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In some queueing systems, customers are frequently asked for giving a service quality feedback for their service at their service
completion instants. Based on this phenomenon, in this paper, we model this type of queueing systems as clearing queues with
service quality feedback and system maintenance. Once the system receives an unsatisfied (negative) feedback from customers
(i.e., a customer is unsatisfied with the service), the system undergoes an adjustment procedure, and at the same time, all the
present customers are forced to leave the system. By considering the waiting cost and reward, we discuss the joining behavior of
customers and, respectively, derive the corresponding equilibrium joining strategies and social optimal strategies under different
levels of information (the observable and the unobservable cases). Finally, some numerical examples are provided to show the

effect of several system parameters on the equilibrium and optimal balking strategies.

1. Introduction

Nowadays, in some queueing systems such as manufacturing
systems, restaurants, and computer network systems, we
may encounter the following situation: all customers are
forced to abandon the system due to the server receive a
negative feedback, for example, in the context of a
manufacturing system. A production process may consist of
two phases: production phase and detection phase. The
manufacturing system is equipped with a quality control
detector for verifying the quality of the produced items at the
second phase. If a finished product is detected to be de-
fective, a reactive maintenance will be triggered, and all raw
products are forced to leave from the production line to an
auxiliary production line. After experiencing the period of
maintenance, the machine in the production line resumes
work and becomes available. Motivated by this practical
application, we find that proper maintenance in queueing
systems is vital to ensure the normal operation of queueing
systems and reduce the incidence of the accidental failures to
avoid or minimize the loss. So, in this paper, we aim to
model this type of queueing systems as clearing queues with

service quality feedback and analyze the strategic behavior of
the customers in queueing systems.

Actually, in recent years, the study of queueing models
with removals of customers before being served is a recent
endeavor. One typical type of such a situation often appears
in queueing systems that are subject to disasters or catas-
trophes. In this case, the occurrence of disasters/catastrophes
pushes all customers to abandon the system, and the system
needs some proper maintenances. Such systems are also
referred to as stochastic clearing systems. Since the intro-
duction of stochastic clearing systems, there has been
considerable attention to this topic, see e.g., Artalejo and
Gomez-Corral [1], Giorno et al. [2], Kim and Lee [3], Jiang
and Liu [4], and Jiang [5]. So far, most studies on stochastic
clearing queueing systems focus on the performance mea-
sures, and few research studies of this topic concentrate on
strategic behavior of customers.

During the past decades, there has been a notable interest
in studying the strategic behavior of customers in queueing
systems from an economic viewpoint. The study of queueing
systems under a game-theoretic perspective dates back to
Naor [6], in which the author studied the strategic behavior
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of customers in M/M/1 queues, where arriving customers
know the number of customers in the system and decide
whether to join or balk the queue based on their surplus
utilities. Edelson and Hilderbrand [7] considered the stra-
tegic behavior of customers in M/M/1 queues by studying
the corresponding unobservable case. Since then, there has
been considerable attention to the strategic behavior of
customers in queueing systems, interested readers may also
refer to the monographs of Hassin and Haviv [8], Hassin [9],
recent papers of Hassin and Roet-Green [10], Ibrahim [11],
and the references therein. In particular, Economou and
Kanta [12] studied the equilibrium customer strategies in an
observable M/M/1 queue with breakdowns and repairs. On
the basis of Economou and Kanta [12], Li et al. [13] con-
sidered the unobservable case and give some new results.
Dimitrakopoulos and Burnetas [14] investigated the equi-
librium and optimal strategies in an M/M/1 queue with the
dynamic service control. Xu and Xu [15] analyzed the
equilibrium strategic behavior of customers in a single-
server queue with partial failures and repairs. Yu et al. [16]
studied the equilibrium strategies of an unobservable M/M/1
single-server queue with balking and delayed repairs. Then,
Yu et al. [17] investigated the equilibrium strategies in the
almost observable and almost unobservable M/M/1 queues
with partial breakdowns. More related papers on the study of
customer behavior in queueing systems include Wang et al.
[18, 19] and the references therein.

