
Review Article
An Improved Whale Algorithm for Setting Standard Scheduled
Block Time Based on the Airline Fairness

Qian Wang,1 Yong Tian ,1 Lili Lin,2 Ratnaji Vanga,3 and Lina Ma1

1College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
2Yangzhou Collaborative Innovation Research Academy of Shenyang Aircraft Design & Research Institute,
Shenyang 225002, China
3Department of Industrial Systems Engineering & Management, National University of Singapore, Singapore

Correspondence should be addressed to Yong Tian; tianyong@nuaa.edu.cn

Received 25 May 2020; Revised 9 August 2020; Accepted 21 September 2020; Published 9 October 2020

Academic Editor: Fabio Tramontana

Copyright © 2020 Qian Wang et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Standard scheduled flight block time (SBT) setting is of great concern for Civil Aviation Administration of China (CAAC) and
airlines in China. However, the standard scheduled flight block times are set in the form of on-site meetings in practice and current
literature has not provided any efficient mathematical models to calculate the flight block times fairly among the airlines. )e
objective of this paper is to develop and solve a mathematical model for standard SBT setting with consideration of both fairness
and reliability. We use whale optimization algorithm (WOA) and an improved version of the whale optimization algorithm
(IWOA) to solve the SBTsetting problem. A novel nonlinear update equation of convergence factor for random iterations is used
in place of the original linear one in the proposed IWOA algorithm. Experimental results show that the suggested approach is
effective, and IWOA performs better than WOA in the concerned problem, whose solutions are better compared to the flight
block times released by CAAC. In particular, it is interesting to find that MSE, RMSE, MAE, MAPE and)eil of the reliability in
60%–70% range are always the smallest and the average fairness of airlines is better than that of 60%–75% range. )e model and
solving approach presented in this article have great potential to be applied by CAAC to determine the standard SBTs strategically.

1. Introduction

According to the statistical report published by CAAC, the
number of flights in China increased by 3.093 million
(36.1%) from 2015 to 2019. )e rapid growth of air trans-
portation demand has led to a serious issue of flight delays.
)e statistics show that there were 2.358 million departure
flights in China out of 18.8 million all over the world and
China ranked second in terms of the number of flights in the
first half of 2019. However, China ranked eighth in the
punctuality rate rankings.

It is recognized that the factors affecting on-time per-
formance could be mitigated by adjustments in standard
scheduled block time (SBT), which is defined as the time
interval between scheduled gate departure at the departure
airport and scheduled gate arrival at the arrival airport for a
given flight [1]. In principle, a higher on-time performance

could be achieved by increasing the standard SBTs for these
flights for airlines operating flights in highly congested or
delay-prone conditions [2, 3].

Figure 1 illustrates SBT and flight block time decom-
position, including flight taxi-out time, flight air time, and
flight taxi-in time [3, 4]. )e time between scheduled de-
parture time and actual departure time is defined as flight
departure delay time. Similarly, the time between scheduled
arrival time and actual arrival time is defined as flight arrival
delay time.

Standard SBT is an important reference for Operation
Monitoring Center of CAAC to set strategic flight schedule
twice per year for all flights (once for the winter and once for
the summer scheduling season) [1, 4]. Standard SBTneeds to
be adjusted yearly with the development of air traffic. Actual
block time is uncertain because of various factors such as
adverse weather condition and airport/airspace congestion
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[5]. Accordingly, it creates a “too much” versus “too little”
trade-off in the scheduling decision, similar to typical
newsvendor model. If too much standard SBT is allocated to
a flight, it creates leftover inventory (overage) costs for the
airline such as lower utilization rate of aircraft and pilot
compensation. On the contrary, it is likely to exceed the
standard SBT resulting in delay and shortage (underage)
costs for the airline such as spending for dealing with dis-
satisfied customers, overtime costs, and so forth. More
importantly, a lower punctuality rate will cause huge damage
to the image of civil aviation, thereby reducing the com-
petitiveness with road traffic.

)e Operation Monitoring Center of CAAC publishes
the standard SBT table every year on preflight plan man-
agement system on http://www.pre-flight.cn/. )e table
contains standard SBTs between airport pairs that have
regularly scheduled flights between them. )e flights are
categorized by air season, departure-arrival airports pair,
and aircraft type. Air season 7 includes summer and autumn
and air season 8 includes winter and spring. For the same
departure and landing airports, different aircraft types and
air seasons may have different standard SBTs.

Table 1 gives an example of standard SBTs from the table
published by CAAC. M0.8-0.89 represents aircraft with
Mach number from 0.8 to 0.89, for example, A330, A380,
and B787-8. M0.7-0.79 represents aircraft with Mach
number from 0.7 to 0.79, for example, A300, A320, and
B737. For example, the standard SBT of airport pair from
Beijing Capital International Airport (ZBAA) to Guangzhou
Baiyun International Airport (ZGGG) is 200 minutes from
March 25, 2018, to October 27, 2018, using M0.8-0.89 air-
craft type, while that of the opposite direction is 190minutes.

At the strategic level, there is a proactive schedule coor-
dination process (more than 6 months before operations) with
bilateral communication between the Operation Monitoring
Center of CAAC and airlines [1]. )e Operation Monitoring
Center of CAAC holds a civil aviation advance flight planning
meeting that convenes the employees of the Marketing and
Sales Committee (MSC) from all airlines in China to adjust the
standard SBTs. )e meeting usually takes 2 to 3 days. )e
Operation Monitoring Center compares the proposed stan-
dard SBTs mainly based on the analysis of the median, mean,
and standard value of the historical flight data and opinions
made by each airline. )e standard SBTs must be accepted by
all airlines. )e method of adjusting standard SBTs by

centralized on-site discussion and referring historical data is
highly subjective and inefficient and can be written as “inef-
ficient way of resource utilization.” Due to this, we propose to
overcome these disadvantages by using optimization methods.
To the best of our knowledge, there is no such research that
uses mathematical modelling methods to set SBTs.

