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At present, the controllability of complex networks is a hot issue in complex networks domain. From the perspective of graph
theory, in the paper quite a few pioneering works on the controllability of complex networks were introduced, and the latest
progress of the controllability of complex networks was emphatically summarized. In addition, the paper mainly discussed the
basic ideas and effective methods to enhance the structural controllability of complex networks and analyzed the advantages and
disadvantages of different methods. Finally, several problems and possible development directions of the controllability of
complex networks were summarized.

1. Introduction

Along with the rapid development of the network in the late
twentieth century, our human society entered into a new era
of the network. Naturally, the network became a profound
new topic studied by individuals [1, 2]. In particular, since
a slice of discoveries of collective dynamics of small-world
network, by Watts and Strogatz [3] published in Nature in
1998, and some discoveries of emergence of scaling in
random networks, by Barabsi and Albert [4] published in
Science in 1999, the academic circles have set off an upsurge
of studying complex networks [5–8].

Complex systems pervade in today, for example Internet
[9, 10], communication networks [11], power networks
[12, 13], transportation networks [14], and biological net-
works [15]. Complex systems have brought a great im-
provement for the production and life of human beings.
Meanwhile, the failure of complex systems can cause a huge
loss, such as the large-scale blackout of power grids, traffic
paralysis, and the fast spread of rumours or infectious
diseases. Hence complex systems should be controlled ef-
fectively. &en, the benefits can be utilized effectively, and

the unnecessary disaster can be avoided. &e phenomenon
forced complex networks and systems engineering to
flourish [16–19]. Meanwhile, networks and control gradually
fused together in the development process of each other
[20–22]. In gene regulatory networks [23–25], we select
which genes as drug targets to make the whole biological
systems to achieve a desired state. In social networks [26], we
select which nodes as the information publishes nodes to
achieve favorable promotional effects. Most of the complex
practical systems can be regarded as complex networks,
though they are different greatly in the real world. &erefore
the control of complex systems can be transformed into the
control of complex networks.&ese phenomena [27, 28] can
be abstracted as how to effectively control complex networks
to make the whole network into a desired state. Before
conducting the control of the complex networks, whether
the controlled plant can be controlled effectively should be
investigated. And that is to say we should be clear in whether
the controlled plant has the controllability. If the controlled
plant does not have the controllability, it should be adjusted
until it possesses the controllability; and the control action
can be performed only after the condition that the controlled
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plant has the controllability is confirmed. So investigating
the controllability is necessary for the control. In addition,
due to the fact that the large control systems often contain
a multitude of subnetworks, for example, wireless sensor
networks and communication networks, and that numerous
controllers are embedded in a variety of large-scale networks
at the same time, the traditional control theory [29, 30] has
no application in this case. &us it can be seen that the
development of complex networks has brought new op-
portunities and challenges for the traditional control theory.

Based on the above, the research on the structural
controllability of complex networks was published by Liu
et al. [31] in Nature in 2011. From then on, the academic
circles have set off an upsurge of studying structural con-
trollability of complex networks [32–44]. &e literature [31]
regarded an entire network as a linear system and established
the model of structural controllability of complex networks
by skilfully introducing matching theory [45–47]. &ey
converted the problem of complex networks’ controllability
into directed networks, the maximum matching problem.
&e theory of structural controllability of complex networks,
which literature [31] put forward, was aimed at directed
networks. &en, the controllability of the undirected com-
plex networks problem was researched and the theory of
exact controllability of complex networks was given by Yuan
et al. [48].

In recent years, the controllability of complex networks
was mainly developed based on the structural controllability
of complex networks [31] and acquired some achievements.
To date, the literature [31] had a high cited frequency in
Google Scholar, as much as 1336. Consequently, it is nec-
essary to summarize the current research progress from
different perspectives and to discuss possible future di-
rections of complex networks controllability. Despite the
increasing study of the controllability of complex networks,
exploiting its full potential is difficult due to its inherent
problems such as structure complexity, enormous scale, and
dynamic complexity. Enhancing the controllability of
complex networks can address these problems by appro-
priate changing in the network topology. &is paper mainly
analyzed the optimization problem of structural controlla-
bility of complex networks and summarized some typical
ways and measures of enhancing complex networks con-
trollability by using topology optimization. Most of the
complex practical systems can be regarded as complex
networks, though they are different greatly in the real world.
&erefore the control of complex systems can be trans-
formed into the control of complex networks. Under system
controllable circumstances, the purpose of controlling the
system is achieved by artificially applying strategies. How-
ever, sometimes it is more expensive to directly control the
system, or too many controllers are needed. In this case,
without affecting the characteristics of the system, we can
slightly change the structure of the system to achieve con-
trollable purpose. &is process is called strengthening the
controllability of complex systems. Here, we provide an
extensive survey of enhancing the controllability of complex
networks research. We present a taxonomy based on the key
issues in this area and discuss the different approaches taken

to tackle these issues. We conclude the paper with a critical
analysis of challenges that have not yet been fully met and
highlight directions for future work. We aim at extracting
more organized research train of thought by collating and
summarizing the research status of this field. We try to hope
for the research of network control to provide a reference
and expect better able to guide future work.