In addition, for the stochastic clearing queueing systems,
some researchers also give the equilibrium analysis for this
type of queueing models. For example, Boudali and Econ-
omou [20, 21] first considered the strategic behavior of
customers in a single-server Markovian queue with disasters,
where batch of customers are forced to leave the system
without receiving service. Next, Economou and Manou [22]
studied an M/M/1 clearing system in an alternating envi-
ronment. Manou et al. [23] investigated strategic customers
in a transportation station, which can be modelled as a
stochastic clearing system with generally distributed inter-
service times and varying capacity. Moreover, in [22, 23], all
customers can be served in batch periodically. Ma [24]
studied a Markovian clearing queueing system with setup
times and obtained the balking strategies of customers.
Recently, Bountali and Economou [25, 26] studied the
equilibrium joining strategies of customers in batch service
queueing systems, which can also be seen as a special sto-
chastic clearing queueing system. Manou et al. [27] provided
a pricing analysis in a transportation station with strategic
customers by considering three cases distinguished by the
level of delay information. Bountali and Economou [28]
studied the strategic customer behavior in a two-stage
service system with batch processing. In these papers,
combining the queueing theory and game theory, the au-
thors analyze the queueing models with the assumption that
arriving customers choose whether to join or balk the system
on the basis of a linear reward-cost structure and then in-
vestigated the strategic behavior of customers.

To the best of our knowledge, there is no work analyzing
the equilibrium behavior of delay-sensitive customers in a
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service system with service quality feedback. To this end, we
will analyze the queueing model from an economic view-
point. The main contributions of the paper are as follows:

(i) In the queueing systems with service quality feed-
back, we aim to investigate the joining decisions of
the delay-sensitive customers, and it has not been
considered in the open literature.

(ii) We model this type of queueing systems as clearing
queues with service quality feedback and system
maintenance (during times that the system which
resides in the operative state follows an Erlang
distribution instead of an exponential distribution)
and derive formulas for the computation of equi-
librium customer strategies under the two levels of
information (observable and unobservable).

(iii) We also provide some numerical examples to reveal
the impacts of several parameters on the equilib-
rium strategies, together with some intuitive
explanations.

The rest of this paper is organized as follows. In Section
2, we give the description of the proposed queueing model.
In Section 3, we study the equilibrium threshold strategies
for the observable case. In Section 4, we analyze the un-
observable case and derive the mixed Nash equilibrium
balking strategies. Section 5 is devoted to deriving the
expected social benefit per time unit for the observable and
the unobservable cases. In Section 6, we provide some
numerical examples to show the impact of some param-
eters on the behavior of the customers. We conclude the
paper in Section 7.

2. Model Description

In this paper, we model the queueing system as a clearing
queueing system with service quality feedback and system
maintenance. In the following, we provide the model de-
scription. Our assumptions are partly driven by the actual
problem that motivates the analysis and partly by our
concern to keep the model as simple as possible. In practice,
it is more common to model the queueing system as a queue
with multiple servers, and a maintenance procedure is
immediately triggered once the system receives a certain
number of negative feedbacks. However, the model will be
very complicated if we consider a certain number of negative
feedbacks. For analytical simplicity, we consider a capacity-
constrained queueing system and assume that a mainte-
nance procedure is immediately triggered once the system
receives one negative feedback. We think the simplified
model could also bring some similar conclusions and
management implications.

(i) Customers arrive according to a Poisson process
with rate A, and customers are served based on a
first-come, first-served (FCFS) discipline.

(ii) Service times are independent and identically dis-
tributed (i.i.d) random variable and follow an ex-
ponential distribution with parameter p.
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(iii) At a service completion instant, a customer is asked
for giving a service feedback for his/her service. If
the customer is satisfied with the quality of service,
the server will receive a positive feedback for its kind
and considerate service; otherwise, the server will
receive a negative feedback. Once the system re-
ceives a negative feedback, it undergoes a mainte-
nance procedure immediately. To this end, we
consider 8 as the probability that a served customer
gives a positive feedback for his/her service and
consider 1 -0 as the probability that a served
customer gives a negative feedback for his/her
service. Different from the queueing system with
disasters, under the considering assumption, we
find that during times that the system which resides
in the operative state follows an Erlang distribution
instead of an exponential distribution.

