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,e purpose of this work is to investigate the dynamic behaviors of the SIRS epidemic model with nonlinear incident rate under
regime switching. We establish the existence of a unique positive solution of our system. Furthermore, we obtain the conditions
for the extinction of diseases, and we show the existence of the stationary distribution for our stochastic SIRS model under regime
switching. Numerical simulations are employed to illustrate our theoretical analysis.

1. Introduction

Several of mathematicians have developed various epidemic
models to prevent and control the spread of transmissible
diseases in the community.

,e classical SIR model presented by Kermack and
McKendrick [1] has played an important role in mathe-
matical epidemiology. ,e SIR model are used to study the
disease spread between three groups of population to know
the susceptible S, the infective I, and the recovered R.

In this work, we introduce a switched stochastic SIRS
epidemic model with specific functional response. ,en, we
consider the following deterministic SIRS epidemic model
with specific functional response:

dS

dt
� Λ − μS −

βSI

1 + α1S + α2I + α3SI
+ cR,

dI

dt
�

βSI

1 + α1S + α2I + α3SI
− (μ + λ + δ)I,

dR

dt
� λI − (μ + c)R,

(1)

where S(t) denotes the number of susceptible individuals,
I(t) denotes the number of infective individuals, and R(t)

represents the number of removed individuals. Λ is the
recruitment rate of the population, μ is the natural death rate
of the population, c is the rate at which recovered individuals
loss immunity and return to the susceptible class, λ denotes
the natural recovery rate of the infectious individuals, and δ
denotes the disease inducing death rate. ,e infection
transmission process in (1) is modeled by the specific
functional response (βSI/1 + α1S + α2I + α3SI), where β is
the transmission coefficient between compartments S and I,
and α1, α2, α3 ≥ 0 are the saturation factors measuring the
psychological or inhibitory effect. In addition, this func-
tional response generalizes many common types existing in
the literature such as the Crowley–Martin functional re-
sponse introduced in [2] and used in [3] when α3 � α1α2
and the Beddington–DeAngelis functional response pro-
posed in [4] and used in [5] when α3 � 0.

Environmental fluctuations have been indicated to play
an important role in the propagation of disease [6, 7]. In
effect, disease infestation is highly stochastic, and stochastic
noise can raise the probability of disease extinction in the
early phase of epidemics. By running an ODE system, we can
get only a certain sample solution, whereas by running an
SDE system, we can obtain the stochastic distribution of
disease dynamics [8]. Lately, dynamicmodeling of infectious
diseases based on stochastic differential equations (SDE) has
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received considerable attention from experts and academics
[9–11]. ,e SIRS epidemic model with white noise is
expressed by

dS � Λ − μS −
βSI

1 + α1S + α2I + α3SI
+ cR􏼠 􏼡dt + σ1SdB1(t),

dI �
βSI

1 + α1S + α2I + α3SI
− (μ + λ + δ)I􏼠 􏼡dt + σ2IdB2(t),

dR � (λI − (μ + c)R)dt + σ3RdB3(t),

(2)

where B1(t), B2(t), andB3(t) are independent Brownian
motions and σ1, σ2, and σ3 are their intensities. Besides

environment white noise, in this paper, we will also consider
another noise, namely, telegraph noise ([12–15]). ,e latter
can be described as a switching between two ormore regimes
of environment, which differ in terms of factors such as
nutrition, climatic characteristics, or sociocultural factors.
,e switching among different environments is memoryless
and the waiting time for the next switch is exponentially
distributed.,e regime switching can hence be modeled by a
finite-state Markov chain ς(t), t≥ 0{ } taking values in a fi-
nite-state space M � 1, 2, . . . , N{ }. ,e stochastic system (1)
with regime switching can be described by the following
model:

dS � Λ(ς(t)) − μ(ς(t))S −
β(ς(t))SI

1 + α1(ς(t))S + α2(ς(t))I + α3(ς(t))SI
+ c(ς(t))R􏼢 􏼣dt

+ σ1(ς(t))SdB1(t),

dI �
β(ς(t))SI

1 + α1(ς(t))S + α2(ς(t))I + α3(ς(t))SI
− (μ(ς(t)) + λ(ς(t)) + δ(ς(t)))I􏼢 􏼣dt

+ σ2(ς(t))IdB2(t),

[dR � λ(ς(t))I − (μ(ς(t)) + c(ς(t)))R]dt + σ3(ς(t))RdB3(t).

