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A new day-to-day traffic assignment model is proposed to describe travelers’ day-to-day behavioral changes with advanced traffic
information system. In the model, travelers’ perception is updated by a double exponential-smoothing learning process
combining experience and traffic information that is explicitly modelled. Route adjustment ratio is dynamically determined by the
difference between perceived and expected utilities.*rough theoretical analyses, we investigate the existence of its fixed point and
the influence factors of uniqueness of the fixed point. An iterative-based algorithm that can solve the fixed point is also given.
Numerical experiments are then conducted to investigate effects of several main parameters on its convergence, which provides
insights for traffic management. In addition, we compare the system efficiencies under the static route adjustment ratio and
dynamic route adjustment ratio and show the application of the model.

1. Introduction

Equilibrium assignment has been providing theoretical basis
for the transport planners and operators during the past few
decades. While useful, it ignores traffic adjustment process.
To analyze it, a stream of research about traffic dynamics has
been developed. A variety of day-to-day traffic assignment
(DTD) models have been proposed including deterministic
process (DP) models, derived from the discrete-time non-
linear dynamic systems theory, introduced for trans-
portation by [1], and stochastic process (SP) models
considering random fluctuation of demand and (or) supply,
introduced for transportation systems by [2]. Some DP
models are established on the assumption that travelers’
perception is consistent with the reality and converge to user
equilibrium [3, 4] while others incorporate the randomness
of perception and converge to stochastic user equilibrium
[1, 2]. Cantarella and Cascetta [5] have unified DP and SP
models. Apart from these models based on route flow

variables, link-based DTD models recently are developed to
deal with route overlapping and numeration problem [6].

Nowadays, with the development of information and
communication technologies and the popularity of navi-
gation services, it is easy for travelers to access various traffic
information. *e information might affect travelers’ be-
havior significantly, which arises the interest to study traffic
dynamics with traffic information [7–16]. Some of them
focus on traffic dynamics with the traffic information ob-
tained from social network [10–12, 15, 16], while others
focus on traffic dynamics with the publicly available in-
formation provided by advanced traveler information sys-
tem (ATIS) [7–9, 13, 14]. We focus on the latter.

In the majority of DTDmodels that aim to capture traffic
dynamics with traffic information provided by ATIS, trav-
elers are divided into two categories based on their de-
pendent information resources. Information dependent
travelers choose the route according completely to the in-
formation, while experience dependent travelers do it
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according entirely to the perceived cost learned from ex-
perience [7–9, 14]. However, Bogers has evidenced that
travelers comprehensively use traffic information and ex-
perience in the route choice scenario [17].

In addition, these studies generally assume that the
proportion of travelers to adjust route every day is fixed
[7–9]. Although the fixed value has been changed from 1 to
less than 1 to capture the inertia [18], this way is too simple
to demonstrate that inertia is controlled by the difference
between perceived utilities of alternatives, which is found by
Mahmassani and Liu using a set of laboratory experiments
[19] and by Wang et al. using stated preference survey data
[20].

*is study simultaneously deals with the above two
problems to establish a more realistic day-to-day traffic
assignment model with ATIS and reinvestigates traffic dy-
namics. In our model, travelers learn from experience to
form their initial perception and the perception is then
modified by the traffic information provided by ATIS, for
example, Liu et al. [13]. However, different from them, we
use the single day information to adjust travelers’ perceived
route cost rather than the difference between information in
consecutive two days because it is nearly impossible for
travelers to clearly recall traffic information in the previous
day. Besides, route adjustment ratio is dynamically deter-
mined by the difference between perceived and expected
utilities. We also explicitly model traffic information, es-
pecially, the predictability of traffic information, for ex-
ample, Liu et al. [13].