(iv) The maintenance period follows an exponential
distribution with parameter {. During a mainte-
nance period, arrivals are not allowed to join the
system since the system stops working during this
period.

(v) We further assume that the arrival times, the service
times, and the maintenance times are mutually
independent.

Let {(N (), 1(t)),t >0} denote the state of the clearing
queueing system at time ¢, where N (t) denotes the number
of customers in the system at time t, and I (t) denotes the
state of the server (0: maintenance state, 1: operative state).
Then, {(N (t), I(t)),t >0} is a continuous-time Markov chain
with state space

Q ={(n,1),n>0}U{(0,0)}. (1)

The concrete transition rates of the clearing queueing
system are given as follows:

n=012, ...,
n=12, ...,
n=12, ...,

A1) (n+1,1) = A,
1) (n-1,1) = M0,

(2)
)00 = 4 (1-06),

90,0)(0,1) = .

In the present paper, we are interested in discussing the
strategic behavior of customers when they have the option to
determine whether to enter the system or not. Next, we will
construct a natural reward-cost structure and analyze the
queueing model from an economic viewpoint. Without loss
of generality, we assume that each joining customer receives
either a reward of R, after his/her service completion or a
compensation of R if he/she is forced to leave the system
without receiving service. In other words, R represents the
added value of being served (the perceived value on the
service), and Ry is a compensation value so as to eliminate
customers’ dissatisfaction (i.e., the system makes up for the
waiting time of customers who leave the system without
receiving service). To facilitate analysis, we assume R, > Ry.
In addition, customers are sensitive to delays, and the delay

cost is in proportion to the sojourn time in the system, which
is continuously accumulated from the epoch at which he/she
enters the system to the epoch at which he/she leaves the
system by either the occurrence of system maintenance or
the service completion. Denote by C the delay cost per unit
of time for each customer.

In the following sections, we will study the strategic
behavior of the customers regarding their joining or balking
dilemma by distinguishing the observable and the unob-
servable cases, i.e., the arriving customers whether they join
the queue or not is based on the information available at
their arrival instants. Concretely, we consider two different
information cases as follows: (1) observable case: customers
are allowed to observe both of the queue length and the
server state upon their arrivals; (2) unobservable case:
customers observe only the server state upon arrival and not
the queue length.

3. The Observable Case

We begin our analysis by investigating the clearing queueing
model under the observable case, where customers can
obtain the information of the system state (#,i) upon their
arrivals. According to our model description, customers are
not allowed to join the system while the system stays in
maintenance period, i.e., he/she always balks. Therefore, we
only consider the case that a customer observes the system in
the operative state.

Lemma 1. In the observable clearing queueing system with
service quality feedback and system maintenance, if an ar-
riving customer finds the system at state (n, 1) and decides to
enter, his/her expected net benefit is

Cc1- 9n+1

Sobs (1, 1) :6”R5+(1—9")Rf—;ﬁ. (3)

In the observable case, if the expected net benefit of an
arriving customer is positive, he/she prefers to join the
system; if the expected net benefit of an arriving customer is
zero, he/she is indifferent between entering and balking; and
if the expected net benefit of an arriving customer is neg-
ative, he/she decides to balk. According to the three cases, we
can conclude the following results.

Theorem 1. In the observable clearing queueing system with
service quality feedback and system maintenance, there, re-
spectively, exists a unique individual optimal pure strategy for
the following three cases:

Case 1: R, < (C/u). Then, the unique individual optimal
strategy is always to balk.

Case 2: R;> (C/p) and Ry < (C/u(1- 0)). Then, the
unique individual optimal strategy is the threshold
strategy having the form while arriving at time t and
finding the system in the operative state, observe N (t);
join the system if N (t) <n, and balk otherwise, where
n, = |n*| and
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(11 -0 Ry
R, —R;+(CO/(1-O))

(5)

Case 3: Ry > (C/u(1 - 0)). Then, the unique individual
optimal strategy is always to join the system.

