrary
ε> 0, if a function ψ: qZ⟶ C satisfies

sDq − αI􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (8)

for all s ∈ qZ, then there exists a solution y: qZ⟶ C of (7)
such that

|ψ(s) − y(s)|≤Kε, (9)

for all s ∈ qZ. Such a constant K is called an HUS constant
for (7) on qZ.

Remark 1. If, given an arbitrary ε> 0, there exists a function
ψ such that (8) holds for s ∈ qZ, then

Δh − λI( 􏼁ϕ(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε, t ∈ hZ, (10)

holds as well, where we have used the change of variable (4)
and, similar to (5), the change of function

ϕ(t) �
h

q − 1
ψ q

t/h
􏼐 􏼑, (11)

to rewrite (8) as (10).

Lemma 2. Assume q> 1 and α ∈ C\ − 1/(q − 1)􏼈 􏼉. If
|α(q − 1) + 1| � 1, then the quantum equation of the Euler
type given in (7) is not Hyers–Ulam stable.

Proof. Assume h> 0 and λ ∈ C\ − 1/h{ }. Using ([2], Remark
2.1), if |λh + 1| � 1, then the h-difference equation,

Δh − λI( 􏼁x(t) � 0, (12)

is not Hyers–Ulam stable. By the change of variables (4) and
change of functions (5) and (11), which connect (7) to (12)
and (8) to (10), the result follows. □

Remark 2. (roughout the rest of the paper, let

K(τ, θ) ≔
τ

|1 − |θτ + 1||
, (13)

for |θτ + 1|≠ 1.

Theorem 1. If α ∈ C\ − 1/(q − 1)􏼈 􏼉 with |α(q − 1) + 1|≠ 1,
then (7) has Hyers–Ulam stability with minimum HUS
constant K(q − 1, α) � (q − 1)/(|1 − |α(q − 1) + 1||) on qZ.

Proof. Using ([2], (eorem 2.6), if λ ∈ C\ − 1/h{ } with
|λh + 1|≠ 1, then (12) has Hyers–Ulam stability with mini-
mum HUS constant K(h, λ) � h/|1 − |λh + 1|| on hZ, for
K(·, ·) given in (13). Let an arbitrary ε> 0 be given. Suppose ϕ
satisfies (10). By ([2], (eorem 2.5) there exists a solution x

of (12) such that

|ϕ(t) − x(t)|≤ εK(h, λ), t ∈ hZ, (14)

making the change using (4) and (11), we have
h

q − 1
ψ(s) −

h

q − 1
y(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

hε
|1 − |α(q − 1) + 1||

, s ∈ q
Z

,

(15)

so that

|ψ(s) − y(s)|≤
(q − 1)ε

|1 − |α(q − 1) + 1||
� εK(q − 1, α), s ∈ q

Z
,

(16)

where y is a solution of (7). Now from ([2], Lemma 2.3), we
know there exists a specific function:
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ϕ(t) ≔ c(λh + 1)
t/h

+
εh

c − (λh + 1)
􏼠 􏼡c

t/h
, (17)

for c ≔ (λh + 1)/|λh + 1| that satisfies (10); then, |c| � 1 and
c − (λh + 1)≠ 0, whereby it is proven that the minimum
HUS constant for (12) is at least K(h, λ), for K(·, ·) given in
(13). By the change of variable (4) and the change of function
(5), which connect (7) to (12) and (8) to (10) via (11), there
exists a specific function ψ satisfying (8), whereby the
minimum HUS constant for (7) is thus K(q − 1, α), and the
result follows. □

3. Second-Order Quantum Equations of
Euler Type

Let q> 1, h> 0, and αj ∈ C\ − 1/(q − 1)􏼈 􏼉 be given for
j ∈ 1, 2{ }.

Now, consider the second-order quantum equation of
the Euler type, written in the factored operator form as

sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑y(s) � 0,

Dqy(s) ≔
y(qs) − y(s)

(q − 1)s
.

(18)

Definition 2. (e second-order Euler-type quantum equa-
tion (18) has Hyers–Ulam stability (HUS) if and only if there
exists a constant K> 0 with the following property: For an
arbitrary ε> 0, if a function ψ: qZ⟶ C satisfies

sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (19)

for all s ∈ qZ, then there exists a solution y: qZ⟶ C of (18)
such that

|ψ(s) − y(s)|≤Kε, (20)

for all s ∈ qZ. Such a constant K is called an HUS constant
for (18) on qZ.