*e rest of the paper is organized as follows. Section 2
describes our day-to-day traffic assignment model. Sec-
tion 3 theoretically analyses the existence of its fixed
point and influence factors of uniqueness and stability of
the fixed point. An iterative algorithm to solve the fixed
point is also given. Section 4 conducts numerical ex-
periments to specifically illustrate how several main
parameters affect convergence of the proposed model.
*e system efficiencies under static route adjustment
ratio and dynamic route adjustment ratio are also
compared. Furthermore, the proposed model is applied
to examine traffic dynamics when there are changes on
link capacities. Section 5 concludes the paper and gives
some future directions.

2. Day-to-Day Dynamic Traffic
Assignment Model

2.1. Travelers’ PerceivedTravel Time. Experienced travel time
and descriptive traffic information provided by traffic agency
both affect travelers’ perception for route cost. When
travelers finish a travel, they can obtain route cost and thus
update their perception.*e process can be built up through
an exponential smooth approach. When the pre-trip de-
scriptive information is provided by ATIS, travelers will
further modify their perception, which can also be described
through an exponential smooth approach. Hence, a double
exponential smoothing approach is constructed to describe
travelers’ perception updating as follows:

C
n+1
r,p � (1 − δ) (1 − λ)C

n
r,p + λC

n
r,e  + δC

n+1
r,f , ∀r ∈ Rw, w ∈W,

(1)

where λ(0≤ λ≤ 1) is learning rate and describes the extent
that travelers put an emphasis on experience and δ(0≤ δ ≤ 1)

is information fusion rate; the rest of notations are listed in
Appendix A.

In the case with δ � 0, equation (1) deteriorates into
single exponential smoothing approach and travelers just
learn from experience as typically done in the literature.

2.2. Predictive Information. Traffic information is mainly
represented in two ways in the DTD model. *e first one
views traffic information to be fully accurate and without an
explicit model. However, due to the uncertainty of traffic
supply and demand, there is no fully accurate information.
*erefore, the second way aims at modelling imperfect
traffic information. Generally, it directly adopts free-flow
travel time or the updated value based on historical data.
*ese methods ignore travelers’ behavior and traffic infor-
mation generated lacks predictability. Inspired by Liu et al.
[13], we generate predictive traffic information based on
travelers’ behavior.

Travelers’ perceived travel time is firstly predicted
through an exponential smooth learning process as travelers
do, but a different learning parameter is introduced, λ′ ≠ λ,
because traffic agency does not exactly grasp the extent of
travelers valuing single day’s experience in long perception:

C
n+1
r,fp � 1 − λ′( C

n
r,fp + λ′Cn

r,e, ∀r ∈ Rw, w ∈W. (2)

Traffic agency then distributes travelers over traffic
network based on perceived route cost. Specifically, a ran-
dom utility model is adopted here.*rough the process, new
route travel time is obtained. It is predictive traffic infor-
mation and provided to travelers. *e whole process can be
described as follows:

P
n+1
r,fp �

e
− θ′Cn+1

r,fp

r∈Rw
e

−θ′Cn+1
r,fp

, ∀r ∈ Rw, w ∈W,

y
n+1
r,fp � dwP

n+1
r,fp, ∀r ∈ Rw, w ∈W,

x
n+1
l,f � 

r∈Rw

Λr,ly
n+1
r,fp, ∀l ∈ L,

C
n+1
r,f � 

l∈L
Λr,lc x

n+1
l,f , ∀l ∈ L,

(3)

where θ′ reflects perception variation. A higher θ′-value
means a smaller perception variation for travelers.

2.3. Route Adjustment Ratio. For each trip, travelers have an
expected utility. If the perceived utility of previously chosen
route is higher than their expectation, they will continue to
travel on the route due to inertia; otherwise, it is possible for
them to adjust route. *e adjustment ratio has a positive
relationship with the difference between perceived utility
and expected utility. Based on the work of the literature [21],
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the adjustment ratio of travelers previously choosing route r

is expressed as follows:

χn+1
r,p ∇C

n+1
r,p  �

χ0 ∇C
n+1
r,p 

3

∇Cn+1
r,p 

3
+ ϖ

, ∀r ∈ Rw, w ∈W, (4)