Remark 1. The argument in Theorem 1 implies that the
joining/balking strategy of an arriving customer is an in-
dividually optimal decision, which is independent of the
strategies of all other customers. This means that the ex-
pected net benefit of a customer is not affected by the
strategies of the future customers. In the game theory, the
strategy obtained in this section is called dominant since it is
the best response against any strategy of the others.

4. The Unobservable Case

We next consider the unobservable case. In this case, the
arriving customers observe only the server state upon arrival
and not the queue length. In order to obtain the strategic
behavior of customers in the unobservable case, we first give
alemma to show the expected net benefit of a customer if he/
she decides to join the system.

Lemma 2. In the unobservable clearing queueing system with
service quality feedback and system maintenance, an arriving
customer finds the server operative, and the others follow a
strategy q; if he/she decides to enter, his/her expected net
benefit is

Sun(lxq):<RS—Rf+ co > 1_x2(q) R C

(1-0u)1-6x,(q 7 (-0
(6)

where x,(q) is given by

_Og+w—\0g+p)’ - Aqud )

%2(q) 2u0

Based on the aforementioned discussions, we can derive
the Nash equilibrium joining strategies of an arriving cus-
tomer in the unobservable case.

Theorem 2. In the unobservable clearing queueing system
with service quality feedback and system maintenance, there
exists a unique Nash equilibrium mixed strategy q,, which has
the following form:
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[0,r <
Y

(C-uR,) [HC +(1- 9)(.MR3 - ny)]

A[C-(1-0uRr;|[1-6R,-R]’

9e =1 (8)

where x, = (A+p) — (A + y)z — 4Au0)/2ub.

Remark 2. The Nash equilibrium strategies obtained in this
section are independent of the parameter & since customers
only make their joining decisions while the system resides in
the operative state. Theorem 2 also reveals that, for very low
values of R, all customers balk to the system, for very high
values of R, all customers join to the system, while for
intermediate values of R,, customers join the system with a
mixed strategy g, € (0,1). Since S, (1,q) is a decreasing
function in ¢, this means that, as more customers join the
queueing system, the tagged customer is less willing to join
the queue, which can be referred as avoid the crowd (ATC)
situation.

5. The Social Benefits

In this section, we turn our attention to a social planner’s
point of view, i.e., we concentrate our analysis on maxi-
mizing the expected social net benefit per time unit. By
constructing the expected social net benefit per time unit
functions S35 (n,) and S}7 (q) for the observable and un-
observable cases, we can obtain the optimal values #,,. and
gsoc to maximize the expected social benefit per time unit
functions S (1) and S} (q), respectively. Next, we first
investigate the observable case and give the following

lemma.

Lemma 3. In the observable clearing queueing system with
service quality feedback and system maintenance, if all ar-
riving customers follow a threshold strategy with threshold n,,
the stationary distribution (py (n,i): (n,i) € {(n,1),n =
0,1,2, ..., ng+1}U{(0,0)}) has the following form:

soc _[’1(1_9) )’1(1—)’?) A UN
Pobs (0,0) = —E [dl (”s)(l_lef#Jﬁ )

1- ng+1 A .
+d2(ns)<7y2( Z );y;ﬂ, ®

pios (k1) =d, (n)yy +d,(n)ys 0<k<n +1,
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where
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? 2ub (10)
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dl (nS) _142131 _A1B2’
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& (HS) - AB, - AzB1’
with
1=0)y.(1-y™") + (u0y. 1) (1 -y,
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1-y;
y(1-yE -0+ +E(1-y)
Bi= s 1=1,2.
5(1_)’1')
(11)

Theorem 3. In the observable clearing queueing system with
service quality feedback and system maintenance, if all

)ns+1

SOC 1- 0
obs (ns) = A(Rs - Rf)(dl (ns) 1(5/71)/19
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FiGure 1: Equilibrium and social optimal thresholds versus R,
(C=3,R =7).

arriving customers adopt a threshold strategy with threshold
n,, the expected net social benefit per time unit has the fol-
lowing form:

1- ng+1 1- ng+1 1- ng+1
ey SO0 ar () 2 )22 )

L=y

1=y,

(1- }’2)2

1-— n,+1 ny+2 1- ng+1 ng+2
_Cdl(ns)<%( W) (e )y >_Cd2(ns)<yz( ") (no+ 1)y >

where d, (n,) and d, (n,) are given by Lemma 3.
Next, we turn our attention to the unobservable case, and

the corresponding expected social benefit per time unit can
be derived in the following theorem.