)is paper aims to propose an optimization method to
set SBTs of all airport pairs using various aircraft types in
different air seasons more efficiently and reliably. )e
method may be useful to CAAC, which is the chief of the
civil aviation advance flight planning conference in pro-
viding optimal decisions. )is method establishes the
mathematical model of the standard SBTs setting.)ere is no
prior research in addressing the way to optimize standard
SBTs with consideration of the fairness of airlines, which is
established by this article.

)us, this article focuses on addressing the following
questions:

(i) How is actual flight block time reliability perfor-
mance affected by the standard SBTs? What is about
flight taxi-in time and flight taxi-out time?

(ii) How to establish a mathematical model to adjust
standard SBTs based on the historical operation
statistics considering the fairness of airlines?

(iii) What is the effect of different reliability ranges on
the optimization results of SBTs? What is the best
range of reliability?

)e remainder of this paper is organized as follows.
Section 2 reviews the background information regarding
standard SBT and block time reliability (BTR). In Section 3,
we analyze how actual flight block time reliability perfor-
mance is affected by the standard SBTs based on the analysis
of historical flight data of all airlines. Section 4 presents our
proposed standard SBT optimal model based on the BTR,
which also considers the fairness of airlines in China. In
addition, WOA and IWOA algorithms are chosen to solve
the optimization problem of standard SBT for comparison.
In Section 5, we illustrate its application to the case study
followed by the discussion of main results of the standard
SBTs of all flights. In addition, we analyze evaluation metrics
of different reliability ranges to seek out the best range of
reliability. Finally, conclusions and suggestions for further
research are presented in Section 6.
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Figure 1: SBT and flight block time decomposition.
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2. Literature Review

In this section, we present some of the literature of standard
SBT and flight block time reliability. Firstly, we discuss
research papers related to the relationship of standard SBT
and on-time performance. )en, we present the fairness
metric of slot scheduling, which is similar to flight block time
scheduling and reliability metric after the first part, and the
research gaps are summarized in the end.

Recent studies have examined the contribution of
standard SBT setting to airline on-time performance and
have proposed several models for understanding standard
SBT-setting behavior. )e SBT is close to the mean travel
time. Increasing standard deviation results in a decrease in
the SBT, as coefficients on the standard deviation of block
times are negative [6]. On-time arrival probability depends
significantly on the duration of standard SBTs. )e overall
on-time arrival percentage for civil aviation increases by
25.5% when the scheduled block time is added 15 minutes
[5]. After this research, Kang and Hansen [2] estimated a
correlated mixed logit model in which the choice set consists
of different possible standard SBTs adjustments and the
attributes were the projected scheduled reliability metrics
that would result from the adjustment. )ey found that
many airlines were willing to increase standard SBTs from
0.38 to 0.54 minutes to gain an increase in on-time per-
formance of 1% by estimating the model for five different
airlines in the United States. It has been found that standard
SBTs depend mostly on the inner right tail and less on the
far-right tail by Hao and Hansen [4]. )en, Wang et al. [1]
quantified the importance of factors that decision-makers in
China and USA consider when setting SBTs in the form of a
multiple linear regression model. )ey found that a unit
increased in the lower taxi-out time increased SBT more
than a unit increased in the higher taxi-out time did.

Standard SBTs are important references to the flight
schedule and operation such as crew scheduling, flight slot
scheduling, and aircraft rotations. )e process of scheduled
flight block time setting is similar to that of strategic slot
scheduling [7]. On the one hand, both consider decisions
made twice per year. On the other hand, all stakeholders
must participate in the formulation process and accept the
final schedule. Standard SBT-setting research field is less
intensive and extensive compared to slot scheduling research
field, especially the idea of considering fairness in the model.
)e fairness has been introduced as a criterion for slot al-
location in the context of congestion pricing by Andreatta
and Lulli [8]. In particular, the notion of fairness has been
introduced by Pellegrini et al. [9] in slot scheduling decisions

at the network level by considering the maximum cost of
missed allocation and the maximum total displacement costs
of all considered airlines across all airports. Further, the
fairness objective is defined based on a proportionality
metric, which postulates that the total schedule displacement
of an airline should be proportional to the number of slots it
has requested [10].

)e reliability in transportation mainly refers to the
unpredictable variations in travel time and is thus directly
related to uncertainty of travel time. )e increase in air
traffic and technology development comes with a greater
expectation of reliable travel from the passenger perspective
[11]. )e travel time reliability is the variations in journey
time that travellers cannot predict in ground transportation
[12]. In other words, it presents the temporal uncertainty
experienced by travellers in their movements between the
origin and destination of the trip.

)e primary basis for choosing standard SBT for a flight
is the flight block time reliability [1]. )e idea of reliability
was first introduced from ground transportation to air
transportation by Hao and Hansen [4]. Similarly, they firstly
proposed the concept of block time reliability. Another
important contribution by them is the theoretical model
with the percentile statistics of the actual flight time, which
estimates impact of historical block time distribution on
SBT, that is, the reflection of BTR. BTR is defined as the
proportion of flights whose block times do not exceed the
standard SBTs [1, 4]. In other words, the BTR for a certain
categorization is the percentage of realized flights whose
block times are shorter than or equal to the SBT.