∇Cn+1
r,p � C

n+1
r,p − E

n+1
w,p, ∀r ∈ Rw, w ∈W, (5)

E
n+1
w,p � −

lnr∈Rw
e− θCn+1

r,p

θ
, w ∈W, (6)

where χ0(0≤ χ0 ≤ 1) is a constant that represents the max-
imal adjustment ratio; ϖ(ϖ> 0) is a parameter to adjust the
sensitivity of route adjustment behavior for utility difference;
θ is similar with θ′ and reflects perception variation; and
En

w,p is expected utility on day n through OD pair w and
expressed as follows:

E
n
w,p � E max −C

n
r,p  . (7)

Because travelers differently rely on traffic information,
stress single-experience, and so on, their perceived utilities
for traveling in a route are not the same. Assuming random
residuals of perceived utilities for each route comply the
same Gumbel distribution and the random residuals for
different routes are independent, equation (6) is derived
from equation (7).

2.4. Link Traffic Flow. Route adjustment travelers will
rechoose route based on their perceived utilities that neg-
atively depend on perceived travel times. Similarly, there are
random residuals for perceived utilities. If random residuals
of perceived utilities are the same independent Gumbel
distributions, route adjustment travelers will choose route in
a logit-based formula:

P
n+1
r,p �

e− θCn+1
r,p

k∈Rw
e

−θCn+1
k,p

, ∀r ∈ Rw, w ∈W. (8)

*e rest will continue to travel on previous routes.
*erefore, the total chosen probability of a route is

P
n+1
r,e � 

r∈Rw

χn+1
r,p P

n
r,e P

n+1
r,p + 1 − χn+1

r,p P
n
r,e, ∀r ∈ Rw, w ∈W.

(9)

*e corresponding route flow and link flow pattern are

y
n+1
r,e � dwP

n+1
r,e , ∀r ∈ Rw, w ∈W,

x
n+1
l,e � 

r∈Rw

Λl,ry
n+1
r,e , ∀l ∈ L.

(10)

3. Model properties and Solution Algorithm

3.1. Model properties

3.1.1. Existence and State of Fixed Point. Suppose a fixed
point is formed at day n, we have xn

l,e � xn+1
l,e � x∗l,e,

Cn
r,e � Cn+1

r,e � C∗r,e, Cn
r,p � Cn+1

r,p � C∗r,p, and Cn
r,fp � Cn+1

r,fp �

C∗r,fp for n≥ n. Furthermore, we can infer C∗r,fp � C∗r,e and
C∗r,p � ((λ − λδ)/(λ + δ − λδ)C∗r,e) + (δ/(λ + δ − λδ)C∗r,f).

*en, the fixed-point of our model can be written as
follows:

C
∗
r,e � 

l∈L
Λr,lc x

∗
l,e , ∀l ∈ L,

P
∗
r,fp �

e− θ′C∗r,e

r∈Rw
e−θ′C∗r,e

, ∀r ∈ Rw, w ∈W,
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x
∗
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Λl,ry
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C
∗
r,f � 
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∗
l,f , ∀l ∈ L,

P
∗
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r∈Rw
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, ∀r ∈ Rw, w ∈W,

E
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e− θC ∗r,p

θ
, w ∈W,

∇C∗r,p � C
∗
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χ ∗r,p ∇C
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3

∇C∗r,p 
3

+ ϖ
, ∀r ∈ Rw, w ∈W,

P
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r,e �

mP∗r,p

χ ∗r,p 
Rw


> 1,

P∗r,p Rw


 � 1,

⎧⎪⎪⎪⎪⎪⎨
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∀r ∈ Rw, w ∈W,

(11)

where m � 1/
|Rw|
r P∗r,p/χ

∗
r,p, ∀r ∈ Rw, w ∈W,

y
∗
r,e � dwP

∗
r,e, ∀r ∈ Rw, w ∈W,

x
∗
r,e � 

r∈Rw

Λl,ry
∗
r,e, ∀l ∈ L. (12)