(3)

,roughout this paper, we let (Ω,F, Ft􏼈 􏼉t≥0,P) be a
complete probability space with a filtration Ft􏼈 􏼉t≥0 satisfying
the usual conditions (i.e. it is increasing and right contin-
uous while F0 contains all P-null sets). Let ς(t), t≥ 0{ } be a
right-continuous Markov chain on the probability space
(Ω,F, Ft􏼈 􏼉t≥0,P) taking values in a finite-state space M �

1, 2, . . . , N{ } with the generator Φ � (ϕuv)1≤u,v≤N given, for
δ > 0, by

P(ς(t + δ) � v | ς(t) � u) �
ϕuvδ + o(δ), if u≠ v,

1 + ϕuuδ + o(δ), if u � v.
􏼨

(4)

Here, ϕuv is the transition rate from u to v and ϕuv ≥ 0 if
u≠ v, while

ϕuu � − 􏽘
u≠v

ϕuv. (5)

Suppose that the Markov chain ς(t) is independent of the
Brownian motion B(·) and it is irreducible. Under this con-
dition, the Markov chain has a unique stationary (probability)
distribution π � (π1, . . . , πN), which can be determined by
solving the linear equation πΦ � 0, subject to 􏽐

N
i�1 πi � 1, and

πi > 0, ∀i ∈ M. ,ereafter, for any vector h � (h(1), . . . ,

h(N))T, let 􏽢h � i ∈ M
min

h(i){ } and �h � i ∈ M
max

h(i){ }.
,e rest of the paper is organized as follows. In Section 2,

we show that there exists a unique global positive solution of
system (3). In Section 3, we give sufficient conditions for the

extinction of the disease. In Section 4, sufficient conditions
for the existence of the ergodic stationary distribution are
established for model (3). Finally, numerical simulations are
carried out to support the theoretical results.

2. Existence and Uniqueness of the Global
Positive Solution

In this section, we will prove that model (3) has a unique
global positive solution. We also denote

R
3
+ � x1, x2, x2( 􏼁

􏼌􏼌􏼌􏼌 xi > 0, i � 1, 2, 3􏽮 􏽯. (6)

,us, we established the following theorem.

Theorem 1. For any given initial value,
X(0) � (S(0), I(0), R(0), ς(0)) ∈ R3

+ × M, there is a unique
positive solution X(t) � (S(t), I(t), R(t), ς(t)) ∈ R3

+ × M of
model (3) on t≥ 0 and the solution will remain in R3

+ × M

with probability 1, namely, (S(t), I(t), R(t), ς(t)) ∈ R3
+ × M

for all t≥ 0 almost surely.

Proof. Since the coefficients of system (3) are locally Lipshitz
continuous, for any initial value X(0) ∈ R3

+, there exists a
unique local solution X(t) on t ∈ [0, τe), where τe is the
explosion time. We need to show that this solution is global
almost surely that is, τe �∞ a.s. Let m0 be sufficiently large
such that every component of X(0) lies within the interval
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[(1/m0), m0]. For each integer m≥m0, define a sequence of
stopping times by

τm � inf t ∈ 0, τe􏼂 􏼁: S(t) ∉
1
m

, m􏼒 􏼓􏼚

or I t( ) ∉
1
m

, m􏼒 􏼓 orR(t) ∉
1
m

, m􏼒 􏼓􏼛.

(7)

We set inf ∅{ } �∞, where ∅ denotes the empty set.
Obviously, τm is increasing as m⟶∞. Set τ∞ �

limm⟶∞τm with τ∞ ≤ τe (a.s). Now, we need to show
τ∞ �∞ a.s. If this statement is violated, then there exist
T> 0 and ε ∈ (0, 1) such that

P τ∞ ≤T( 􏼁> ε. (8)

Hence, there is an integer m1 ≥m0 such that

P τ∞ ≤T( 􏼁≥ ε for allm≥m1. (9)

Define a C2− function V1: R
3
+⟶ R+ as

V1(S, I, R) � (S − 1 − ln S) +(I − 1 − ln I) +(R − 1 − lnR).