Theorem 2. If αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1) + 1|≠ 1
for j ∈ 1, 2{ }, then the second-order quantum equation of
Euler type (18) has Hyers–Ulam stability with an HUS
constant of

K q − 1, α1( 􏼁K q − 1, α2( 􏼁 �
(q − 1)2

1 − α1(q − 1) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · 1 − α2(q − 1) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(21)

on qZ.

Proof. Let

Y1(s) ≔ sDq − α1I􏼐 􏼑y(s). (22)

As a result, (18) implies that (sDq − α2I)Y1(s) � 0 so
that

Δh − λ2I( 􏼁X1(t) � 0,

ΔhX1(t) ≔
X1(t + h) − X1(t)

h
,

(23)

where we employ the change of variables

λj �
αj(q − 1)

h
,

t � h logqs,

X1(t) ≔
h

q − 1
Y1 q

t/h
􏼐 􏼑.

(24)

(en, we have

X1(t) � sDq − α1I􏼐 􏼑
h

q − 1
y(s)􏼠 􏼡. (25)

Let

x(t) ≔
h

q − 1
􏼠 􏼡

2

y q
t/h

􏼐 􏼑. (26)

Note that as αj ≠ − 1/(q − 1), we have λj ≠ − 1/h, for
j � 1, 2{ }. Moreover, |αj(q − 1) + 1|≠ 1 for j ∈ 1, 2{ } implies
that |λjh + 1|≠ 1 for j ∈ 1, 2{ }. Consequently,

X1(t) � Δh − λ1I( 􏼁x(t), (27)

and this implies

0 � Δh − λ2I( 􏼁X1(t)

� Δh − λ2I( 􏼁 Δh − λ1I( 􏼁x(t)

� Δ2hx(t) − λ1 + λ2( 􏼁Δhx(t) + λ1λ2x(t).

(28)

Take

α � − λ1 + λ2( 􏼁,

β � λ1λ2,
(29)

to match the notation used in [2], (eorem 3.4.
By [2], (eorem 3.4, the second-order h-difference

equation (28) has HUS, with an HUS constant

K h,
− α +

������
α2 − 4β

􏽰

2
􏼠 􏼡K h,

− α −
������
α2 − 4β

􏽰

2
􏼠 􏼡

� K h, λ1( 􏼁K h, λ2( 􏼁,

(30)

on hZ, where K(·, ·) is the constant expressed in (13). Given
an arbitrary ε> 0, suppose there exists a function ψ such that

sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, s ∈ q
Z

. (31)

(en, letting
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ϕ(t) ≔
h

q − 1
􏼠 􏼡

2

ψ q
t/h

􏼐 􏼑,

t � h logqs,

λj �
αj(q − 1)

h
,

(32)

for j ∈ 1, 2{ }, we have

Δh − λ2I( 􏼁 Δh − λ1I( 􏼁ϕ(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε, t ∈ hZ. (33)

(erefore, by [2], (eorem 3.4, there exists a solution x

of (28) such that

|ϕ(t) − x(t)|≤ εK h,
− α +

������
α2 − 4β

􏽰

2
􏼠 􏼡K h,

− α −
������
α2 − 4β

􏽰

2
􏼠 􏼡

� K h, λ1( 􏼁K h, λ2( 􏼁,

(34)

which implies that

h

q − 1
􏼠 􏼡

2

ψ q
t/h

􏼐 􏼑 −
h

q − 1
􏼠 􏼡

2

y q
t/h

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε

h

1 − λ1h + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

h

1 − λ2h + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

ψ q
t/h

􏼐 􏼑 − y q
t/h

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε
(q − 1)

1 − α1(q − 1) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

(q − 1)

1 − α2(q − 1) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(35)

using (26). It follows that

(q − 1)

1 − α1(q − 1) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

(q − 1)

1 − α2(q − 1) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� K q − 1, α1( 􏼁K q − 1, α2( 􏼁,

(36)

is an HUS constant for (18), for K(·, ·) given in (13). □

Corollary 1. Assume αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1) +

1|≠ 1 for j ∈ 1, 2{ }.

(i) If αj(q − 1) + 1 ∈ (0, 1)∪ (1,∞) for j ∈ 1, 2{ }, then
the second-order quantum equation of Euler type
(18) has Hyers–Ulam stability with minimum HUS
constant

K �
1

α1α2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (37)

on qZ.
(ii) If αj(q − 1) + 1 ∈ (− ∞, − 1)∪ (− 1, 0) for j ∈ 1, 2{ },

then the second-order quantum equation of Euler type
(18) has Hyers–Ulam stability with minimum HUS
constant

K �
(q − 1)2

α1(q − 1) + 2( 􏼁 α2(q − 1) + 2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (38)

on qZ.