In the above studies, various empirical models of
standard SBTs setting are proposed to analyze the SBT-
setting behavior and examine the contribution of standard
SBTs setting to airline on-time performance. Furthermore,
Chinese airlines sometimes adjust their scheduled block
times based on operational experience. As per our knowl-
edge, none of the studies establish an optimal model to
adjust standard SBTs objectively. Accordingly, although BTR
has been considered as an important conference in the
procedure of scheduled block time setting, how it effects the
results has not been studied.

)is paper contributes to the flight block time scheduling
by the following: (i) exploring the influence of standard SBTs
on reliability by analyzing the historical flight data, (ii)
introducing a new single-objective optimization model that
considers the fairness objective and the flight block time
reliability constraints and can adjust standard SBTs for the
two seasons, (iii) using improved WOA algorithm to op-
timize standard SBTs, and (iv) investigating the appropriate

Table 1: Example of standard block times.

Departure-arrival airports pair Date
SBT (min)

Aircraft type 7 M0.8-0.89 Aircraft type 8 M0.7-0.79

ZBAA<->ZGGG March 25, 2018–October 27, 2018 (air season 7) 200/190 205/195
October 28, 2018-March 30, 2019 (air season 8) 205/185 220/190

ZSAM<->ZSHC March 25, 2018–October 27, 2018 (air season 7) 100/95 95/100
October 28, 2018–March 30, 2019 (air season 8) 90/100 95/105
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range of reliability by analyzing evaluation metrics of dif-
ferent reliability ranges.

3. An Analysis of Flight Block Time Reliability

In this section, we analyze how the flight block time reli-
ability, flight taxi-out time reliability, and flight taxi-in time
reliability change with their different standards, respectively.

In this paper, the potential for changes in SBTs with the
change of BTR is one of the major points of focus. To
understand this, we first study the impact of the change in
standard SBTs, the scheduled flight taxi-out time and the
scheduled flight taxi-in time on BTR, and the flight taxi-out
time reliability and the flight taxi-in time reliability, re-
spectively. Flight block time reliability, flight taxi-in time
reliability, and flight taxi-out time reliability are defined as
follows [3].

Rblock � P tblock ≤Tblock , (1)

Rtaxi−out � P ttaxi−out ≤Ttaxi−out , (2)

Rtaxi−in � P ttaxi−in ≤Ttaxi−in . (3)

Equations (1) to (3) estimate the flight block time reli-
ability Rblock, flight taxi-in time reliability Rtaxi−in, and flight
taxi-out time reliability, respectively. Equation (1) is used to
calculate Rblock, where tblock is actual flight block time and
Tblock is scheduled block time. Rtaxi−out is calculated by
equation (2), in which ttaxi−out is actual flight taxi-out time
and Ttaxi−out is scheduled flight taxi-out time. Equation (3) is
used to calculate Rtaxi−in , and ttaxi−in is actual flight taxi-in
time and Ttaxi−in is scheduled flight taxi-in time.

We obtained the historical flight data of the operating
flights in China from March 2018 to March 2019 from the
CAAC.We determined the changes in reliability of the flight
block time, taxi-in time, and taxi-out time when the standard
SBT, standard scheduled flight taxi-out time, and standard
scheduled flight taxi-in time increase (or the actual flight
block time, actual flight taxi-out time, and actual taxi-in time
decrease), respectively. )ese results are shown in Figures 2
and 3.

Figure 2(a) is a set of detailed 3D graphs showing dif-
ferent flight routes against different reliabilities. Similarly,
Figures 2(b) and 2(c) show different airports against dif-
ferent flight taxi-out time reliabilities and flight taxi-in re-
liabilities in detail. As mentioned in Section 1, we can
observe the fact that different aircraft types and seasonal
factors affect the standard SBTs of an airport. )e abscissa of
Figure 3 is the minutes that SBTs, scheduled flight taxi-out
time increase. For example, the first point of flight block time
in Figure 3 indicated that the average BTR of all flight routes
is 43.44% under the standard SBTs, while the second point in
blue color indicates that the mean reliability is increased to
46.56% when the SBTs are reduced by 1 minute. Similarly,
the points in orange and blue express similar observations
that the reliability increases with the decrease in SBTs.

According to Figure 3, we can see that the flight block
time reliabilities increase by 33.61% and 57.07% with the

standard times increasing by 5 minutes and 10 minutes (or
the actual times decreasing by 5 minutes and 10 minutes),
respectively. By comparing the results of flight taxi-out time
and taxi-in time, it is found that the proportion of flight taxi-
out reliability increases more significantly with the increase
of scheduled time compared to flight taxi-in time. )e flight
taxi-out time reliability increases from 76.54% to 84.09%,
and the flight taxi-in time reliability increases from 89.05%
to 89.31% when both scheduled times increase by 5 minutes.
Obviously, the reliability of flight taxi-out time improves by
9.85%, while the reliability of the flight taxi-in time only
improves by 0.29%. As seen in Figure 3, when the scheduled
flight taxi-out time increases by 1 minute (or the actual flight
taxi-out time decreases by 1 minute), the reliability increases
by 3.40%.)e above analyses show that, on the one hand, the
reliability of flight taxi-in time is higher than that of flight
taxi-out time, which is in line with the results of Tian et al.
[3]. On the other hand, there is a lot of space for flight taxi-
out reliability to improve based on reducing the actual flight
taxi-out time at the airport.