*e feasible link flow set of our model is closed, bounded,
convex, and nonempty [22]. According to Brouwer’s fixed-
point theorem [23], if the self-map about link flow vector X∗

is continuous, there is at least a fixed point.
Assuming that c(x∗l,e) is continuous with x∗l,e, C∗r,f is a

continuous function with X∗. Furthermore, C∗r,p is con-
tinuous with X∗. With the route choice function and route
adjustment ratio function, it can be proved that route choice
vector P∗r,e is continuous with perceived travel time vector
C∗p . *erefore, the self-map of X∗ are continuous and there
is at least a fixed point.

In addition, we can find that the parameters λ, δ, θ, and
θ′ affect the state of the fixed point. However, χ0 does not
affect the state of fixed point because it can be eliminated in
the P∗r,e. As well, λ′ does not affect the state of fixed point.
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3.1.2. Uniqueness of Fixed Point. Pn+1
r,e relies on travelers’

perceived travel times which are determined by traffic in-
formation and experience. Traffic information depends on
perceived travel times predicted by traffic agency. *erefore,
we can rewrite our model in an abstract way:
(Pn+1

r,e , Cn+1
r,p , Cn+1

r,fp) � Ψ(Cn
r,p, Cn

r,fp, Pn
l,e), where Ψ covers all

relations formulated in Section 2. Given c is continuously

differentiable, we can infer that Ψ is continuously differ-
entiable. Let J denotes the Jacobian matrix of the functionΨ.
If |I − JΨ|≠ 0, Φ � Pt − Ψ[Pt] is invertible according to
Hadamard’s global inverse theorem [21]. Because Φ is in-
vertible, it also is injective andΦ− 1 is invertible and injective.
P∗ � Φ− 1(0) is exclusive.

Specifically,

JΨ C
∗
r,p, C
∗
r,fp, P

∗
r,e  � m∗ χ∗( 

− 1J∗P Cp, θ J∗C − BJ∗χ J
∗
C  � m∗ χ∗( 

− 1J∗P Cp, θ  − BJ∗χ J∗C , (13)

where

B �

p∗1,p/ χ ∗1,p 
2

p∗2,p/ χ ∗2,p 
2

· · ·

p∗
Rw| |−1,p

/ χ ∗
Rw| |− 1,p

 
2

p∗
Rw| |,p

/ χ ∗
Rw| |,p

 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J∗C �
λ − λδ

λ + δ − λδ
ΛTJ∗c Ce( ΛQ +

δ
λ + δ − λδ

ΛTJ∗c Cf ΛQJ∗p Ce, θ′( ΛTJ∗c Ce( ΛQ.

(14)

*erefore, we can infer that if link performance function
is a constant without traffic flow on it, J∗c � 0, and the fixed
point of our model is uniqueness; otherwise, λ, δ, θ, θ′, and
χ0 all affect the uniqueness of the fixed point except λ′.

3.1.3. Stability of Fixed Point. Our model will converge to a
fixed point from its attractor region if 3|R| eigenvalues of the
matrix J∗

Ψ
(Cn

r,p, Cn
r,fp, Pn

r,e) (Appendix B) are within the unit
circle [24]. Hence, we can know that λ, λ′, δ, θ, θ′, and χ0 all
affect the stability of a fixed point. In Section 3.2, we will
conduct sensitive analyses to specifically investigate how
these parameters affect the convergence of the model as to
provide insights for traffic management.

3.2. Solution Algorithm. *e fixed point of our model is
identical to the fixed point of the dynamic system established
in the following [25]:

x
κ+1
l,e � τΨ x

κ
l,e  +(1 − τ)x

κ
l,e, (15)

where parameter τ(0< τ < 1) is iterative step length; the
superscript κ(κ � 0, 1, 2, 3, · · ·) represents the iterative time.

Based on it, the fixed point of ourmodel can be numerically
computed by executing an iteration-based algorithm [26].

Step 1 Initialization: assign a value for the iterative step
length τ. Set κ � 0.