SSOC (q)

_ (AR, (1~ %, ()" + AR px; (q) (1 - 0) (1 - %, (@) — Cx, (9) (1 - 6x; (9)]

Theorem 4. In the unobservable clearing queueing system
with service quality feedback and system maintenance, if
customers follow a mixed strategy with joining probability g,
then, the expected net social benefit per time unit has the
following form:

(13)

o (1 (1= 6)x, (@) + &) (1 = x,(9)) (1 - 6x, (q))

where x,(q) is given by Lemma 2.

Remark 3. From Theorems 3 and 4, we find that since the
very involved form of equations (12) and (13), it is difficult
to derive the maximum in closed analytic form. However,
we could numerically derive some qualitative conclusions
while some parameters are fixed in the numerical
examples.

>

6. Numerical Examples

In this section, we explore the impacts of several parameters
on the behavior of customers under the observable and
unobservable cases.

First, in Figures 1-3, we assume that A = 1.5, 4 = 2, and
6 = 0.8 and, respectively, study the influence of Ry, R;,and C
on the equilibrium and the social optimal thresholds. From
Figures 1 and 2, the equilibrium and the social optimal
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FiGure 2: Equilibrium and social optimal thresholds versus R,
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Figure 3: Equilibrium and social optimal thresholds versus C
(R;=8, Ry =4).

thresholds n, and n,. increase with the increase of R, and
R, and from Figure 3, the equilibrium and the social optimal
thresholds n, and n,. decrease as the waiting cost C in-
creases. It is reasonable that customers prefer to join the
system if they could obtain higher value of reward (the
compensation reward without receiving service or the ser-
vice reward). On the contrary, customers are willing to balk
to avoid paying too much if the waiting cost is high.

In Figures 4-6, we assume that 4 =2, Ry =1, 6 =023,
and ¢ = 0.8 and pay attention to the curves of the equi-
librium and the social optimal joining probabilities with the
change of R, C, and A. Clearly, from Figure 4, both the
equilibrium and the social optimal joining probabilities are
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Figure 4: Equilibrium and social optimal joining probabilities
versus R, (C =3, Rf =1,1=15).
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Figure 5: Equilibrium and social optimal joining probabilities
versus C (R, =4, Rp=1, A =1.5).

increasing in R,. This is because that when R, increases,
customers are willing to enter so as to gain more reward
from service. From Figures 5 and 6, both the equilibrium
and the social optimal joining probabilities are decreasing
in C and A. The reason for Figure 6 is that, as A increases,
arriving customers who find the system in the operative
state predict that the system is more loaded and less tend to
join the system. We could also conjecture that both the
equilibrium and the social optimal joining probabilities are
continuously increasing with respect to u since the increase
of service rate can benefit the customers in the system by
reducing their expected waiting time. In other words, the
increase of service rate can make more customers receive
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Optimal entrance probabilities

—o— Equilibrium entrance probability g,

—+— Optimal social entrance probability g,

Figure 6: Equilibrium and social optimal joining probabilities
versus A (C =2, Ry =4, Ry =1).

service which leads to arriving customers preferring to join
the system.

Moreover, from Figures 1-3, we observe that n,,. <n, for
all values of R, R, and C, and from Figures 4-6, we observe
that g,,. < g, for all values of R, C, and A. The reason for the
results is that arriving customers intend to maximize their
own benefit. When arriving customers join the system, they
will increase the waiting time for future customers, i.e., they
will impose negative externality effects on future customers.
However, when intending to maximize the social benefit, we
should take these negative externality effects into consid-
eration. Actually, the results also hold for other values of the
parameters and more general queueing models, the inter-
ested readers can refer to Boudali and Economou [20], Xu
and Xu [15], and Wang and Zhang [29].