4. Flight Block Time Optimization

In this section, we first propose a mathematical model to set
standard SBTs of all airport pairs considering the fairness of
history operating airlines. )is mathematical model is de-
veloped for setting the standard SBT scheduling. Further,
we present WOA and improved WOA (IWOA) to solve this
problem.

4.1. Formulation. )e following notations are presented for
the mathematical formulation of the proposed standard
SBT-setting model.

Sets

Q: Set of airlines
G: Set of airport pairs
J: Set of aircraft types
R: Set of air seasons
T: Set of standard SBTs
Mq: Set of difference between the old standard SBTs
and the new requested time requested by airline q
M: Set of differences requested by all airlines
H: Set of historical flight block times.

Parameters

t
g,j,r
q : Requested flight block time by airline q for
airport pair g, air season j, and aircraft type r
t
g,j,r

h : Historical flight block time for airport pair g, air
season j, and aircraft type r
σ: Lower limit of flight block time reliability constraint
σ: Upper limit of flight block time reliability
constraint.

Decision variables

xtg,j,r

m xtg,j,r

m �1, if difference m is allocated to the
requested time t; otherwise, xtg,j,r

m � 0.

Function

4 Discrete Dynamics in Nature and Society
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ρq: Fairness metric of airline q
Rg,j,r: Flight block time reliability for airport pair g, air
season j, and aircraft type r.

4.1.1. Allocated Displacement. Standard SBTs allocated
displacement fm is defined as the difference between the
allocated and historical flight block times for airport pair g,
air season j, and aircraft type r. )e allocated displacement of
a difference m is expressed by equation (4) mathematically.

fm � 
h∈H


tg,j,r∈T

t
g,j,r

− t
g,j,r

h



x
tg,j,r

m , ∀m ∈M, g ∈ G, j ∈ J, r ∈ R.

(4)

Based on the above equation, the total difference be-
tween the allocated and historical flight block times of an
airline (q) is expressed by equation (5), while the total al-
located displacement of all flights for total airlines is
computed using equation (6).

dq � 
m∈Mq

fm, ∀q ∈ Q,
(5)

Dq � 
q∈Q


m∈Mq

fm.
(6)

4.1.2. Requested Displacement. Standard SBTs requested
displacement is defined as the difference between the
requested and historical flight block times. Mathematically,
it is expressed by the following equation:

fm
′ � 

h∈H


tg,j,r∈T
t
g,j,r
q − t

g,j,r

h



, ∀m ∈M, ∀g ∈ G, j ∈ J, r ∈ R.

(7)

Correspondingly, equation (8) expresses the total
requested displacement, while equation (9) is used to cal-
culate the requested displacement of all airlines.

dq
′ � 

m′∈Mq

fm
′

, ∀q ∈ Q, (8)

Dq
′ � 

q∈Q


m′∈Mq

fm
′ . (9)

4.1.3. 0e Fairness Metric. )e concept of scheduling dis-
placement proportionally to requests has been proposed in
the context of the Ground Delay Program [13]. Further, the
concept was adopted to slots scheduling decision-making
context [10]. In this paper, we adopt it to standard SBT-
setting context for the first time. )e total allocated dis-
placements of an airline should be proportional to the
requested displacement. )e mathematical expression of the
proposed fairness metric is as follows:

ρq �
dq/D 

dq
′/Dq
′ 

, ∀q ∈ Q. (10)

)e denominator in the above formula is the proportion
of standard SBTs requests by an airline (q), while the nu-
merator is the proportion of standard SBTs allocated to it (q).
Based on the above fairness indicator, the definition can be
concluded as follows [10]: an airline is fairly treated if
ρq � 1.0; an airline is a favored airline if ρq < 1.0; an airline is a
disfavored airline if ρq > 1.0.

Based on the proposed fairness metric, all airlines are
fairly treated when ρq � 1, ∀q ∈ Q. However, due to the
difference in airline capability and the fact that a certain
flight route is always operated by more than one airline,
different airlines have different operating hours for the same
flight route. Actual flight block time is uncertain because of
various reasons such as weather conditions and airport/
airspace congestion. In this way, perfect flight block time
scheduling for all airlines cannot be achieved. An alternative
way of dealing with the fairness issue is to compare the
displacement of a given airline with the displacement of
other airlines (relative as opposed to absolute fairness).
Accordingly, the fairness objective is proposed as mini-
mizing themaximum distance between the fairness metric of
an airline and the average fairness metric of all airlines. We
propose the following mathematical model:

min z(x) � max ρq −
q′∈Qρq′

|Q|




, q ∈ Q , (11)

subject to

σ ≤R
g,j,r ≤ σ, ∀g ∈ G, j ∈ J, r ∈ R, (12)


tg,j,r∈T

x
tg,j,r

m � 1, ∀m ∈M, g ∈ G, j ∈ J, r ∈ R, (13)

x
tg,j,r

m ∈ 0, 1{ }, ∀m ∈M, g ∈ G, j ∈ J, r ∈ R. (14)

Here, equation (11) is the objective function which
ensures that the worst case of unfairness differs as little as
possible from the average fairness by minimizing the
maximum distance between the fairness metric of an airline
and the average fairness metric of all airlines. Equation (12)
requests that the reliability of flight block time for airport
pair g, air season j, and aircraft type r is supposed to be in
the range from σ to σ. Its calculation formula refers to
equation (1) in Section 3. Equation (13) stipulates that every
flight block time of flight route must be allocated to one and
only one time period. Equation (14) is a binary constraint on
the decision variable. )is mathematical model is similar to
the allocation models that are NP-hard and thus it is difficult
to solve it using solvers in a reasonable time. Generally,
metaheuristics are used to get a good enough solution in a
quick time [14]. In this paper, we propose a metaheuristic
algorithm named improved whale optimization algorithm
(IWOA), which optimizes the standard SBTs.