(10)

By Itô’s formula, we have

dV1 � LV1dt +(S − 1)dB1(t) +(I − 1)dB2(t)

+(R − 1)dB3(t),
(11)

where

LV1 � 1 −
1
S

􏼒 􏼓 Λ(k) − μ(k)S −
β(k)SI

1 + α1(k)S + α2(k)I + α3(k)SI
+ c(k)R􏼢 􏼣

+ 1 −
1
I

􏼒 􏼓
β(k)SI

1 + α1(k)S + α2(k)I + α3(k)SI
− (μ(k) + λ(k) + δ(k))I􏼢 􏼣

+ 1 −
1
R

􏼒 􏼓[λ(k)I − (μ(k) + c(k))R] +
σ21(k)

2
+
σ22(k)

2
+
σ23(k)

2
,

(12)

which implies that

LV1 � Λ(k) − μ(k)S −
Λ(k)

S
+ μ(k) +

β(k)I

1 + α1(k)S + α2(k)I + α3(k)SI

− c(k)
R

S
+
σ21(k)

2
− (μ(k) + δ(k))I −

β(k)S

1 + α1(k)S + α2(k)I + α3(k)SI

+(μ(k) + λ(k) + δ(k)) +
σ22(k)

2
− μ(k)R − λ(k)

I

R
+(μ(k) + c(k))

+
σ23(k)

2

≤Λ(k) + 3μ(k) + λ(k) + δ(k) + c(k) +
σ21(k) + σ22(k) + σ23(k)

2
β(k)I

1 + α1(k)S + α2(k)I + α3(k)SI

≤ �Λ + 3�μ + �λ + �δ + �c +
�σ21 + �σ22 + �σ23

2
+

�β
􏽢α2
≔K.

(13)

Hence,

dV1(S, I, R)≤Kdt +(S − 1)dB1(t) +(I − 1)dB2(t)

+(R − 1)dB3(t).
(14)

Integrating both sides of the above inequality from 0 to
τm∧T, and taking the expectations, we get

EV1 S τm∧T( 􏼁, I τm∧T( 􏼁, R τm∧T( 􏼁( 􏼁

≤V1(S(0), I(0), R(0)) + KT.
(15)

Set Ωm � τm ≤T􏼈 􏼉 for m≥m1 and by (4), we have
P(τ∞ ≤T)≥ ε for each m≥m1. For every ω ∈ Ωm, we have
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V1 S τm∧T( 􏼁, I τm∧T( 􏼁, R τm∧T( 􏼁( 􏼁

≥min (m − 1 − lnm),
1
m

− 1 − 1 ln
1
m

􏼒 􏼓􏼚 􏼛 ≔ Lm.

(16)

,en, we obtain

V1(S(0), I(0), R(0)) + KT≥E 1Ωm
V1 S τm∧T( 􏼁,(􏽨

I τm∧T( 􏼁, R τm∧T( 􏼁􏼁􏼃

≥ εLm,

(17)

where 1Ωm
is the indicator function of Ωm. Letting m⟶ +

∞ leads to the contradiction ∞ � V1(S(0), I(0), R(0))+

KT<∞. So, we must therefore have τ∞ �∞ a.s. ,is
completes the proof. □

3. Extinction

Our goal in this section is to study the extinction and give the
extinction threshold of system (3). ,en, the following
theorem gives a sufficient condition for extinction of the
disease.

Theorem 2. If Rs
0 � 􏽐

N
k�1 πkβ(k)/􏽢α1 􏽐

N
k�1 πk(μ(k)+ λ(k)+

δ(k) + (σ2(k)/2))< 1, then the disease I tends to zero ex-
ponentially with probability one, i.e.,

limsup
t⟶∞

ln I(t)

t
≤ 􏽘

N

k�1
πk μ(k) + λ(k) + δ(k) +

σ2(k)

2
􏼠 􏼡 R

s
0 − 1􏼂 􏼃.

(18)

Proof. Applying Itô’s formula, we can get

d ln I(t) �
β(ς(t))S

1 + α1(ς(t))S + α2(ς(t))I + α3(ς(t))SI

− μ(ς(t)) + λ(ς(t)) + δ(ς(t)) +
σ2(ς(t))

2
􏼠 􏼡

+ σ2(ς(t))dB2(t).

(19)

Integrating (19) from 0 to t and then dividing by t into
both sides leads to

ln I(t) − ln I(0)

t
�
1
t

􏽚
t

0

β(ς(s))S

1 + α1(ς(s))S + α2(ς(s))I(s) + α3(ς(t))S(s)I(s)
ds

−
1
t

􏽚
t

0
μ(ς(s)) + λ(ς(s)) + δ(ς(s)) +

σ2(ς(s))

2
􏼢 􏼣ds

+
1
t

􏽚
t

0
σ2(ς(s))dB2(s)

≤
1
t

􏽚
t

0

β(ς(s))

􏽢α1
− μ(ς(s)) + λ(ς(s)) + δ(ς(s)) +

σ2(ς(s))