7. Conclusion and Further Work

In this paper, we studied the customer strategic behaviorin a
service system with service quality feedback and system
maintenance. We, respectively, obtained the equilibrium
threshold strategies in the observable case and the mixed
Nash equilibrium balking strategies in the unobservable
case. The social optimal strategies for the two cases are also
derived. Finally, we illustrated some numerical examples to
make a comparison between equilibrium strategies and the
social optimal strategies. Although in this paper, for ana-
lytical simplicity, we just considered the case that the system
undergoes an adjustment period while it receives a negative
feedback. In the further work, we could also analyze the
strategic behavior of customers for the case that the system
undergoes an adjustment period after receiving a certain
number of negative feedbacks, and it will be an interesting
direction for future research. Another interesting direction
for future research is that of information heterogeneity in the
queue. The pricing strategy of the service provider based on

customers’ information heterogeneity and the impact of
information heterogeneity on throughput and social welfare
maximization could be an interesting research direction.

Appendix

In this section, we provide the proofs of the results in
Sections 3-5.

A. Proof of Lemma 1

Proof. First, we consider a tagged customer who finds the
system residing in state (#, 1) upon arrival and determines to
join the system. Therefore, there are n + 1 customers in the
system, and the tagged customer is in position # + 1. Next,
we consider two cases which lead the tagged customer to
leave the system. Without loss of generality, we define the
sojourn time of an arbitrary customer as the overall time
from the epoch at which he/she joins the system to the epoch
at which he/she leaves by either the service completion or the
occurrence of system maintenance.

Case 1: the tagged customer may leave the system due
to his/her service completion, i.e., all customers ahead
of the tagged customer are satisfied with their service
and give positive feedbacks. Then, in this case, the
tagged customer leaves the system with probability 6",
and the expected sojourn time of this tagged customer
is (n+1)/u.

Case 2: the tagged customer may leave the system
before receiving service, i.e., there exists a customer in
front of the tagged customer who is unsatisfied with
his/her service. Assume that this customer is in position
j» 1<j<n, and he/she is the first customer to be un-
satisfied with the service after the tagged customer’s
arrival. Then, in this case, the tagged customer leaves
the system with probability (1-6)6"", and his/her
expected sojourn time is j/u,1<j<n.

Based on the reward-cost structure, for an arriving
customer, if he/she observes the system at state (1, 1) upon
arrival and decides to join the system, his/her expected net
reward is

1y = 1
Sobs (1,1) = 9"<R5 Boras ) +y - 9)9"<Rf —ckL)
I & I

(A.1)
After some calculations, we have
" " C 1 _ 971+1
Sobs(n,l)=0R5+(l—9)Rf—;ﬁ. (Ag

B. Proof of Theorem 1

Proof. 1f a tagged customer observes that the system is in
state (n, 1) upon arrival and makes a decision to enter, his/
her expected net benefit is given by equation (3). Simplifying
(3), we have
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Sobs(n ) 6R5+( G)Rf ‘u 1—6
—9”<R -R +C76)+R _c
T a-ou) T -0

(A.3)

According to our assumption R >R, we have

dSgps (1, 1) Cco "
T_<RS Ry + a —6);1)9 In6<0, (A.4)

that is, S, (1, 1) is a decreasing function in n. Hence, an
arriving customer balks if S i, (1, 1) <0; otherwise, he/she
prefers to join the system. Next, we consider three cases.

If Sy (0,1) <0, ie., R, < (C/u), then, an arriving cus-
tomer always balks. We can conclude with Case 1.

If Syps(0,1)>0 and if Ry < (Clu(1- 0)), then, there
exists a unique root n* such that S (n*, 1) = 0. Solving
this equation, we have n* = (In K/In 8), where

_ (CI0 -0 - R,
R —R;+(CO/(1-O))

(A.5)

Since S, (1,1) is a decreasing function in n, the ar-
riving customer determines to enter if and only if
n<n,(=n"), and balk otherwise. Then, we can con-
clude with Case 2.