6 Discrete Dynamics in Nature and Society



4.2. Solving the Flight Block Time Optimization Model.
)is section aims to introduce the theory related to the
standard whale optimization algorithm (WOA). )e im-
proved WOA (IWOA) is then proposed.

4.2.1. WOA. WOA is a new evolutionary computation al-
gorithm proposed by Mirjalili and Lewis [15], which mimics
the bubble-net hunting technique of humpback whales for
global optimization problem [16]. Global optimization
process is often divided into two subprocesses: exploration
and exploitation.WOA is proved to be very competitive with
metaheuristic optimizers and superior over conventional
techniques. Mirjalili and Lewis [15] tested WOA with six
constrained engineering design problems. )e results show
that the WOA algorithm outperforms particle swarm op-
timization (PSO) and gravitational search algorithm (GSA)
in average and requires a smaller number of analyses
(function evaluation). Moreover, it also has less error than
GA, which is very important in fault detection and finding its
location in the fault location estimation [17]. )e humpback
whales use the bubble-net hunting technique to encircle and
catch their preys, which is also considered as the core in-
telligent mechanism used by the algorithm. WOA has been
applied in many fields to solve practical problems. For in-
stance, WOA is used to optimize the renewable resource
configuration to reduce the wastage of the distribution
system [18]. Olive et al. [19] applied an improved WOA to
estimate parameter of photovoltaic cell.

(1) Searching and Encircling Prey (Exploration Phase). )e
humpback whales’ attempts to update their positions are as
follows:

D � C.Xrand − X(t)


, (15)

X(t + 1) � Xrand − A.D, (16)

A � 2a.r − a, (17)

C � 2.r, (18)

where Xrand is randomly selected from the current pop-
ulation. a is distance control parameter to balance the ability
of exploration and exploitation, and it is linearly decreased
from 2 to 0 over the course of iterations (in both exploration
and exploitation phases) in WOA [15]. )e distance of r is a
random vector in [1, 0] and t is the current iteration.

D � C.X
∗
(t) − X(t)


, (19)

X(t + 1) � X
∗
(t) − A.D, (20)

where X∗ is the best solution obtained so far. If |A|≥ 1 the
humpback whales balance between searching prey using
equations (15) and (16); otherwise, the encircling prey using
equations (19) and (20). WOA has different parameters to
control the behavior of the population, and the main ad-
vantage of it is its capability in reproducing the mechanism
lying behind the chase for prey.

(2) Bubble-Net Behavior (Exploitation Phase). )ere are two
mechanisms utilized in order to mathematically model the
bubble-net behavior. )e first is the shrinking encircling
mechanism that is given by decreasing the value of a in
equation (17) from 2 to 0 over the course of iterations. It
should be pointed out that the fluctuation range of A is also
decreased by a. In other terms, the function range of A is also
decreased by a. In other words, A is a random value that
decreased from 2 to 0.)e new position of a search agent can
be defined anywhere in between the original position of
agent and the position of the current best agent by setting
random values for A in [−1, 1].

)e second one is the spiral updating position to mimic
the helix-shaped movement of humpback whales by using a
spiral equation shown as follows:

B � X
∗
(t) − X(t)


, (21)

X(t + 1) � X
∗
(t) + B.ebk. cos(2π.k), (22)

where b is a constant for determining the shape of the
logarithmic spiral and k is a random number in [−1, 1].

Whales swim around the prey in a sharking circle along a
spiral-shaped path, and this behavior can be formulated
mathematically as follows:

X(t + 1) �
X
∗
(t) − A.D, if(p< 0.5),

X
∗
(t) + B.ebk. cos(2π.k), if(p≥ 0.5),

⎧⎨

⎩

(23)

where p is a random number in [0, 1], which indicates that
there is a probability of 50% to choose between the shrinking
encircling mechanism and the spiral system. )e source
codes of the WOA algorithm we refer to are publicly
available on http://www.alimirjalili.com/WOA.html. Algo-
rithm 1 presents the pseudocode of theWOA algorithm [15].
It is notable that WOA can smoothly switch between the
exploration and exploitation phases depending on only one
parameter.

4.2.2. IWOA. It can be observed that the main advantage of
WOA is that the mechanism of chasing the prey is realized
by using the randomness of the best search agents and the
employment of spiral to mimic the bubble-net attraction
process of humpback whales. In addition, the WOA pos-
sesses few parameters to set and the most important one is
self-turning along the iterative process. Because of these
facts, WOA has two main drawbacks: (i) its adaptive pa-
rameter depends on the random distribution and (ii) it has a
premature convergence. Many scholars improve the ex-
ploration and development capabilities of the algorithm. A
chaotic whale optimization algorithm (CWOA) is proposed,
which combines the features of standard WOA with chaotic
maps to improve its performance to find the set of pa-
rameters that model solar cells [19]. An improved WOA
based on social learning and wavelet mutation strategy
designs a new linear incremental probability, which in-
creases the possibility of global search [20].
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Actually, any swarm intelligent optimization algorithmhas
two different operations: global search (exploration is related
to global search) and local search (exploitation is related to
local search) in the iterative process [21, 22]. As pointed out in
Subsection 4.1, the transition between global search and local
search in the optimizing process is generated by the value of a.
A distance control parameter a has a better global search
ability to prevent the algorithm from falling into the local
optimum, while a smaller a has a stronger local search ability
to increase the convergence speed of the algorithm.