Proof. Assume αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1) + 1|≠ 1
for j ∈ 1, 2{ }.

(i) If αj(q − 1) + 1 ∈ (0, 1)∪ (1,∞) for j ∈ 1, 2{ }, then

K q − 1, α1( 􏼁K q − 1, α2( 􏼁 �
1

α1α2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (39)

through simplification so that this constant is an HUS
constant for (18) on qZ. Invoking [2],(eorem 3.4 (i) or
[3], Corollary 3.1 and the change of variables to the
corresponding h-difference equation, the constant

K h, λ1( 􏼁K h, λ2( 􏼁 �
1

λ1λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (40)

is the minimum HUS constant for the second-order
h-difference equation (28) on hZ. (e result follows
on qZ after a change of variables back.

(ii) If αj(q − 1) + 1 ∈ (− ∞, − 1)∪ (− 1, 0) for j ∈ 1, 2{ },
then

K q − 1, α1( 􏼁K q − 1, α2( 􏼁 �
(q − 1)2

α1(q − 1) + 2( 􏼁 α2(q − 1) + 2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(41)

again through simplification of the expression, mak-
ing this constant an HUS constant for (18) on qZ.
Referring to [2],(eorem 3.4 (iii) and proceeding as in
case (i) of this proof, and the result follows for (18) on
qZ. □

4. Higher-Order Quantum Equations of
Euler Type

In this section, we extend the results in the previous two
sections to higher-order quantum equations of the Euler
type.

Let q> 1, h> 0, αj ∈ C\ − 1/(q − 1)􏼈 􏼉, and λj ∈ C\ − 1/h{ }

be given for j ∈ 1, 2, . . . , n{ }. In this section, we consider the
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nth-order quantum equation of the Euler type given in
factored operator form by

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑y(s) � 0,

Dqy(s) ≔
y(qs) − y(s)

(q − 1)s
.

(42)

Definition 3. (e higher-order Euler-type quantum equa-
tion (42) has Hyers–Ulam stability (HUS) if and only if there
exists a constant K> 0 with the following property. For an
arbitrary ε> 0, if a function ψ: qZ⟶ C satisfies

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (43)

for all s ∈ qZ, then there exists a solution y: qZ⟶ C of (42)
such that

|ψ(s) − y(s)|≤Kε, (44)

for all s ∈ qZ. Such a constant K is called an HUS constant
for (42) on qZ.

Theorem 3. If αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1) + 1|≠ 1
for j ∈ 1, 2, . . . , n{ }, then the higher-order quantum equation
of Euler type (42) has Hyers–Ulam stability with an HUS
constant of

􏽙
n

j�1
K q − 1, αj􏼐 􏼑 �

(q − 1)n

􏽑
n
j�1 1 − αj(q − 1) + 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(45)

on qZ, where K(·, ·) is given in (13).

Proof. Weproceed bymathematical induction on n ∈ N. For
n � 1, equation (42) is simply (7) so that by (eorem 1, (7)
has Hyers–Ulam stability with minimum HUS constant

K q − 1, α1( 􏼁 �
q − 1

1 − α1(q − 1) + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (46)

on qZ.
Let n � 2. For an arbitrary ε> 0, suppose there exists a

function ψ: qZ⟶ C that satisfies

sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (47)

for all s ∈ qZ. If we let

sDq − α1I􏼐 􏼑ψ(s) � Ψ2(s), (48)

then

sDq − α2I􏼐 􏼑Ψ2(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (49)

for all s ∈ qZ. (erefore, Hyers–Ulam stability for the first-
order equation implies there exists a solution y2 of (sDq −

α2I)y2(s) � 0 such that

Ψ2(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ εK q − 1, α2( 􏼁. (50)

Let Y2 solve the equation:

sDq − α1I􏼐 􏼑Y2(s) � y2(s). (51)

(is is possible by converting the equation using Lemma
1 to the corresponding h-difference equation and using the
variation of parameters formula and then converting back.
In (50), substitute for Ψ2 using (48) and for y2 using (51).
(en, we can rewrite (50) as

sDq − α1I􏼐 􏼑ψ(s) − sDq − α1I􏼐 􏼑Y2(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ εK q − 1, α2( 􏼁,