Step 2. Choose a feasible initial vector of link flow x0
l,e ∈ Θ,

where Θ represents the feasible link flow set which satisfies
both the nonnegative constraint of link flow and total de-
mand constraint.

Step 3. Renew the link flow vector using the following it-
erative formula: xκ+1

l,e � τΨ(xκ
l,e) + (1 − τ)xκ

l,e.

Step 4. Check the iterative convergence:|xκ+1
l,e −

xκ
l,e|< ξ, ∀l ∈ L. ξ represents the convergence criterion. If the

convergence condition is met, x∗l,e � xκ+1
l,e , ∀l ∈ L and stop;

otherwise, set κ � κ + 1 and go to Step 2.
According to the work of Cascetta and Cantarella [5], the

algorithm can converge to a fixed point when τ is small
enough.

4. Numerical Experiments and Analyses

4.1. Small Network. We firstly use a small network with an
OD pair to show the effects of λ′ and χ0 on the convergence
of the model. *e traffic demand of the OD pair is 500
(pcu·h−1). As shown in Figure 1, the small network has two
links, whose free-flow travel time and the capacity are, re-
spectively, (2min, 300 pcu·h−1) and (2min, 400 pcu·h−1).
Bureau of public roads (BPR) link performance function is
used to compute the link travel time as do most of relevant
literature studies [7, 8, 21, 25, 27].*e function is established
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based on many field surveys and thus reflects the real re-
lationship between link travel time and link flow:

cl � c
0
l 1.0 + α

xl

ul

 

β
⎛⎝ ⎞⎠, ∀l ∈ L, (16)

where α and β are parameters with typical value α � 0.15 and
β � 4.

*e specific numerical settings are given in Table 1.
When the initial route choice is set as (0.4, 0.6), the fixed

point we can get under the above parameters is (0.225,
0.775). Based on it, we can calculate the eigenvalues of
J∗
Ψ
(Cn

r,p, Cn
r,fp, Pn

r,e) under different λ′-values and χ0-values,
which are displayed in Tables 2 and 3, respectively.

We can know from Table 2 that the system can converge
to an equilibrium when λ′ is 0.4, 0.6, or 0.8 (all eigenvalues
are smaller than 1). Figure 2 displays the same result through
evolutionary processes of link 1 chosen probabilities under
different λ′ values.*ese results indicate that if traffic agency
adopts an underestimated learning rate to predict travelers’
perceived cost, the system is still able to converge to the
equilibrium, but the error should be smaller than a certain
value. As well, Figure 2 shows a larger λ′ can make the
system more quickly converge to the equilibrium.

Table 3 shows that as χ0 increases, the system starts not to
converge to an equilibrium, suggesting that the route ad-
justment tendency has a negative effect on the stability of the
system. We also depict that evolutionary processes of link 1
chosen probabilities under different χ0 values in Figure 3. It
shows the same result. Furthermore, it shows χ0 has a
positive relationship with the convergence speed.

4.2. Nguyen-Dupuis Network. We then conduct numerical
experiments on Nguyen-Dupuis network [28] displayed in
Figure 4 to further illustrate the other nature of the proposed
DTD model and its application. Nguyen-Dupuis network
consists of 13 nodes, 19 links, 4 OD pairs, and 25 routes. *e
characteristics of 19 links are displayed in Table 4. *e traffic
demand pattern between the four OD pairs is assumed to be
(d12, d13, d42, d43) � (660, 495, 412, 495)(pcu·h−1) [27]. All
alternative routes connecting these OD pairs are shown in
Table 5. Likewise, we adopt Bureau of Public Roads’ (BPR)
link performance function as the link travel time function.
*e specific numerical settings are given in Table 6.

4.2.1. Sensitivity Analysis. We then explore how the other
parameters might affect the convergence of the system.

Figure 5 displays chosen probabilities of route 1 over time
under different parameter values.