2
􏼠 􏼡􏼢 􏼣ds

+
1
t

􏽚
t

0
σ2(ς(s))dB2(s)

�
1
t

􏽚
t

0

β(ς(s))

􏽢α1
− μ(ς(s)) + λ(ς(s)) + δ(ς(s)) +

σ2(ς(s))

2
􏼠 􏼡􏼢 􏼣ds

+
M(t)

t
,

(20)

where M(t) is a local martingale defined by M(t) �

􏽒
t

0 σ2(ς(s))dB2(s), whose quadratic variation is 〈M, M〉t �

􏽒
t

0 σ
2
2(ς(s))ds≤ �σ22t. Making use of the strong law of large

numbers for martingales ([16]) yields

lim
t⟶∞

M(t)

t
� 0, a.s. (21)

Taking the superior limit on both sides of (20) and
applying the ergodicity of Markov chain ς(t), we get

limsup
t⟶∞

lnI(t)

t
≤􏽘

N

k�1
πk

β(k)

􏽢α1
− μ(k) +λ(k) +δ(k) +

σ2(k)

2
􏼠 􏼡􏼢 􏼣

� 􏽘

N

k�1
πk μ(k) +λ(k) +δ(k) +

σ2(k)

2
􏼠 􏼡

×
􏽐

N
k�1πkβ(k)

􏽢α1􏽐
N
k�1πk μ(k) +λ(k) +δ(k) + σ2(k)/2( 􏼁( 􏼁

− 1􏼢 􏼣

� 􏽘
N

k�1
πk μ(k) +λ(k) +δ(k) +

σ2(k)

2
􏼠 􏼡 R

s
0 − 1􏼂 􏼃<0,

(22)
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which implies that limt⟶∞I(t) � 0. ,is completes the
proof of theorem. □

4. Existence of Ergodic Stationary Distribution

In this section, we shall discuss sufficient conditions for the
existence of an ergodic stationary distribution to model (3).
,e following lemma gives a criterion for positive recurrence
in terms of lyapunov function [17].

Let (X(t), ς(t)) is the diffusion Markov process and
satisfy the following equation

dX(t) � f(X(t), ς(t))dt + σ(X(t), ς(t))dB(t),

X(0) � X0, ς(0) � ς,
(23)

where f: Rn × M⟶ Rn, σ: Rn × M⟶ Rn×d satisfying
σ(x, k)σT(x, k) � (dij(x, k)). For each k ∈ M, and for any
twice continuously differentiable function V(., k), the oper-
ator L can be defined by

LV(x, k) � 􏽘
n

i�1
fi(x, k)

zV(x, k)

zxi

+
1
2

􏽘

n

i,j�1
dij(x, k)

z2V(x, k)

zxizxj

+ 􏽘
n

l�1
ϕklV(x, l).

(24)

Lemma 1. If the following conditions are satisfied:

(1) ϕij > 0 for any i≠ j.
(2) For each k ∈ M, D(x, k) � (dij(x, k)) is symmetric

and satisfies

λ|ζ|
2 ≤ 〈D(x, k)ζ , ζ〉≤ λ− 1

|ζ|
2 for all ζ ∈ Rn

, (25)

with some constant λ ∈ (0, 1] for all x ∈ Rn.
(3) Cere exists a nonempty open set D with compact

closure, satisfying that, for each k ∈ M, there is a
nonnegative function V(., k) :Dc⟶ R such that
V(., k) is twice continuously differential and that for
some α> 0,

LV(x, k)≤ − α for all(x, k) ∈ Dc
× M. (26)

,en, (X(t), ς(t)) of system (23) is positive recurrent
and ergodic. ,at is to say, there exists a unique stationary
distribution μ(., .) such that for any Borel measurable
function f: Rn × M⟶ R satisfying

􏽘

N

k�1
􏽚
Rn

|f(x, k)|μ(dx, k)<∞, (27)

we have

P lim
t⟶∞

1
t

􏽚
t

0
f(X(s), ς(s))ds � 􏽘

N

k�1
􏽚
Rn

|f(x, k)|μ(dx , k)⎛⎝ ⎞⎠ � 1.

(28)

Theorem 3. Assume that Rs
0 > 1, then for any initial value

(S(0), I(0), R(0), ς(0)) ∈ R3
+ × M, the solution (S(t), I(t),

R(t), ς(t)) of system (3) admits a unique ergodic stationary
distribution.