&e rest of the paper is organized as follows. Section 2
introduced the theory of structural controllability of com-
plex networks. In Section 3, techniques to enhance the
controllability of directed complex networks were shown in
detail. Section 4 gave the conclusions and discussion.

2. Structural Controllability of
Complex Networks

In this section, we first reviewed the definition of linear time-
invariant system controllability and classical judgment
controllability theorem and then introduced the judgment
theorems of complex networks controllability.

Here we consider a linear time-invariant (LTI) dynamics
equation (1) on a directed network:

_x(t) � Ax(t) + Qu(t), (1)

where A is the transpose of the adjacency matrix of the
network, x(t) is a time-dependent vector of the state vari-
ables of the nodes, u(t) is the vector of input signals, andQ is
the so-called input matrix, which defines how the input
signals are connected to the nodes of the network.

Based on the linear system control theory [30], a com-
plex network is controllable if and only if it satisfies Kalman’s
controllability rank condition [49]. It can be controlled from
any initial state to any desired state infinite time, if and only
if the N × NM controllability matrix C has full rank. It can
be formalized as follows:

rankC � rank Q,AQ,A2Q, . . . ,An− 1Q  � N, (2)

where x � (x1, x2, . . . , xN) is called the state vector, A �

(aij)N×N is the state matrix, and aij denotes the weight of
a directed edge from node j to i. Q is the input matrix, and
u � (u1, u2, . . . , uM) is the input or control vector.

But for large-scale systems or high dimensional complex
networks [50], the rank critical condition is impossible to
test, because it is needed to calculate a large amount of
matrix combinations. Accordingly, for large systems or high
dimensional complex networks, it is not feasible to judge
their controllability by using the traditional method. For this
reason, a newly general method, which is suitable for
controllability of directed complex networks was introduced
in the literature [31].

Recently, Liu et al. [31] developed the minimum input
theory to efficiently characterize the structural controllability
of directed networks. According to the literature [31], the
structural controllability of directed networks can be
mapped into the problem of the maximummatching, where
external control is necessary for every unmatched node. &e
maximum matching is defined and the method for finding
a maximum matching is, respectively, as follows.
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Generally, a maximum matching of a directed network
problem is transformed into a maximum matching of
a bipartite network problem. A maximum matching of
a digraph G � (V, E) can be found in its bipartite repre-
sentation, denoted as F(V) (see Figure 1). &e bipartite
graph is defined as F(V) � (V+∪V− , Γ). Here,
V+ � (x+

1 , x+
2 , . . . , x+

N) and V− � (x−
1 , x−

2 , . . . , x−
N) are the

sets of nodes corresponding to the N columns and rows of
the state matrix A, respectively. Γ � (i+, j− )|aij ≠ 0  is the
edge set, i.e., if there is an edge from node i to node j, then
link node i+ and node j− . According to the algorithm of
a bipartite graph maximum matching, we can obtain
a maximum matching of the directed graph.

3. Enhancing the Structural Controllability of
Complex Networks

For large-scale complex networks, there may be more un-
matched nodes and we need to pay a high price to keep their
structural controllability. A larger value ND indicates
a worse structural controllability. It means that we need to
provide more input signals to control the network. In fact,
a multitude of actual networks have large values ND.
&erefore, in order to improve structural controllability of
the network, it is a critical problem on how to properly
change the network topology structure to reduce the amount
of the driver nodes [51–53].

&ere are different ways of improving the structural
controllability of complex networks. Now some existing
methods are mainly from the following three aspects to take
into account: adding edges [51, 54, 55], swapping edges
[56–58], and changing directions of edges [59, 60]. &is
section focused on the typical methods.

3.1. Based on Adding Edges, Enhancing the Structural Con-
trollability of Complex Networks. Based on adding edges,
there are two ways to enhance the structural controllability
of complex networks. One is simply to add some new edges
into the network, and another is to add some new edges and
remove the same number edges (original edges) at the same
time. &e former makes the number of edges in the network
increase. In the latter case, the number of edges remains
unchanged in the network.