It is notable that a is the key to improving the perfor-
mance of the algorithm. It decreases linearly from 2 to 0 in
WOA. )e actual search process of WOA is nonlinear and
much more complicated, so the linear distance control
parameter strategy cannot truly reflect it [16]. So researchers
are increasingly paying close attention to improve the
performance of WOA, especially distance control parameter
a [16, 23]. Actually, the algorithm is supposed to have a
strong global search capability in the early stage of the search
while maintaining a faster convergence rate, and it is ensured
that the algorithm has a faster convergence rate in the later
stage of the search [24]. Additionally, the excessive local
search usually plunges into local optimum [15, 21]. )e
proposed algorithm, which is called the improved whale
optimization algorithm (IWOA), is based on the nonlinear
convergence factor [25]. In the IOWA, a novel nonlinear
update equation of convergence factor (a) in (24) is designed
to coordinate the abilities of exploration and exploitation.

a � ainitial − afinal(  +
1 − t/tmax( 

1 − μ · t/tmax( 
, (24)

where ainitial is the initial value of the convergence factor of a.
afinal is the finial value of the convergence factor of a. μ is a

nonlinear adjustment coefficient. t is the current number of
iterations. tmax is the maximum number of iterations. )en,
the pseudocode of IWOA is presented in Algorithm 2.

According to Algorithms 1 and 2, the difference between
WOA and IWOA is that a nonlinear update equation of
convergence factor is redesigned in IWOA.

5. Implementation and Results

In this section, we present a case study of 2386 flight block
times of China. We explain the original data at first. Later,
evaluation metrics such as MSE, RMSE, MAE, MAPE, and
)eil are used to compare the results obtained by the
proposed approach with the standard SBTs published by
CAAC in 2019. Finally, we analyze the fairness metric of
airline generated by the standard reliability range and the
optimal reliability range obtained by experiment.

5.1. Data Description. )is research was supported by Op-
eration Monitoring Center of CAAC. We collect the
opinions (requested SBTs) of airlines through the civil
aviation standard flight block time revision website platform
on http://www.sinoflight.cn/, and airlines can only deal with
their own. Each company organizes a coordinator to
complete the flight block time application of flight routes
operated by his company. We collected 22,768 opinions
from 38 airlines, which include almost all civil airlines in
China and 699,950 pieces of historical operating data from
March 25, 2018, to March 30, 2019, including 2,386 flight
block times. Figure 4 shows the proportion of airlines ap-
plying to revise standard SBTs. China Eastern airline is the
airline with the largest number of requested standard SBTs,
which accounts for 11.15%, and China Southern airline

Initialize the whales population Xi(i � 1, 2, . . . , n)

Calculate the fitness of each search agent
X∗: a randomly chosen search agent
(1) while (t<maximum number of iterations)
(2) for each search agent
(3) Update a, A, C, k, and p

(4) if1 (p< 0.5)
(5) if2 (|A|< 1)
(6) Update the position of the current search agent by equation (20)
(7) else if2 (|A|≥ 1)
(8) Select a random search agent (Xrand)
(9) Update the position of the current search agent by equation (15)
(10) end if2

(11) else if1 (p≥ 0.5)
(12) Update the position of the current search by equation (22)
(13) end if1

(14) end for
(15) Check if any search agent goes beyond the search space and amend it
(16) Calculate the fitness of each search agent
(17) Update X∗ if there is a better solution
(18) t� t+ 1
(19) end while
(20) return X∗

ALGORITHM 1: Pseudocode for WOA.
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accounts for 10.93%, ranking second. All other 28 airlines
accounted for 36.67% of the total standard SBTs. )ere are
many flight block times that many airlines request to adjust

and different airlines have different opinions. Figure 5 shows
the fights routes with more than 6 airlines applying for
adjustment at the same time. Figure 6 gives an example of
flight routes with one airline requesting to adjust the time.

)ere are 22 flight routes where more than 6 airlines
applied for the adjustment of flight block time as shown in
Figure 5. CAAC needs to consider the flight times requested
by the six airlines at the same time when adjusting these
flight block time. Figure 6 shows the flight routes requested
by Air China (CCA), 65.6% of which are flying to or from
Beijing Capital International Airport (ZBAA). It is because
CCA is one of the major airlines in China and its flight
operations are based at ZBAA.

5.2. Standard Scheduled Block Time. )e experiment results
are obtained on an Intel Xeon E5-2620 with 2.10GHz and
16.0GB RAM. )e proposed IWOA, along with WOA, was
programmed inMatlab (version 2018b) with reference to the
original code at http://www.alimirjalili.com/WOA.html.
Flight block time reliabilities are set in the range of 60–75%
normally [4]. After initial experiments, they are tested using
the same setting of parameters for fair comparisons among
WOA and IWOA; that is, the maximum number of itera-
tions is 100, n � 30, b � 1, ainitial � 2, afinal � 1, and μ� 25 after
initial experiments based on the research of [15, 25]. Due to
the stochastic nature of evolutionary algorithms, each al-
gorithmwith different reliability range is performed 20 times
independently.)e results are shown in Figure 7 and Table 2.