(52)

so that

sDq − α1I􏼐 􏼑 ψ − Y2( 􏼁(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ εK q − 1, α2( 􏼁 � ε′. (53)

Again, Hyers–Ulam stability for the first-order equation
implies there exists a solution y0 of (7) such that

ψ − Y2( 􏼁(s) − y0(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε′K q − 1, α1( 􏼁, (54)

which implies that

ψ(s) − Y2 + y0( 􏼁(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ εK q − 1, α1( 􏼁K q − 1, α2( 􏼁. (55)

Note that

sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑 Y2 + y0( 􏼁(s)

� sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑Y2(s) + sDq − α1I􏼐 􏼑y0(s)􏽨 􏽩

� sDq − α2I􏼐 􏼑 y2(s) + 0􏼂 􏼃

� sDq − α2I􏼐 􏼑y2(s)

� 0,

(56)

making (Y2 + y0) a solution of (42) with n � 2. By Definition
3, with n � 2, equation (42) has Hyers–Ulam stability with
HUS constant K(q − 1, α1)K(q − 1, α2).

Let n � k for some k ∈ N. Without loss of generality,
write (42) with n � k as

sDq − αk+1I􏼐 􏼑 sDq − αkI􏼐 􏼑 · · · sDq − α2I􏼐 􏼑y(s) � 0, (57)

where we have reindexed parameters as necessary and make
the induction assumption that this equation has
Hyers–Ulam stability with HUS constant

􏽙

k+1

j�2
K q − 1, αj􏼐 􏼑 � 􏽙

k+1

j�2

(q − 1)

1 − αj(q − 1) + 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (58)

on qZ.
Now, consider (42) with n � k + 1, namely,

sDq − αk+1I􏼐 􏼑 sDq − αkI􏼐 􏼑 · · · sDq − α1I􏼐 􏼑y(s) � 0. (59)

For an arbitrary ε> 0, suppose there exists a function
ψ: qZ⟶ C that satisfies

sDq − αk+1I􏼐 􏼑 sDq − αkI􏼐 􏼑 · · · sDq − α1I􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (60)

for all s ∈ qZ. If we let

sDq − α1I􏼐 􏼑ψ(s) � Ψk+1(s), (61)
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then

sDq − αk+1I􏼐 􏼑 sDq − αkI􏼐 􏼑 · · · sDq − α2I􏼐 􏼑Ψk+1(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε,

(62)

for all s ∈ qZ. (erefore, by the induction assumption for
n � k, Hyers–Ulam stability for that equation implies there
exists a solution yk+1 of (sDq − αk+1I)(sDq − αkI) · · · (sDq −

α2I)yk+1(s) � 0 such that

Ψk+1(s) − yk+1(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε􏽙
k+1

j�2
K q − 1, αj􏼐 􏼑. (63)

Let Yk+1 solve the equation

sDq − α1I􏼐 􏼑Yk+1(s) � yk+1(s). (64)

Using this result, we can rewrite (63) as

sDq − α1I􏼐 􏼑ψ(s) − sDq − α1I􏼐 􏼑Yk+1(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε􏽙
k+1

j�2
K q − 1, αj􏼐 􏼑,

(65)

so that

sDq − α1I􏼐 􏼑 ψ − Yk+1( 􏼁(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε􏽙
k+1

j�2
K q − 1, αj􏼐 􏼑 � ε′. (66)

Again, Hyers–Ulam stability for the first-order equation
implies there exists a solution y0 of (7) such that

ψ − Yk+1( 􏼁(s) − y0(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε′K q − 1, α1( 􏼁, (67)

which implies that

ψ(s) − Yk+1 + y0( 􏼁(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ε􏽙
k+1

j�1
K q − 1, αj􏼐 􏼑. (68)

Note that

sDq − αk+1I􏼐 􏼑 · · · sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑 Yk+1 + y0( 􏼁(s)

� sDq − αk+1I􏼐 􏼑 · · · sDq − α2I􏼐 􏼑 sDq − α1I􏼐 􏼑Yk+1(s)􏽨

+ sDq − α1I􏼐 􏼑y0(s)􏽩

� sDq − αk+1I􏼐 􏼑 · · · sDq − α2I􏼐 􏼑 yk+1(s) + 0􏼂 􏼃

� sDq − αk+1I􏼐 􏼑 · · · sDq − α2I􏼐 􏼑yk+1(s)

� 0,

(69)

by the choice of yk+1, making (Yk+1 + y0) a solution of (42)
with n � k + 1. By Definition 3 with n � k + 1, equation (42)
has Hyers–Ulam stability with HUS constant 􏽑

k+1
j�1

K(q − 1, αj). Consequently, by the principle of mathematical
induction, the overall result holds.