Proof. In order to prove ,eorem 3, it is sufficient to prove
conditions (1), (2) and (3) in Lemma 1. Assumption ϕij > 0
for any i≠ j, in Section 1 implies that condition (1) in
Lemma 1 is satisfied. To verify condition (2), consider the
bounded open subset

D �
1
η

, η􏼠 􏼡 ×
1
η

, η􏼠 􏼡 ×
1
η

, η􏼠 􏼡 ⊂ R3
+, (29)

where η is a sufficiently large number. ,en, D ⊂ R3
+. We

have D(S, I, R, k) � Q(S, I, R, k)QT(S, I, R, k), where
Q(S, I, R, k) � diag Sσ1(k), Iσ2(k), Rσ3(k)􏼈 􏼉, k ∈ M. ,en,
D(S, I, R, k) is positive semi-definite, and since R(S, I, R, k)

is a nonsingular matrix, we deduce that D(S, I, R, k) is
positive definite. Hence,

λmax(D(S, I, R, k))≥ λmin(D(S, I, R, k))> 0, (30)

in addition, we have for all ζ ∈ D,

λmin(D(S, I, R, k))|ζ|
2 ≤ ζT

(D(S, I, R, k))ζ

≤ λmax(D(S, I, R, k))|ζ|
2
.

(31)

It is easy to see that λmin(D(S, I, R, k)) and λmax(D(S,

I, R, k)) are two continuous functions of S, I, and R.
,erefore, 􏽢λ � minD × Mλmin(D(S, I, R, k))> 0 and 􏽢λ �

maxD × Mλmax(D(S, I, R, k))> 0, which implies that

λ|ζ|
2 ≤ ζT

(D(S, I, R, k))ζ ≤ λ− 1
|ζ|

2
, (32)

where λ � min 􏽢λ, �λ
− 1

􏼚 􏼛. ,en, condition (2) in Lemma 1 is
verified.

Now, we verify condition (3). Define a C2− function
􏽥V: R3

+ × M⟶ R by
􏽥V(S, I, R, k) � − M(ln I + ω(k)) − ln S − lnR +(S + I + R).

(33)

In addition, 􏽥V(S, I, R, k) is a continuous function on
with respect to (S, I, R). So there is a unique minimum value
point 􏽥V(S, I, R, k) of 􏽥V(S, I, R, k) in the interior of R3

+ × M;
then, we define a nonnegative C2-function H:
R3

+ × M⟶ R+ as follows:

H(S, I, R, k) � 􏽥V(S, I, R, k) − 􏽥V(S, I, R, k)

� − M(ln I + ω(k)) − ln S − lnR +(S + I + R)

− 􏽥V(S, I, R, k)

≔ − MV2 − V3 − V4 + V5,

(34)

where (S, I, R, k) ∈ ((1/n), n) × ((1/n), n) × ((1/n), n) × M

and n> 1 is a sufficiently large number, V2 �

− M(ln I + ω(k)), V3 � − ln S, V4 � − lnR, V5 � S + I + R−
􏽥V(S, I, R, k), and M> 0 satisfies the following condition:

Discrete Dynamics in Nature and Society 5



− M 􏽘
N

k�1
πk μ(k) + λ(k) + δ(k) +

σ2(k)

2
􏼠 􏼡 R

s
0 − 1( 􏼁

+ M
�β
􏽢α1

+ 2�μ + �c + �Λ +
�σ1
2

+
�σ3
2
≤ − 2.

(35)

Applying Itô’s formula to V2 leads to

LV2 �
− β(k)S

1 + α1(k)S + α2(k)I + α3(k)SI
+ μ(k) + λ(k) + δ(k)

+
σ2(k)

2
− 􏽘

N

l�1
ϕklω(l) �

− β(k)

􏽢α1
+ μ(k) + λ(k) + δ(k)

+
σ2(k)

2
− 􏽘

N

l�1
ϕklω(l) + β(k)

1
􏽢α1

−
S

1 + α1(k)S + α2(k)I + α3(k)SI
􏼠 􏼡

≤
− β(k)

􏽢α1
+ μ(k) + λ(k) + δ(k) +

σ2(k)

2
− 􏽘

N

l�1
ϕklω(l) +

β(k)

􏽢α1

≔ − R0(k) − 􏽘
N

l�1
ϕklω(l) +

β(k)

􏽢α1
,

(36)

where R0(k) � (β(k)/�α1) − μ(k) − λ(k) − δ(k) − (σ2(k)/2).
Since the generator matrix Φ is irreducible, then for
R0 � (R0(1), R0(2), . . . , R0(N))T, there exists ω � (ω(1),

ω(2), . . . ,ω(N))T solution of the Poisson system ([18]):

Φω � − R0 + 􏽘
N

l�1
πlR0(l)⎛⎝ ⎞⎠ F

→
, (37)

where F
→

denotes the column vector with all its entries equal
to 1. ,en,

LV2≤ − 􏽘
N

k�1
πkR0(k) +

β(k)

�α1

� − 􏽘

N

k�1
πk μ(k) +λ(k) +δ(k) +

σ2(k)

2
􏼠 􏼡 R

s
0 − 1( 􏼁 +

�β
􏽢α1

.