Adding edges can be implemented in two ways: ran-
domly adding edges and intentionally adding edges
according to a certain formula. Randomly adding edges
means randomly selecting two nodes and adding an edge
between them if there is no edge between them. Intentionally
adding edges means according to a certain formula selecting
two nodes and adding an edge between them if there is no
edge between them, for example, based on node degree ratio
kr [55], where kr � (kout + 1)/(kin + 1). After adding an
edge, if the number of driver nodes decreases, then keep the
new edge. If the number of driver nodes does not change,
then delete the new edge and choose again. Here, we in-
troduced two kinds of intentionally adding edges to enhance
the structural controllability of complex networks.

Maximum matching of a graph is not unique and the
corresponding set of matched nodes is not the same. Hence,
choosing different maximum matchings would result in
different sets of unmatched nodes, that is, different sets of
driver nodes. According to the frequency of nodes occur-
rences within all the minimum sets of driver nodes, all nodes
can be divided into three categories: critical nodes, ordinary
nodes, and redundant nodes [36]. Critical nodes represent
that they appear in every minimum set of driver nodes.
Redundant nodes represent that they do not appear in any
minimum set of driver nodes. Ordinary nodes represent that
they appear in part of the minimum sets of driver nodes.
Analogously, all edges can be divided into three categories:
critical edges, ordinary edges, and redundant edges [31].
Critical edges mean if they are removed from the network,
then the number of the minimum sets of driver nodes will
increase for the case where the network states are structural
controllability. Redundant edges mean they are removed
from the network without altering the number of the
minimum sets of driver nodes. And yet, ordinary edges
mean they are removed affecting some of the minimum sets
of driver nodes.

&us it can be seen that adding a new edge may enhance
the structural controllability of complex networks, but
definitely would not make it weaken. Enhancing structural
controllability of complex networks is to make as multitude
critical edges and as fewer redundant edges. &erefore, the
literature [55] proposed a method of enhancing structural
controllability of complex networks by using adding some
critical edges while removing the same number of redundant
edges. &e method [55] was based on the node degree ratio
and was presented in detail as follows.

Step 1: In the entire network select a node with the
smallest kr, denoted as Vmin kr

, and select another node
with the largest kr, denoted as Vmax kr

. If there is more
than one such node with the smallest kr, then randomly
select one of those. For node Vmax kr

, it is similar to the
node with the smallest kr.
Step 2: Add a new directed edge with Vmin kr

as
a starting node and Vmax kr

as an ending node. If there is
already an edge between the two selected nodes, then
reselect until there does not exist an edge between the
two selected nodes.
Step 3: After adding a directed edge, recount the degree
ratio of nodes and repeat the above steps.

Compared with the method of random adding edges,
this method is more effective.&e validity of the method is to
reduce the heterogeneity degree of a network, which should
contribute to enhancing the controllability of the network.

Moreover, Wang et al. [51] studied, for a directed net-
work with N state nodes, if we use only one input node to
control the network, how many we need to add edges into
the network, and which positions we need to add edges in
the network. On the basis of the literature [31], an opti-
mization algorithm of adding edges was proposed. Firstly,
the maximum matching set of the network is divided into
three categories: directed paths, circles, and isolated nodes.
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Circles do not need an additional input signal to control.
&erefore they do not need to be considered. &en, all di-
rected paths and isolated nodes are connected with one
another in turn head-to-tail and form a new directed path.

3.2. Based on Reversing Edge Directions, Enhancing the
Structural Controllability of Complex Networks. Although
the controllability of a network could be enhanced by adding
some edges, the topology of the network would be changed.
In addition, from the point of view of cost, adding some
edges into a network, for example, a power network, requires
a high price. Hence, for some actual networks, it is not
feasible by adding some edges to improve their controlla-
bility. &e edge direction plays a vital role in the control-
lability of a network. Based on this, it was proposed reversing
some edge directions to enhance the structural controlla-
bility of complex networks [56–58]. &is way keeps the total
number of edges unchanged and also does not change the
network topology.

As earlier work has already pointed out, the maximum
matching consists of isolated nodes, matching paths, and
matching cycles. Isolated nodes are invariably unmatched.
Each matching path contains only an unmatched node.
Since matching cycles do not contain unmatched nodes,
matching cycles are not needed to be taken into consider-
ation. Accordingly, ND is equal to the total number of
isolated nodes and matching paths. If we connect an isolated
node or matching path to another isolated node or matching
path, ND decreases by one.