We now use (eorem 3 and the connection between
q-difference equations of Euler type and h-difference equations
with constant coefficients articulated earlier, to extend known
results about (28) to general higher-order equations. □

Corollary 2. Let h> 0 be given. If λj ∈ C\ − 1/h{ } with |λjh +

1|≠ 1 for j ∈ 1, 2, . . . , n{ }, then the higher-order h-difference
equation with constant coefficients in factored form given by

Δh − λnI( 􏼁 Δh − λn− 1I( 􏼁 · · · Δh − λ1I( 􏼁x(t) � 0, (70)

has Hyers–Ulam stability with an HUS constant of

􏽙

n

j�1
K h, λj􏼐 􏼑 �

hn

􏽑
n
j�1 1 − λjh + 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(71)

on hZ, where K(·, ·) is given in (13).

Lemma 3. Assume αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1)+

1|≠ 1 for j ∈ 1, 2, . . . , n{ }. Ben the following hold:

(i) If α1, α2, · · ·, αn are distinct, then the general solution
to (42) is given by

y(s) � 􏽘
n

j�1
aj αj(q − 1) + 1􏼐 􏼑

logqs
, (72)

where aj are arbitrary constants.
(ii) If α1, α2, · · ·, αr are distinct with multiplicities m1, m2,

· · ·, mr with 􏽐
r
j�1 mj � n, respectively, then the gen-

eral solution to

sDq − αrI􏼐 􏼑
mr

sDq − αr− 1I􏼐 􏼑
mr− 1

· · · sDq − α1I􏼐 􏼑
m1

y(s) � 0,

(73)

is given by

y(s) � 􏽘

r

j�1
αj(q − 1) + 1􏼐 􏼑

logqs
bj0 + bj1logqs􏽨

+ bj2 logqs􏼐 􏼑
2

+ · · · + bjmj − 1 logqs􏼐 􏼑
mj− 1

􏼕,

(74)

where bji (i ∈ 0, 1, 2, . . . , mj − 1􏽮 􏽯) are arbitrary
constants.

Proof. Let q> 1 and h> 0, and αi ∈ C\ − 1/(q − 1)􏼈 􏼉 with
|αi(q − 1) + 1|≠ 1 for i ∈ 1, 2, . . . , n{ }. We now consider the
change of variables and functions:

t � h logqs,

λj �
αj(q − 1)

h
,

x(t) �
h

q − 1
y q

t/h
􏼐 􏼑 �

h

q − 1
y(s),

(75)

for j ∈ 1, 2, . . . , n{ }. (en, the quantum equation of Euler
type (42) has a solution y for s ∈ qZ if and only if the
h-difference equation (70) has a solution x for t ∈ hZ by
using the same argument as in the proof of Lemma 1.

First, we will prove case (i). Suppose that αj (j ∈
1, 2, . . . , n{ }) are distinct. Since
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Δh λjh + 1􏼐 􏼑
t/h

􏼔 􏼕 �
1
h

λjh + 1􏼐 􏼑
(t+h)/h

− λjh + 1􏼐 􏼑
t/h

􏼔 􏼕

� λj λjh + 1􏼐 􏼑
t/h

,

(76)

holds, we have

Δh − λjI􏼐 􏼑xj(t) � 0, (77)

where xj(t) � (λjh + 1)t/h. (at is, xj(t) (j ∈ 1, 2, . . . , n{ })

are solutions to (70). Since αj (j ∈ 1, 2, . . . , n{ }) are distinct,
λj (j ∈ 1, 2, . . . , n{ }) are also distinct. Consequently, the
general solution to (70) is given by

x(t) � 􏽘
n

j�1
cjxj(t) � 􏽘

n

j�1
cj λjh + 1􏼐 􏼑

t/h
, (78)

where cj are arbitrary constants. Using connect (75), we can
find the general solution

y(s) � 􏽘
n

j�1

(q − 1)cj

h
αj(q − 1) + 1􏼐 􏼑

logqs

� 􏽘
n

j�1
aj αj(q − 1) + 1􏼐 􏼑

logqs

(79)