It can be clearly observed from Figure 5 that the travelers’
learning rate, information fusion rate, and perception var-
iations adopted by travelers and traffic agency all affect the
convergence of the proposed system, which is consistent
with our theoretical analyses.

We further find from Figure 5 that when travelers’
learning rate and perception variation parameter are beyond
certain values, the system will not be able to converge to an
equilibrium. *e reason can be, respectively, explained as
follows:

(1) *e higher travelers’ learning rate is, the more
travelers put emphasize on single day experience.
Travelers’ route choice will lack consistency, leading
to an unstable system.

(2) A lower perception variation (a higher θ value)
means that more travelers choose the same route to
travel. As a result, they will frequently adjust the
route and the system oscillates.

When δ increases to 0.8, the system starts to converge to
an equilibrium. *e implication is that appropriate infor-
mation dependence could help stabilize the system. Fur-
thermore, from the fact that the system with δ � 1 is
convergent, we can infer that more dependence on a stable
information system might contribute to the system’s
convergence.

In addition, when θ′ is equal to 0.01 (an underestimated
value), the traffic system cannot converge to an equilibrium,
while the traffic system still is convergent when θ′ is equal to
0.4 (an overestimated value). *ese results indicate that the
system can converge to an equilibrium when an inaccurate
perception variation is adopted by traffic agency to predict
traffic information. As well, when traffic agency cannot
obtain the real travelers’ perception variation, a relatively
larger θ′ adopted is more beneficial.

4.2.2. Comparison Analysis of Static Route Adjustment Ratio
and Dynamic Route Adjustment Ratio. In our model,
travelers decide whether to adjust route based on the dif-
ference between perceived and expected utilities, leading to a
dynamical adjustment ratio (DR). However, as mentioned
above, most relevant studies consider that a fixed proportion
of travelers adjust the route every day, called static adjust-
ment ratio (SR). For simulating it, we keep the maximal
route adjustment ratio unchanged in the whole evolutionary
process. *e efficiencies of the systems under the two dif-
ferent adjustment ratios are displayed in Figure 6. It clearly
shows that the travelers’ total travel times with DR is higher
than that with SR, demonstrating the model with SR
overestimates the efficiency of the system. *is might be
because in dynamic route adjustment scenario travelers
ignore the small difference among route travel times and
keep travelling in routes with slightly high travel times.

It should be noted that, for the network with single route
connecting each OD pair, the efficiencies of the systems
under the two different adjustment ratios are the same

DO

1

2

Figure 1: Small network.
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because no alternative route can be used. *erefore, we can
conclude that the model with SR overestimates the efficiency
of the system with alternative routes.

4.2.3. Day-to-Day Dynamic after the Change of Road
Capacity. *e proposed model can be further used to an-
alyze traffic dynamics when there are changes in road ca-
pacity, such as, drops in link capacity caused by road
maintenance. *e scenario can be assumed as at a day, such
as 50th day, segment of link 7 is closed due to maintenance
and its capacity drops into 200 (pcu·h−1); after road
maintenance is finished, its capacity returns into the original
value at the 70th day. Corresponding evolutionary process of
the system is displayed in Figure 7.

Table 1: Basic numerical settings on small network.

Parameters BPR function Learning rate Information parameters Route adjustment ratio Perception variation parameter
Specification α � 2; β � 4 λ � 0.8; λ′ � 0.4 δ � 0.1 ϖ � 1; χ0 � 0.8 θ � θ′ � 1

Table 2: Eigenvalues of J∗
Ψ
(Cn

r,p, Cn
r,fp, Pn

r,e) under different λ′
values.

Eigenvalues
λ′

0.2 0.4 0.6 0.8
1 −1.12 −0.96 −0.76 −0.47
2 −0.11 −0.12 −0.13 −0.18
3 0.18 0.18 0.18 0.18
4 0.88 0.74 0.57 0.34
5 <1.00 <1.00 <1.00 <1.00
6 0.80 0.6 0.40 0.20

Table 3: Eigenvalues of J∗
Ψ
(Cn

r,p, Cn
r,fp, Pn

r,e) under different χ0
values.