We use the most common evaluation metrics to measure
optimal accuracy, and they are mean squared error (MSE),
root mean square error (RMSE), mean absolute error

Initialize the whales population Xi(i � 1, 2, . . . , n)

Calculate the fitness of each search agent
X∗: a randomly chosen search agent
(1) While (t≤maximum number of iterations)
(2) for each search agent
(3) Update a by equation (24)
(4) Update A, C, k, and p

(5) if1 (p< 0.5)
(6) if2 (|A|< 1)
(7) Update the position of the current search agent by equation (20)
(8) else if2 (|A|≥ 1)
(9) Select a random search agent (Xrand)

(10) Update the position of the current search agent by equation (15)
(11) end if2

(12) else if1 (p≥ 0.5)
(13) Update the position of the current search by equation (22)
(14) end if1

(15) end for
(16) Check if any search agent goes beyond the search space and amend it
(17) Calculate the fitness of each search agent
(18) Update X∗ if there is a better solution
(19) t� t+ 1
(20) end while
(21) return X∗

ALGORITHM 2: Pseudocode for IWOA.
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CDG, Shandong airline
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GCR, Tianjin airline
CBJ, Capital airline
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CES, China Eastern airline
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CCA, Air China airline
CSC, Sichuan airline
CSZ, China Southern airline

CHH, Hainam airline

Figure 4: Proportion of airlines applying to revise standard SBTs.
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(MAE), mean absolute percentage error (MAPE), and )eil
inequality coefficient ()eil) [26]. Let cg,j,r denote the
standard SBTs announced on the official website http://www.
pre-flight.cn/ of 2019 on airport pair g, air season j, and
aircraft type r. Kg,j,r denotes the optimization of cg,j,k. )en
define the forecast error as eg,j,r � cg,j,r − Kg,j,r. We deter-

mine MSE� (1/n)  (eg,j,r)2, RMSE�

�������������

(1/n)  (eg,j,r)2


,
MAE� (1/n) |eg,j,r|  , MAPE� 100/n(  |eg,j,r|/cg,j,r),

and )eil�
�������������

(1/n)  (eg,j,r)2


/
�������������

(1/n)  (cg,j,r)2


+
��������������

(1/n)  (Kg,j,r)2


.
Figure 7 illustrates the convergence curves of WOA and

IWOA. WOA took 560 seconds, while IWOA took 539
seconds in average. It can be clearly observed that the
maximum distance between the fairness metric of an airline
and the average fairness metrics of all airlines from two
methods is remarkably different after a period of evolution.
Figure 7 reveals that IWOA evolves fast and can obtain
smaller fitness function value (lower maximum distance
between the fairness metric of an airline and the average
fairness metrics of all airlines). It shows that the average

fitness function values of WOA and IWOA are 0.1901 and
0.1866, respectively. On average, WOA needs 40 generations
to find the optimal result, while IWOA only needs 20
generations.

Table 2 shows the results of evaluation metrics for WOA
and IWOA with scheduled flight block time of 2019 an-
nounced on the official website in the standard reliability
range. )e results of the proposed IWOA are very com-
petitive. )e values of MSA, RMSE, MAE, and MAPE for
IWOA decrease by 7.97%, 3.97%, 1.80%, and 1.46%, re-
spectively, compared to those for WOA. )erefore, IWOA
performs better with the respect to the results of MSE,
RMSE, MAE, andMAPE.)e)eil value of both algorithms
is 0.0013. In conclusion, the optimal results of IWOA are
better than those ofWOA. Besides, the average fairness value
for WOA is 0.9651, while that for IWOA is 0.9817.

Furthermore, we analyze the results of different flight
block time reliabilities to investigate how the values of
evaluation metrics change with the range of reliability. As
discussed above, IWOA has been proven to be superior to
WOA. )erefore, IWOA is chosen for further experiments;
this paper selected the reliability in the ranges of 75%–90%,
60%–70%, 70%–80%, and 80%–90%. )eir running times
are similar. )e running time of reliability in the 75%–90%
range is 485 s, that in the 60%–70% range is 550 s, that in the
70%–80% range is 534 s, and that in the 80%–90% range is
556 s. Figure 8 illustrates the evolutionary process of IWOA
with different reliability range. Table 3 presents the results
with different range of flight block time reliability, and
Table 4 presents the results based on the air season and
aircraft type.

Figure 5: Flight routes of block time with more than 6 airlines
applying for the adjustment.

Figure 6: Flight routes requested by CCA for the adjustment of
flight block time.
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Figure 7: Convergence curves for WOA and IWOA.

Table 2: Evaluation metrics for WOA and IWOA with the reli-
ability range 60%–75%.

MSE RMSE MAE MAPE )eil
WOA 359.5798 18.9281 13.9715 11.3934 0.0013
IWOA 333.0072 18.2043 13.7250 11.2294 0.0013
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As illustrated in Figure 8, the reliability in the 60%–75%
range has the smallest fitness function value. )e obtained
value of reliability in the 80%–90% range is the biggest
among them. Obviously, smaller reliability leads to smaller
maximum distance between the fairness metric of an airline
and the average fairness metrics of all airlines in our
problem. It can be seen that the results of reliability in the
70%–80% range can converge faster than others, while that
of 75%–90% range converges the slowest. Results of reli-
ability in the 70%–80% range converge at about 10th iter-
ation. However, the results of reliability in the 75%–90%
range converge at about 80th iteration.

Evaluation metric values for different air seasons and
aircraft types in 5 different ranges of reliability are compared
in Tables 3 and 4. Now, we present some specific obser-
vations regarding the results.