of (42).
Next, we prove case (ii). Suppose that αj

(j ∈ 1, 2, . . . , r{ }) are distinct with multiplicities mj

(j ∈ 1, 2, . . . , r{ }) with 􏽐
r
j�1 mj � n, respectively. From

connect (75), we see that λj (j ∈ 1, 2, . . . , r{ }) are also dis-
tinct with multiplicities mj (j ∈ 1, 2, . . . , r{ }) with
􏽐

r
j�1 mj � n, respectively. By [7], Corollary 2.24, we can

know that

x(t) � 􏽘
r

j�1
λjh +1􏼐 􏼑

t/h
dj0 + dj1t + dj2t

2
+ · · · + djmj− 1t

mj− 1
􏼔 􏼕,

(80)

is the general solution to the h-difference equation:

Δh − λrI( 􏼁
mr Δh − λn− 1I( 􏼁

mr− 1 · · · Δh − λ1I( 􏼁
m1x(t) � 0.

(81)

Using connect (75), we can find the general solution

y(s) � 􏽘
r

j�1

q − 1
h

αj(q − 1) + 1􏼐 􏼑
logqs

dj0 + dj1h logqs + dj2 h logqs􏼐 􏼑
2

+ · · · + djmj − 1 h logqs􏼐 􏼑
mj− 1

􏼔 􏼕

� 􏽘
r

j�1
αj(q − 1) + 1􏼐 􏼑

logqs
bj0 + bj1logqs + bj2 logqs􏼐 􏼑

2
+ · · · + bjmj− 1 logqs􏼐 􏼑

mj − 1
􏼔 􏼕,

(82)

of (73).
Corollary 1 is extended to the following result. □

Corollary 3. Assume αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1) +

1|≠ 1 for j ∈ 1, 2, . . . , n{ }.

(i) If αj(q − 1) + 1 ∈ (0, 1)∪ (1,∞) for j ∈ 1, 2, . . . , n{ },
then the nth-order quantum equation of Euler type (42)
has Hyers–Ulam stability with minimumHUS constant

K �
1

􏽑
n
j�1 αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(83)

on qZ.
(ii) If αj(q − 1) + 1 ∈ (− ∞, − 1)∪ (− 1, 0) for

j ∈ 1, 2, . . . , n{ }, then the nth-order quantum equa-
tion of Euler type (42) has Hyers–Ulam stability with
minimum HUS constant

K �
(q − 1)n

􏽑
n
j�1 αj(q − 1) + 2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(84)

on qZ.

Proof. Assume αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1) + 1|≠ 1
for j ∈ 1, 2, . . . , n{ }.

(i) If αj(q − 1) + 1 ∈ (0, 1)∪ (1,∞) for j ∈ 1, 2, . . . , n{ },
then (42) has Hyers–Ulam stability with an HUS
constant

􏽙

n

j�1
K q − 1, αj􏼐 􏼑 �

1
􏽑

n
j�1 αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(85)

on qZ from (eorem 3.
We will prove that any HUS constant for (42) is greater
than or equal to this constant. Let ε> 0 be given. If we
suppose that 0<K1 < 1/􏽑

n
j�1 |αj|, and for any function

ψ satisfying

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ε, (86)
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there exists a solution y of (42) such that
|ψ(s) − y(s)|≤K1ε for all s ∈ qZ. Define

c1(s) ≔
ε

􏽑
n
j�1 αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(87)

(en, c1 satisfies

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑c1(s)

� − αn( 􏼁 − αn− 1( 􏼁 · · · − α1( 􏼁c1(s).
(88)

(is implies that

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑c1(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � ε,

(89)

for all s ∈ qZ. (us, by the assumption, we can find a
solution y1 of (42) such that |c1(s) − y1(s)|≤K1ε for all
s ∈ qZ. By Lemma 3, we can rewrite y1 as

y1(s) � 􏽘
n

j�1
aj αj(q − 1) +1􏼐 􏼑

logqs

ory1(s) � 􏽘
r

j�1
αj(q − 1) +1􏼐 􏼑

logqs
bj0 + bj1logqs + bj2 logqs􏼐 􏼑

2
􏼔

+ · · · + bjmj − 1 logqs􏼐 􏼑
mj − 1

􏼕,

(90)

where aj and bji (i ∈ 0, 1, 2, . . . , mj − 1􏽮 􏽯) are arbitrary
constants so that we have

c1(s) − 􏽘
n

j�1
aj αj(q − 1) + 1􏼐 􏼑

logqs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� c1(s) − y1(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤K1ε

or c1(s) − 􏽘
r

j�1
αj(q − 1) + 1􏼐 􏼑

logqs
bj0 + bj1logqs + bj2 logqs􏼐 􏼑

2
+ · · · + bjmj− 1 logqs􏼐 􏼑

mj− 1
􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K1ε.