Eigenvalues
χ0

0.6 0.7 0.8 0.9

1 −0.28 + 0.21i −0.63 −0.96 −1.26
2 −0.28− 0.21i −0.19 −0.12 −0.09
3 0.18 + 0.00i 0.18 0.18 0.18
4 0.74 + 0.00i 0.74 0.74 0.74
5 <1.00 + 0.00i <1.00 <1.00 <1.00
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Figure 2: Evolution of link 1 chosen probabilities under different
λ′ values.
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As shown in Figure 7, when the capacity of link 7 drops,
traffic equilibrium immediately breaks down because traffic
agency informs travelers of road maintenance through de-
scriptive information. *e whole traffic system is affected,
such as route 1 and route 24 that do not include link 7,
because links and routes in a traffic system interact with each
other. During the whole period of maintenance, the system
always oscillates and does not achieve an equilibrium. After
recovery of the capacity, the traffic system takes 5 days to
return to its initial equilibrium. *is demonstrates that the
change of temporary link capacity does not cause permanent
change.

5. Conclusions

*is study extends the day-to-day model by simultaneously
considering the combined effect of traffic information and
experience on travelers’ perception and dynamic route
adjustment ratio. *en, we theoretically validate the ex-
istence of its fixed point. We find that except the learning

rate adopted by traffic agency, travelers’ learning rate,
information fusion rate, perception variation, and maximal
route adjustment ratio in the model all affect uniqueness of
its fixed point when link performance functions are the
function with link flows. An iteration-based algorithm can
be used to solve these fixed points. Finally, we conduct
numerical experiments on a small network with two links
and Nguyen-Dupuis network to investigate effects of
several parameters on the convergence of the model. *e
results show the system can converge to an equilibrium
with traffic information predicted by traffic agency using
inaccurate parameters. Also, dependence on traffic infor-
mation provided by a stable information system contrib-
utes to the stability of the system. Furthermore, maximal
route adjustment rate has a negative effect on the stability
of the fixed point and a positive effect on convergence
speed. *e results provide insights for ATIS design and
traffic management.

An experiment is also conducted to analyze the difference
between static adjustment ratio and dynamic adjustment ratio.

Table 5: Routes.

OD pair (1, 2) (1, 3) (4, 2) (4, 3)

Route no. and links sequence

1 (2-18-11) 9 (1-6-13-19) 15 (4-12-14-15) 20 (4-13-19)
2 (1-5-7-9-11) 10 (1-6-12-14-16) 16 (3-5-7-9-11) 21 (4-12-14-16)
3 (1-5-7-10-15) 11 (1-5-8-14-16) 17 (3-6-12-14-15) 22 (3-6-13-19)
4 (1-5-8-14-15) 12 (1-5-7-10-16) 18 (3-5-8-14-15) 23 (3-6-12-14-16)
5 (1-6-12-14-15) 13 (2-17-8-14-16) 19 (3-5-7-10-15) 24 (3-5-8-14-16)
6 (2-17-8-14-15) 14 (2-17-7-10-16) 25 (3-5-7-10-16)
7 (2-17-7-10-15)
8 (2-17-7-9-11)

Table 6: Basic numerical settings on Nguyen-Dupuis network.

Parameters BPR function Learning rate Information parameters Route adjustment ratio Perception variation parameter
Specification α � 0.15; β � 4 λ � λ′ � 0.4 δ � 0.8 ϖ � 1; χ0 � 0.5 θ � θ′ � 0.1

Table 4: Network characteristics.

Link no. c0l (min) ul (pcu·h−1)

1 7 300
2 9 200
3 9 200
4 12 200
5 3 350
6 9 400
7 5 500
8 13 250
9 5 250
10 9 300
11 9 500
12 10 550
13 9 200
14 6 400
15 9 300
16 8 300
17 7 200
18 14 300
19 11 200

Discrete Dynamics in Nature and Society 7



*e results show that the model with static route adjustment
ratio overestimates the efficiency of the system with alternative
routes. Finally, we show the application of our model by an-
alyzing traffic dynamics when there are drops in link capacities.