Based on the maximum matching, nodes can be cate-
gorized into four types: start nodes, middle nodes, end
nodes, and isolated nodes [56]. Start nodes have an outgoing
edge and no incoming edge. If a node has only an outgoing
edge without incoming edges, then the node is a start node.
Instead, if a node has only an incoming edge without any
outgoing edges, then the node is an end node. If a node has
both outgoing and incoming edges, then the node is amiddle
node. And yet, if a node has no edges belonging to the
maximum matching, then the node is an isolated node.

Based on the type of a node, five types of edges need to
change directions. &ose edges were called candidate edges.
&e five types of edges were referred to as SI, IE, SE, SS, and
EE (see Figure 2). (a) SI: edges leading from a start node

pointing to an isolated node; (b) IE: edges leading from an
isolated node pointing to an end node; (c) SE: edges leading
from a start node pointing to an end node; (d) SS: edges
leading from a start node pointing to a start node; (e) EE:
edges leading from an end node pointing to an end node.

&e algorithm [56] is the following:

Step 1: According to the Hopcroft–Karp algorithm
[30], obtain a maximum matching of a network.
Step 2: All the nodes are categorized into four types:
start nodes, middle nodes, end nodes, and isolated
nodes.
Step 3: Identify the candidate edges: SI, IE, SE, SS, and
EE.
Step 4: Run through a sequence of operations on the
candidate edges with the type SI. In the first place,
change the directions of the candidate edges with the
type SI. &ere is one more point, based on the new
matching path, the types of the corresponding nodes
and edges are refreshed. Apply the same operations to
the candidate edges with the types IE and SE.
Step 5: Run through a sequence of operations on the
candidate edges with the type SS.&e first and foremost is
to compare the length of two matching paths. Secondly,
change the directions of the edges in the shorter path.
&en, based on the new matching path, the types of the
corresponding nodes and edges are refreshed. Apply the
same operations to the candidate edges with the type EE.
Step 6: &e controllability of the network has improved
to some extent after changing the edge direction. &en,
gain a new maximum matching of the improved net-
work (see Figure 3). When the controllability of the
network has reached the desired state or its control-
lability of the network remains constant in the long run,
the algorithm stops, or return to Step 2.

On the basis of the matching path, the basic thought of
the method is to seek candidate edges. &is method is based
on only part structure and offers a strategy to improve the
controllability. Since the global topology of numerous real
networks is unknown and, in general, we just get part
structure information, this strategy may be more practical
than those that need whole topology information.
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Figure 1: A simple network, its bipartite representation, and its maximum matching. (a) A simple network with five nodes and five edges.
(b) &e bipartite representation of the network and its maximum matching. Matched (unmatched) nodes are shown in green (red) and
matching edges are shown in green, respectively.
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3.3. Based on Maximum-Weighted Independent Set, En-
hancing the Structural Controllability of Complex Networks.
In directed networks, there are often such types of dilations
and inaccessibility. &e edges in dilations and inaccessibility
are huge obstacles for structural controllability of the net-
work. Because they can lead the network to discount ability
to state structural controllability. Usually, we call these edges
as “inappropriate edges.” Firstly, we must recognize these
“inappropriate edges &en, change the directions of the
edges. &e literature [59] summarized several types of
“inappropriate edges,” as shown in Figure 2. &e literature
[57] mainly discussed how to remove these “inappropriate
edges” and added the same number of new edges in the
meantime, neglecting the impacts of edge direction on the
enhancement network controllability.

Firstly, add the edges with the opposite direction into the
initial directed network G (see Figure 4(a)) and get a sym-
metric directed network, recorded as G' (see Figure 4(b)).
Here assume that the weight of each initial edge is 1 and the
weight of each new edge is 0. Secondly, translate the sym-
metric directed network into an undirected switching net-
work, recorded as H (see Figure 4(c)). &e translation rules
are provided in the next paragraph. Each node aij in H
corresponds to a directed edge (vi, vj) in G, and the weight of
each node is 1 or 0.

&e connection rule between the nodes in H is Rule I: if
two nodes in H correspond to the symmetric directed edges
in G, then it needs to connect the two nodes, shown as the
black edges in Figure 4(c); Rule II: if two nodes in H cor-
respond to the symmetric directed edges having the same tail
or head node in G, then it needs to connect the two nodes,
shown as the red and green edges in Figure 4(c). According
to such rules, we can get the switching network H.