(38)

Next, we calculate LV3

LV3 �
− Λ(k)

S
+ μ(k) +

β(k)I

1 + α1(k)S + α2(k)I + α3(k)SI

− c(k)
R

S
+
σ1(k)

2
≤

− 􏽢Λ
S

+ �μ +
�βI

1 + 􏽢α1S + 􏽢α2I + 􏽢α3SI

− 􏽢c
R

S
+

�σ1
2

,

(39)

and LV4

LV4 � − λ(k)
I

R
+μ(k) + c(k) +

σ(k)23
2
≤ − 􏽢λ

I

R
+ �μ+ �c +

�σ23
2

.

(40)

We have

LV5 � Λ(k) − μ(k)(S + I + R) − δ(k)I

≤Λ(k) − μ(k)(S + I + R)

≤ �Λ − 􏽢μ(S + I + R).

(41)

,e differential operator L acting on the function H

yields

LH≤ − M 􏽘
N

k�1
πk μ(k) +λ(k) +δ(k) +

σ2(k)

2
􏼠 􏼡 R

s
0 − 1( 􏼁 + M

�β
􏽢α1

−
􏽢Λ
S

+
�βI

1+ 􏽢α1S + 􏽢α2I + 􏽢α3SI
− 􏽢c

R

S
− 􏽢μ(S + I + R) − 􏽢λ

I

R
+ �Λ+2�μ

+ �c +
�σ23
2

+
�σ21
2

.

(42)

Defining the following compact set

Dε � (S, I, R) ∈ R3
+: ε≤ S≤

1
ε
, ε2 ≤ I≤

1
ε2

, ε3 ≤R≤
1
ε3

􏼚 􏼛,

(43)

where ε is a sufficiently small number. In the set (R3
+/Dε), we

can choose ε sufficiently small such that the following
conditions hold:
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−
􏽢Λ
ε

+ C1 ≤ − 1,

ε≤
􏽢α1
�β

,

−
􏽢λ
ε

+ C≤ − 1,

−
􏽢μ
ε

+ C≤ − 1,

−
􏽢μ
ε2

+ C≤ − 1,

−
􏽢μ
ε3

+ C≤ − 1,

C �
􏽢β
􏽢α2

+ M
�β
􏽢α1

+ �Λ + 2�μ + �c +
�σ23
2

+
�σ21
2

.

(44)

Next, we can divide (R3
+/Dε) into the following six

domains:

%

D1 � (S,I,R) ∈R3
+: S≤ε􏽮 􏽯, D2 � (S,I,R) ∈R3

+: ε≤S, ≤I≤ε2􏽮 􏽯,

D3 � (S,I,R) ∈R3
+: ε2≤I,R≤ε3􏽮 􏽯, D4 � (S,I,R) ∈R3

+: S>
1
ε

􏼚 􏼛,

D5 � (S,I,R) ∈R3
+: I>

1
ε2

􏼚 􏼛, D6 � (S,I,R) ∈R3
+: R>

1
ε3

􏼚 􏼛.

(45)

Clearly, Dc
ε � D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6. Next, we

will prove that

LH(S, I, R, k)≤ − 1 on R
3
+/Dε􏼐 􏼑 × M. (46)

□

Case 1. If (S, I, R, k) ∈ D1 × M, we have that

LH≤ −
􏽢Λ
S

+
�βI

1 + 􏽢α1S + 􏽢α2I + 􏽢α3SI
+ M

�β
􏽢α1

+ �Λ + 2�μ + �c +
�σ23
2

+
�σ21
2

≤ −
􏽢Λ
S

+ C

≤ −
􏽢Λ
ε

+ C,

(47)

which together with (9) implies that

LH≤ − 1 for all(S, I, R, k) ∈ D1 × M. (48)

Case 2. If (S, I, R, k) ∈ D2 × M, we have

LH≤ − M 􏽘
N

k�1
πk μ(k) + λ(k) + δ(k) +

σ2(k)

2
􏼠 􏼡 R

s
0 − 1( 􏼁 + M

�β
􏽢α1

+
�βI

1 + 􏽢α1S + 􏽢α2I + 􏽢α3SI
+ �Λ + 2�μ + �c +

�σ23
2

+
�σ21
2

≤ − M 􏽘

N

k�1
πk μ(k) + λ(k) + δ(k) +

σ2(k)

2
􏼠 􏼡 R

s
0 − 1( 􏼁 + M

�β
􏽢α1

+ 2�μ + �c + �Λ +
�σ1
2

+
�σ3
2

+
�βε
􏽢α1

≤ − 2 +
�βε
􏽢α1

.