In the future, various research directions ensuing from
this work can be explored. One of them would be to
calibrate and validate the model with empirical data.
Another line of research would be to analytically derive
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Figure 5: Evolutionary processes under different parameter values: (a)λ � λ′ (b)δ, (c)θ � θ′, and (d)θ≠ θ′.
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the sufficient condition that assures the stability of the
dynamic system. *e third direction would be to design
management measures to improve its stability. Last but

not least, the model should be further extended into a link-
based day-to-day model to avoid numerating all routes
among O-D pairs.

Appendix

A. Notations

A traffic network is a directed graph (N, L), where N rep-
resents the node set and L corresponds to the link set. *e
notation used in this paper is

l= link index, l ∈ L

O= origin set, o ∈ O, O⊆N

D= destination set, d ∈ D, D⊆N

W= origin and destination (OD) pair set
w=OD pair index, w ∈W

Rw = route set between OD pair w

r= route index, r ∈ Rw, w ∈W

Λl,r = link-route index whose value is 1 if link l belongs
to route r, zero otherwise
qw =demand of OD pair w

c0l = free-flow travel time of link l

xn
l,f =flow on link l on day n predicted by traffic agency

xn
l,e = traffic flow on link l on day n

yn
r,f =flow on the route r on day n predicted by traffic

agency
yn

r,e = traffic flow on the route r on day n

c= link performance function
Cn

r,e = route r travel time on day n

Cn
r,p =perceived travel time of route r on day n

Cn
r,fp =perceived travel time of route r on day n pre-

dicted by traffic agency
Cn

r,f = route r travel time on day n predicted by traffic
agency
En

w,p = expected utilities through OD pair w

∇Cn+1
r,e =difference between perceived and expected

utilities
χn+1

r,e = adjustment ratio of travelers on day n + 1 that
choose route r on day n

Pn
r,p =probability that route adjustment travelers

choose route r

Pn
r,fp = r route chosen probability predicted by traffic

agency
Pn

r,e =route r chosen probability.

B. Jacobian Matrix

*e Jacobian matrix is

To
ta

l t
ra

ve
l t

im
e (

m
in

)

SR
DR

2.4E6

2.5E6

2.6E6

2.7E6

2.8E6

2.9E6

0.4 0.60.2
λ = λ′

Figure 6: System efficiencies under static and dynamic adjustment
ratios.
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Figure 7: Day-to-day dynamics with drop in road capacity.
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Jn
ψ =

Cn
p

(1–λ)(1–δ)I

(1–λ)(1–δ)J3,1

0

Cn
fp

(1–λ′)δJ1,2

(1–λ′)δJ3,1J1,2

(1–λ′)I

Pne

Cp
n+1

Pe
n+1

Cf
n
p

(1–δ)λJ2,3 + λ′δJ1,2J2,3

(PpEχ + I – χ) + J3,1J1,3

λ′J2,3

(B.1)

where

J1,2 � ΛTJc Cf ΛQJp Cfp, θ′ ,

J2,3 � ΛTJc Cfp ΛQ,

J3,1 � PpEPeJχ − PeJχ + ΖJp Cp, θ ,

(B.2)

E =

...1 1

...... ... 0 0

...

... ...

0 0

...
;

1 1
R1

...1 1

...... ...

...1 1
Rw

(B.3)

Z = 

χ1Pe,1 + ··· + χR1
Pe,R1

... ... ...
0 ... χ1Pe,1 + ··· + αR1

Pe,R1

... 0

χe,Rw–1+1Pe,Rw–1+1 + ··· + χRw
Pe,Rw

... ... ...
0 ...

...

...... .
...

0

0 0

0 0

χRw–1+1Pe,Rw–1+1 + ··· + χRw
Pe,Rw

R1

Rw

(B.4)
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