(91)

Since

lim
s⟶∞

αj(q − 1) + 1􏼐 􏼑
logqs

�∞, if αj(q − 1) + 1 ∈ (1,∞)

or lim
s⟶+0

αj(q − 1) + 1􏼐 􏼑
logqs

�∞, if αj(q − 1) + 1 ∈ (0, 1),

(92)

holds for all j ∈ 1, 2, . . . , n{ }, we conclude that aj � 0
for all j ∈ 1, 2, . . . , n{ } and bji � 0 for all j ∈ 1, 2, . . . , r{ }

and i ∈ 0, 1, 2, . . . , mj − 1􏽮 􏽯. (at is, y1(s) ≡ 0. Hence,
we see that

K1ε≥ c1(s) − y1(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � c1(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
ε

􏽑
n
j�1 αj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>K1ε.
(93)

(is is a contradiction. (us, 1/􏽑
n
j�1 |αj| is the

minimum HUS constant.
(ii) If αj(q − 1) + 1 ∈ (− ∞, − 1)∪ (− 1, 0) for j ∈ 1, 2,{

. . . , n}, then (42) has Hyers–Ulam stability with an
HUS constant

􏽙

n

j�1
K q − 1, αj􏼐 􏼑 �

(q − 1)n

􏽑
n
j�1 αj(q − 1) + 2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(94)

on qZ from (eorem 3.
We will prove that any HUS constant for (42) is greater
than or equal to this constant. Let ε> 0 be given. If we
suppose that 0<K2 < ((q − 1)n/􏽑

n
j�1 |αj(q − 1) + 2|),

and for any function ψ satisfying

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑ψ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ε, (95)

there exists a solution y of (42) such that
|ψ(s) − y(s)|≤K2ε for all s ∈ qZ. Define

c2(s) ≔
(q − 1)nε

􏽑
n
j�1 αj(q − 1) + 2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(− 1)logqs.
(96)

Since

sDq − αjI􏼐 􏼑c2(s) � s
(q − 1)nε

􏽑
n
j�1 αj(q − 1) + 2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 (− 1)logqqs − (− 1)logqs/(q − 1)s − αjc2(s) � − 2/q − 1 − αj􏼐 􏼑c2(s),
(97)
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holds, we have

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑c1(s)

�
− 2

q − 1
− αn􏼠 􏼡

− 2
q − 1

− αn− 1􏼠 􏼡 · · ·
− 2

q − 1
− α1􏼠 􏼡c2(s).

(98)

(is implies that

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑c2(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � ε,

(99)

for all s ∈ qZ. (us, by the assumption, we can find a
solution y2 of (42) such that |c2(s) − y2(s)|≤K2ε for all
s ∈ qZ. By Lemma 3, we can rewrite y2 as

y2(s) � 􏽘
n

j�1
cj αj(q − 1) + 1􏼐 􏼑

logqs

ory2(s) � 􏽘
r

j�1
αj(q − 1) + 1􏼐 􏼑

logqs
dj0 + dj1logqs􏽨

+ dj2 logqs􏼐 􏼑
2

+ · · · + djmj− 1 logqs􏼐 􏼑
mj− 1

􏼕,

(100)

where cj and dji (i ∈ 0, 1, 2, . . . , mj − 1􏽮 􏽯) are arbitrary
constants so that we have

c2(s) − 􏽘
n

j�1
cj αj(q − 1) + 1􏼐 􏼑

logqs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� c2(s) − y2(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤K2ε

or c2(s) − 􏽘
r

j�1
αj(q − 1) + 1􏼐 􏼑

logqs
dj0 + dj1logqs + dj2 logqs􏼐 􏼑

2
+ · · · + djmj − 1 logqs􏼐 􏼑

mj − 1
􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤K2ε.