(49)

Combining with (10), it can be achieved that

LH≤ − 1 for all(S, I, R, k) ∈ D2 × M. (50)

Case 3. If (S, I, R, k) ∈ D3 × M, we get

LH≤ − 􏽢λ
I

R
+

�βI

1 + 􏽢α1S + 􏽢α2I + 􏽢α3SI
+ M

�β
􏽢α1

+ �Λ + 2�μ + �c +
�σ23
2

+
�σ21
2

≤ − 􏽢λ
I

R
+ C

≤ −
􏽢λ
ε

+ C

≤ − 1,

(51)

which follows from (11).

Case 4. If (S, I, R, k) ∈ D4 × M, it follows that

LH≤ − 􏽢μS +
�βI

1 + 􏽢α1S + 􏽢α2I + 􏽢α3SI
+ M

�β
􏽢α1

+ �Λ

+ 2�μ + �c +
�σ23
2

+
�σ21
2

≤ − 􏽢μS + C

≤ −
􏽢μ
ε

+ C,

(52)

which together with (44) implies that

LH≤ − 1 for all(S, I, R, k) ∈ D4 × M. (53)
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Case 5. If (S, I, R, k) ∈ D5 × M, we obtain

LH≤ − 􏽢μI +
�βI

1 + 􏽢α1S + 􏽢α2I + 􏽢α3SI
+ M

�β
􏽢α1

+ �Λ + 2�μ + �c +
�σ23
2

+
�σ21
2

≤ − 􏽢μI + C

≤ −
􏽢μ
ε2

+ C

≤ − 1,

(54)

which follows from (44). Hence,

LH≤ − 1 for all(S, I, R, k) ∈ D5 × M. (55)

Case 6. If (S, I, R, k) ∈ D6 × M, we have

LH≤ − 􏽢μR +
�βI

1 + 􏽢α1S + 􏽢α2I + 􏽢α3SI
+ M

�β
􏽢α1

+ �Λ + 2�μ + �c +
�σ23
2

+
�σ21
2

≤ − 􏽢μR + C

≤ −
􏽢μ
ε3

+ C.

(56)

In view of (44), we arrive at

LH≤ − 1 for all(S, I, R, k) ∈ D6 × M. (57)

,erefore, we have proof that

LH≤ − 1 for all (S, I, R, k) ∈ R
3
+/Dε􏼐 􏼑 × M. (58)

,us, condition 3 in Lemma 1 has been satisfied, and
system (3) has a unique stationary distribution and ergo-
dicity holds. ,is completes the proof.

Remark 1. Assume the condition Rs
0 < 1 holds. Disease I

goes to extinction exponentially with probability one,
,eorem 2, and ifRs

0 > 1 there is a unique ergodic stationary
distribution μ(·,·) of system (3), which implies that disease I
persists ,eorem 3. ,en, the numberRs

0 can be considered
as a threshold to identifying the stochastic extinction and
persistence of system (3).

5. Simulations

Numerical solutions of stochastic differential equations are
very important in the study of real examples of epidemic. In
this section, we present some numerical results to illustrate
the theoretical one. For numerical simulations of the SDEMS
model (3), we use the Euler–Maruyama (EM)method ([19]).

Let ς(t) be a right-continuous Markov chain taking
values on the state space M � 1, 2, 3{ } with the generator

Γ �

− 5 1 4

1 − 1 0

1 3 − 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (59)

Obviously, the Markov chain ς(t) has a unique sta-
tionary distribution π � (π1, π2, π3) � (0.1666, 0.6666,

0.1666). Given a step size Δ � 0.0001, the Markov chain can
be simulated by computing the one-step transition proba-
bility matrix P � eΔΓ ([20]), and the transition probability
matrix is given by

P �

0.9995 0.0001 0.0004

0.0001 0.9999 0

0.0001 0.0003 0.9996

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (60)

Figure 1 shows a result of one simulation run of the
Markov chain ς(t).