If Rp> (C/u(1 - 0)), then, Sy (n,1) >0 for all , and
s0, in this case, an arriving customer always prefers to
enter into the system. We can conclude with Case
3. O

C. Proof of Lemma 2

Proof. First, assume that each arriving customer joins the
system with probability q, and the effective arrival rate is Ag.
Let (P (. (q): (n,i) € Q) denote the stationary distribution
of the system. In what follows, we will refer to p,; (q) as
p(n,i). Then, the steady state equations of the queueing
system and the normalization condition can be driven as
follows:

Ep(0,0)=p(1-6) Y p(k1),

(A.6)
k=1
Aqp(0,1) = ubp(1,1) + §p(0,0), (A7)
(Ag+wp (k1) = pubp(k+1,1)+Agp(k-1,1), k=1,
(A.8)
1=p(0,00+ ) p(k,1). (A.9)

k=0
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It is obvious that (A.8) can be regarded as a homo-
geneous linear difference equation of order 2 with constant
coefficients, and its corresponding characteristic equation
is

(Aq + w)x = ubx* + g, (A.10)
which has two roots, x, (q) and x, (q), given by
- (Ag + @) +\/(Aq + w)* — 4Aqué
xX1\q) = 2[/{9 >
(A.11)
- (Aq +p) = \[(Aq +w)” ~ 4Aqueé
X \q) = 2#8 .

Using the standard theory of homogeneous linear dif-
ference equations, we have

Pl D) = (@[x @ + e (@[x(@]" k=0,
(A.12)
where ¢, (g) and ¢, (g) are constants which need to be de-

termined. Note that x,(q)>1; hence, ¢,(q) should be
necessarily equal to 0. So, p(k,1) can be reduced to

pk1) =, (9)[x,(q)]" k=0 (A.13)
Based on the normalization condition, we have
1-x,(q)
¢, (q) = [1=x (@] (A.14)

p(1-0)x,(q) +&
Substituting (A.14) into (A.6) and (A.13), respectively,

we have
_u(1-0) 6 (xy(q) _ p(1-0)x,(q)
POO="F"1"0@ w10 (@ + €

e [1-x @)E[x @)

W0—0x, @+ <20

p(k, 1) =c,(q) [x2 (‘1)]
(A.15)

When all other customers adopt the same mixed strategy
with joining probability g, the expected net benefit of an
arriving customer making a decision to join the system can
be calculated by conditioning on the state that he/she ob-
serves upon arrival. The probability that the arriving cus-
tomer finds k customers in the system upon his/her arrival,
given that he/she finds the server operative, is

) =25 @l @] ko

Z?ZOP(L 1)
(A.16)

Then, if an arriving customer determines to join the
system given that he/she observes that the system is in the
operative state and all other customers adopt the strategy g,
his/her expected net benefit is given by
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Sun (1,@) = Y. p™™ (k, 1)Syp5 (K, 1)

k=0

- S -n @l @ (R +(1- )R,

k=0
91_9k+1
u 1-6

>

co
(1-x,(q)][x, (q)]k<9k<Rs — R+ m)

k=0
C
AT ew)
Cco 1-x,(q) C
= R, —R;+ +R, - .
< s 0 (1—9)M>1—9x2(q) F o (1-0u
(A.17)
So, we obtain (6). m O
D. Proof of Theorem 2
Proof. First, differentiating x, (q) with respect to q, we have
dx, (q) A A+u(l-0)—ub
-~ — > 0.
dg 20\ Qe u(1- 6) - u6) +4426(1 - 6)

(A.18)

Then, x,(q) is strictly increasing for g € [0,1], and
Sun (1,9) is a decreasing function on g since R, > R . Define
x,(0) =0, x, (1) = x,; we next discuss the following three
cases:

1) It §,,(1,0)<0, ie, R, <(C/u), then S, (1,9) is
nonpositive for every g, the best response of an
arriving customer is balking, and the unique equi-
librium point is g, = 0, which gives the first branch of
(8).

@1  S§,(1,0>0 and  S,(1,1)<0, ie,
(Clu) <R, < (1/1 = x,) ((Cly) - Ry (1-6)x,), there
exists a unique solution of S, (1, q) = 0, which lies in
(0,1). Solving this equation, we obtain the second
branch of (8).