(101)

Since

lim
s⟶∞

αj(q − 1) + 1􏼐 􏼑
logqs

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 �∞, if αj(q − 1) + 1 ∈ (− ∞, − 1)

or lim
s⟶+0

αj(q − 1) + 1􏼐 􏼑
logqs

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 �∞, if αj(q − 1) + 1 ∈ (− 1, 0),

(102)

holds for all j ∈ 1, 2, . . . , n{ }, we conclude that cj � 0 for
all j ∈ 1, 2, . . . , n{ } and dji � 0 for all j ∈ 1, 2, . . . , r{ }

and i ∈ 0, 1, 2, . . . , mj − 1􏽮 􏽯. (at is, y2(s) ≡ 0. Hence,
we see that

K2ε≥ c2(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � c2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
(q − 1)nε

􏽑
n
j�1 αj(q − 1) +2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>K2ε.

(103)

(is is a contradiction.(us, (q − 1)n/􏽑
n
j�1 |αj(q− 1) +

2| is the minimum HUS constant.

Using Corollary 3 and connect (75), we can obtain the
following result. □

Corollary 4. Assume λj ∈ C\ − 1/h{ } with |λjh + 1|≠ 1 for
j ∈ 1, 2, . . . , n{ }.

(i) If λjh + 1 ∈ (0, 1)∪ (1,∞) for j ∈ 1, 2, . . . , n{ }, then
the nth-order h-difference equation with constant
coefficients (70) has Hyers–Ulam stability with min-
imum HUS constant

K �
1

􏽑
n
j�1 λj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(104)

on qZ.
(ii) If λjh + 1 ∈ (− ∞, − 1)∪ (− 1, 0) for j ∈ 1, 2, . . . , n{ },

then the nth-order h-difference equation with con-
stant coefficients (70) has Hyers–Ulam stability with
minimum HUS constant

K �
hn

􏽑
n
j�1 λjh + 2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(105)

on qZ.

5. Perturbed Quantum Equations of Euler Type

In this section, we consider the nth-order perturbed
quantum equation of the Euler type:

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑y(s) � g(s),

Dqy(s) ≔
y(qs) − y(s)

(q − 1)s
,

(106)

where g: qZ⟶ C is a perturbation. By using (eorem 3,
we obtain the following result.
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Theorem 4. If αj ∈ C\ − 1/(q − 1)􏼈 􏼉 with |αj(q − 1) + 1|≠ 1
for j ∈ 1, 2, . . . , n{ }, then the higher-order perturbed quantum
equation of Euler type (106) has Hyers–Ulam stability with an
HUS constant of

􏽙
n

j�1
K q − 1, αj􏼐 􏼑 �

(q − 1)n

􏽑
n
j�1 1 − αj(q − 1) + 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(107)

on qZ, where K(·, ·) is given in (13).

Proof. Let w: qZ⟶ C be a solution of (106), and let ε> 0
be given. Suppose that ψ: qZ⟶ C satisfies

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑ψ(s) − g(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε,

s ∈ q
Z

.

(108)

Since w is a solution of (106), we have

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑(ψ(s) − w(s))
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε.

(109)

Using (eorem 3, we can find a solution z: qZ⟶ C of
(42) such that

|(ψ(s) − w(s)) − z(s)|≤
(q − 1)nε

􏽑
n
j�1 1 − αj(q − 1) + 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, s ∈ q

Z
.

(110)

Note here that w(s) + z(s) is a solution of (106) because

sDq − αnI􏼐 􏼑 sDq − αn− 1I􏼐 􏼑 · · · sDq − α1I􏼐 􏼑(w(s) + z(s))

� g(s) + 0 � g(s),

(111)

holds. (is says that (106) has Hyers–Ulam stability.
Using (eorem 4 and connect (75) with f(t) � g(qt/h),

we can establish the following result. □

Theorem 5. If λj ∈ C\ − 1/h{ } with |λjh + 1|≠ 1 for
j ∈ 1, 2, . . . , n{ }, then the higher-order perturbed h-difference
equation with constant coefficients

Δh − λnI( 􏼁 Δh − λn− 1I( 􏼁 · · · Δh − λ1I( 􏼁x(t) � f(t), (112)

has Hyers–Ulam stability with an HUS constant of

􏽙

n

j�1
K h, λj􏼐 􏼑 �

hn

􏽑
n
j�1 1 − λjh + 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(113)

on hZ, where K(·, ·) is given in (13).

6. Conclusion

New results connecting h-difference equations with complex
constant coefficients and q-difference equations of the Euler
type are presented, for equations of all integer orders. For
equation orders greater than two, the h-difference results
extend first-order and second-order results found in the
literature, and the Euler-type q-difference results are com-
pletely novel for any order. In many cases, the best HUS

constant is found. (e key idea introduced here is estab-
lishing results for one type of equation and then converting
those results over to the other through a change of the
variable.
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