Example 1. To illustrate ,eorem 2, we choose the pa-
rameter values in system (3) as follows:

Λ(1) � 1,

μ(1) � 0.2,

β(1) � 0.1,

c(1) � 0.25,

λ(1) � 0.1,

δ(1) � 0.05,

α1(1), α2(1), α3(1)( 􏼁 � (0.1, 0.1, 0.1),

σ1(1), σ2(1), σ3(1)( 􏼁 � (0.5, 0.7, 0.8),

Λ(2) � 1.1,

μ(2) � 0.21,

β(2) � 0.12,

c(2) � 0.26,

λ(2) � 0.09,

δ(2) � 0.056,

α1(2), α2(2), α3(2)( 􏼁 � (0.1, 0.1, 0.1),

σ1(2), σ2(2), σ3(2)( 􏼁 � (0.7, 0.8, 0.6),

Λ(3) � 1.3,

μ(3) � 0.19,

β(3) � 0.13,

c(3) � 0.24,

λ(3) � 0.11,

δ(3) � 0.058,

α1(3), α2(3), α3(3)( 􏼁 � (0.1, 0.1, 0.1),

σ1(3), σ2(3), σ3(3)( 􏼁 � (0.8, 0.6, 0.7).

(61)

Simple computations result,

R
s
0 �

􏽐
N
i�1πiβ(i)

􏽢α1􏽐
N
i�1πi μ(i) + λ(i) + δ(i) + σ2(i)/2( 􏼁( 􏼁

� 0.9505< 1,

(62)

as a consequence result of ,eorem 2. Disease I dies out
exponentially with probability one. Figure 2 confirms this.
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Figure 1: Computer simulation of a single path of ς(t) with initial value ς(0) � 2.
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Figure 2: ,e solution (S(t), I(t), and R(t)) of stochastic model (3) with (S(0), I(0), and R(0)�(0.7, 0.2, and 0).
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Figure 3: ,e solution S(t) of stochastic model (3) and its histogram.
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Figure 4: Continued.
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Figure 4: ,e solution I(t) of stochastic model (3) and its histogram.
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Figure 5: ,e solution R(t) of stochastic model (3) and its histogram.
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Example 2. For this example, we have

Λ(1) � 1,

μ(1) � 0.2,

β(1) � 0.1,

c(1) � 0.25,

λ(1) � 0.1,

δ(1) � 0.05,

α1(1), α2(1), α3(1)( 􏼁 � (0.14, 0.1, 0.1),

σ1(1), σ2(1), σ3(1)( 􏼁 � (0.12, 0.1, 0.12),

Λ(2) � 1.1,

μ(2) � 0.21,

β(2) � 0.12,

c(2) � 0.26,

λ(2) � 0.09,

δ(2) � 0.056,

α1(2), α2(2), α3(2)( 􏼁 � (0.14, 0.1, 0.1),

σ1(2), σ2(2), σ3(2)( 􏼁 � (0.15, 0.18, 0.19),

Λ(3) � 1.3,

μ(3) � 0.19,

β(3) � 0.13,

c(3) � 0.24,

λ(3) � 0.11,

δ(3) � 0.058,

α1(3), α2(3), α3(3)( 􏼁 � (0.14, 0.1, 0.1),

σ1(3), σ2(3), σ3(3)( 􏼁 � (0.14, 0.17, 0.13).

(63)

By calculating, we find

R
s
0 �

􏽐
N
i�1πiβ(i)

􏽢α1􏽐
N
i�1πi μ(i) + λ(i) + δ(i) + σ2(i)/2( 􏼁( 􏼁

� 1.9624> 1.

(64)

,en according to,eorem 3, the solution (S(t), I(t), and
R(t)) of system (3) with any initial value (S(0), I(0), and R(0))
� (0.7, 0.6, and 0) has a unique stationary distribution, and it
has the ergodic property, that is, the epidemic disease is
permanent. Figures 3–5 confirm this.

6. Conclusion

,is article discusses the dynamic behavior of a SIRS epi-
demic model with a regime switching and nonlinear inci-
dence rate. We obtain sufficient conditions for the extinction
of system (3) if Rs

0 < 1. We prove the stochastic system (3)
under regime switching has a unique stationary distribution

which is ergodic and positive recurrent by using the Lya-
punov function method. In future works, it is interesting to
study the effect of Lévy noise and a color noise (telegraph
noise) in the stochastic SIRS epidemic model (2). We will
investigate this case in our future works.
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