&en, seek the maximum-weighted independent set of
H. In the maximum-weighted independent set (see
Figure 4(d)), the node with weight 0 means the corre-
sponding to an edge of G needs to change the direction.

&erefore, by using this method we can find those edges
which need to change directions. Of course, there may be
several different maximum-weighted independent sets, but
each set contains the same number of nodes. Different
maximum-weighted independent sets mean different con-
trol configurations.

Indeed, it is a typical NP-hard problem to seek a max-
imum-weighted independent set for arbitrary graphs
according to computational complexity theory.

In general, these methods have their advantages and
disadvantages. In the future, we will need to combine the
advantages of both and present a hybrid approach to en-
hance the structural controllability of complex networks.

4. Summary and Outlooks

At the end of the the 20th century, network science started to
emerge, and in the past several years it has made significant
overall progress. Particularly in the past two years, the re-
search results have jumped from simple network science to
network engineering and made the momentous meaning

of the network control and measures have been highly
developed [29, 40, 42, 61–68]. By now, network science and
engineering had grown into one independent and new
subject of research. Among them, network control, which is
the ultimate goal of network science, is at the forefront of
network science. Interestingly, the judgment method of the
controllability of complex networks is derived from classical
control theory but with its differences. We have given an
extensive survey of the current controllability of complex
networks research in this paper. Highlighting the motivation
for enhancing the controllability of complex networks, we
have also presented different approaches of enhancing
networks controllability in the literature. We have presented
a taxonomy of issues found in this area and the approaches
in which these issues have been tackled. Maybe later more
effective methods can improve networks controllability to
guarantee the stability of extremely pivotal infrastructure
systems. Finally, based on the related literature, at the end of
the article we carried on the summary and also raised some
problems which need further research from our personal
point of view. &ese are the gaps in the reviewed work that
would prove to be directions for future work.

(i) In the paper, the methods mentioned, of course, only
apply to linear coupling dynamical systems of complex
networks. In reality, however, there are all kinds of
dynamical systems of complex networks, such as
switched network dynamical systems, bilinear network
dynamical systems, nonlinear network dynamical
systems, and so on.&e systems have more diverse and
complex dynamic behaviors. Consequently, it is more
arduous to control these systems and we need further
technical development and perfect the control theories
and methods of complex networks systems.

(ii) At present, there are corresponding strategies to
enhance the structural controllability of complex
networks. And yet, the researches on enhancing
exact controllability of complex networks have not
been systematically studied. &erefore, how to find
more effective control strategies to solve the opti-
mization problem of exact controllability of com-
plex networks?

(iii) Since the control range of the combination of
multiple nodes has no related conclusions, further
study is still needed.

(iv) &ere are two issues to fulfilling control of large-scale
complex networks: one is structural controllability
and the other is optimal control. Structural control-
lability implies that in finite time it is able to guide
a dynamical system from any initial state to any de-
sired final state, with a suitable choice of inputs.
Optimal control is a central topic of control theory
and refers to minimize the cost of driving the network
to a predefined state with a given number of control
inputs [69]. For large-scale complex networks without
global information of network topology, combining
graph theory and control theory, the literature [70]
solved the two issues simultaneously using only local
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network topology information. However, it is often
difficult to accurately distinguish the size of the net-
work. How large is a large-scale network? And for
different dimensions networks, how to compare their
controlabilities? In the future, we need to develop
a more universal theory to solve two problems.

(v) How to put the theory mentioned into the reality
networks, e.g., smart grid, and to make the actual
networks toward the expected direction? How to use
the theories and methods of controllability of
complex networks to study the dynamics of social
collective behavior patterns?

(a) (b) (c)

(d) (e)

Figure 2:&e type of candidate edges. (a) SI: edges from a start node to an isolated node; (b) IE: edges from an isolated node to an end node;
(c) SE: edges from a start node to an end node; (d) SS: edges from a start node to a start node; (e) EE: edges from an end node to an end node.
Candidate edges are marked by dashed edges; isolated nodes are marked by black diamonds; start nodes are marked by green circles; middle
nodes are marked by violet pentagons; end nodes are marked by red triangles.

(a) (b) (c)

(d) (e)

Figure 3: &e improved network. &e edges assigned by contrary direction are marked by bold edges. Start nodes are marked by green
circles; middle nodes are marked by violet pentagons; end nodes are marked by red triangles.
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Figure 4: An example network based on the switching network. (a) An initially directed network G; (b) the symmetric directed network G';
(c) the switching network H; (d) maximum-weighted independent set.
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