3 If S, (L,1)=0, ie, Ry>(1/1-x,)((Clp) =Ry
(1 -0)x,), then S, (1, q) is nonnegative for every g,
and the best response is 1. Thus, entering is the
unique Nash equilibrium strategy, and the third
branch of (8) is obtained. O

E. Proof of Lemma 3

Proof. In the observable case, the corresponding stationary
distribution under a threshold strategy with threshold n, can
be obtained by solving the following steady state equations:

ng+1

£ (0,0) = u(1-0) Y pigs (e 1), (A.19)
k=1

Apap (0, 1) = uBpgys (1,1) +EpH(0,0),  (A.20)

A+ w)pons (k1) = ubpire (k+1,1) + Apgp. (k= 1,1),

1<k<n,,
(A.21)
P (1 + 1,1) = Apg (n 1). (A22)
From equation (A.21), we have
Pans (k+1,1) =y, pag (ks 1)
= 72 (Pobs (1) = y1 P (k= 1, 1)), 1<k<n,
(A.23)

which can be rewritten as the following form by considering
equation (A.22), i.e.,

sOC soC A- SoC n—-1-n
pobs (k’ 1) - ylpobs (k -1 1) = A‘uylpobs (ns +1, 1))’2 : 5
1<k<n,,
(A.24)
where
A+ ) + A+ )2 — 406
= 2u6 ’
(A +p) = A+ p)> = 4Aub
y = bl
’ 2u6 (A.25)
A,

d2 (ns) = Ale _AzBl'

Simplifying equation (A.24), we have

soc A= 241 s0C k
k1) + —————— +1,1
Pobs ( ) 2 (}’1 _ yz)y;lspobs (ns )yz
soc A- (24! soc k-1
= Y1| Pops (k= 1,1) +mpobs (no+ L 1)y, ),
1<k<n,.
(A.26)
By iterating equation (A.26), we can derive
P U D +Yys = i (PR (D +Y), 1sksn,,
(A.27)

where
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A- Uy1 s0C
Y= pi (n, + 1,1). (A.28)
Ay, = yo)ybo e )
Let d, (n,) = pii-(0,1) +Y and d, (n,) = -Y, we have
pf)(l)a(; (k’ 1) = dl (ns)xlf + d2 (ns)xlzc’ 0< k < 1. (A'29)

From equation (A.19), we can derive the expression of
Do (0,0). Then, based on the normalization condition

ng+1

P (0,0) + Z P (k1) =1 (A.30)
k=0

and equation (A.20), we can obtain d, (n,) and d, (n,). O

F. Proof of Theorem 3

Proof. 1f all arriving customers join the system following a
threshold strategy with threshold n,, the expected net reward
per time unit is given by

Sops (1) = APipRs + Apgp R r = CE Qo) (A.31)

where p?, and p¢, are the fractions of customers leaving the
system due to the service completion and the occurrence of
server maintenance, respectively, and E[Q,] is the ex-
pected number of customers in the system. Then, we have

Pie= Y P (e 65 = Y (dy (1) (1,0)* + dy () (3,0)°),
k=0

k=0
(A.32)

D= Y P (1-6) = Y (dy (n)y5 + dy () %)
k=1 k=1
(-¢)
(A.33)

ng+1 n+1

obs Z kpf)(l))cs (k’ 1) Z k( yl + d ( s)y];)

(A.34)
Substituting (A.32)-(A.34) into (A.31), we can obtain the
result of Sy (). O

G. Proof of Theorem 4

Proof. 1f all arriving customers join the system following a
mixed strategy joining probability g, given that they find the
system residing in the operative state, the expected net social
benefit per time unit is given by

SSOC (q) - /lqpun (q)R + /\qpun (q)Rf CE [Qun] (q)’
(A.35)

where

Discrete Dynamics in Nature and Society

S e [1-x, (@)]¢ |
P @ = 2 Pk D0 = g+ (1 0, @)
(A.36)
Pan(@ =Y pl1)(1-6")
k=l (A.37)
_ §x,(q) (1-6)
(1= 0)x,(q) + &) (1 - bx,(q))
\ x; ()¢
E =Y kp(k,1) = 2 .
Q@ kzo PO = T 0m @ + (1 % (@)
(A.38)
Then, S;X(q) can be obtained by substituting
(A.36)-(A.38) into (A.35). O
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