(i) It is obvious that the values of MSE, RMSE, MAE,
MAPE, and )eil with the reliability in the 60%–
70% range are always the smallest. It is worth
noting that the maximum distance of reliability in
the 60%–75% range is not the smallest, which is
bigger than that of reliability in the 60%–70%
range in Figure 8.

(ii) By comparing the MSE, RMSE, MAE, MAPE, and
)eil values of reliability in the 60%–75% range and
those of reliability in the 75%–90% range, we can
observe that the former are smaller than the latter.
)e values of MSE are sequentially reduced by

24.00%, 3.61%, 73.75%, and 9.80% under different
pairings of aircraft types and air seasons.

(iii) It is interesting to find that the value of MSE with
the reliability in the 70%–80% range of air season 7,
aircraft type 7 and air season 8, aircraft type 8 is
smaller than that of the reliability in the 80%–90%
range, which is opposite to air season 7, aircraft type
7 and air season 8, aircraft type 8. Maybe this is
because the evaluation metrics are related to the
amount of flight block times. )ere are very few
companies operating flights with aircraft type 8 in
China, accounting for only 6.92% of all flights, and
the number of flight block times corresponding to
this aircraft type is small.

5.3. Fairness Metric of Airlines. From the results of evalu-
ation metrics in Section 5.2, it is observed that the values of
MSE, RMSE, MAE, MAPE, and )eil of the reliability are
always smaller in the 60%–70% range compared to 4 other
ranges selected, thus making it the best reliability range
among selected ones. We compared the airline fairness
metric values in this reliability range against the standard
reliability range. )e mathematical expression of the pro-
posed fairness metric is presented as equation (10) in Section
4.2. )e results are shown in Figures 9 and 10.

)e average fairness metric values of the reliability in the
60%–75% and 60%–70% ranges are 0.9817 and 0.9920, re-
spectively, which are very close. )ere are 21 airlines whose
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Figure 8: Convergence curves for different target block time reliability.

Table 3: Evaluation metrics of IWOA.

Range of reliability MSE RMSE MAE MAPE )eil
60%–75% 333.0072 18.2043 13.7250 11.2294 0.0013
75%–90% 2425.7963 48.8482 21.8269 17.8623 0.0032
60%–70% 308.8649 17.5407 13.3891 10.9601 0.0012
70%–80% 906.9087 30.1147 18.8595 15.5608 0.0020
80%–90% 2939.3689 53.8122 22.7504 18.6983 0.0035
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fairness metric index values are not greater than 1 when the
reliability range is 60%–75%, which means that these airlines
are treated fairly or preferentially as described in Section 4.1.
)e number of these preferential airlines is reduced to 19 in
the range of 60%–70%. As can be seen from Figure 9, the
fairness metric values are concentrated between 0.8 and 1.2.
Figure 10 presents that the fairness metric values are con-
centrated between 0.8 and 1.2, expect for one outlier point.
)is outlier point indicates that the metric value of JOY Air
is 1.43. JOY Air is the most disfavored airline among 38
airlines. On the one hand, the deviation between the largest
value and the smallest value of the reliability in the 60%–70%

range is larger than that in the 60%–75% range. On the other
hand, the fairness metric value of more airlines is near 1 with
the reliability in the 60%–70% range. )us, we conclude that
the value of the average fairness metric can be improved by
sacrificing the most disfavored airlines when the reliability
range is 60%–70%.

6. Conclusion

)is article focuses on the strategic standard SBTs for the
next year under the regulation and guidelines of CAAC. We
analyze the flight block time reliability with the standard

Table 4: Evaluation metrics of IWOA based on the air season and aircraft type.

Range of reliability MSE RMSE MAE MAPE )eil

Air season 7
Aircraft type 7

60%–75% 4402.8482 66.3525 50.9052 45.0407 0.0074
75%–90% 5459.4110 73.8672 54.0402 49.2853 0.0078
60%–70% 4402.7334 66.3516 50.8097 44.9590 0.0074
70%–80% 5302.0306 72.8148 53.0805 48.1306 0.0078
80%–90% 5608.4187 74.8729 54.6061 49.9786 0.0079

Air season 7
Aircraft type 8

60%–75% 5338.9803 72.9717 59.6447 42.7891 0.0260
75%–90% 5531.6979 74.2686 60.4354 45.7127 0.0252
60%–70% 4944.7917 70.2449 57.1875 41.6076 0.0249
70%–80% 5688.4271 75.4120 57.7479 46.2545 0.0242
80%–90% 5454.2083 73.7803 59.6792 45.7779 0.0248

Air season 8
Aircraft type 7

60%–75% 4880.3394 69.8584 54.1637 47.9007 0.0068
75%–90% 8479.5075 91.8585 60.1777 54.1778 0.0083
60%–70% 4899.4327 69.9949 54.2370 47.9743 0.0068
70%–80% 5421.5231 73.6307 56.9631 51.0513 0.0069
80%–90% 9433.5639 96.8662 61.1835 55.0664 0.0086

Air season 8
Aircraft type 8

60%–75% 7369.6594 85.8059 66.4211 45.9281 0.0265
75%–90% 8092.1471 89.7862 70.0216 49.8824 0.0264
60%–70% 7272.3627 85.2502 65.5784 45.5530 0.0262
70%–80% 9324.4510 96.5544 73.4863 53.1591 0.0273
80%–90% 8373.4118 91.4033 70.7647 50.8655 0.0266
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Figure 9: Fairness metric values of airlines with the reliability range
of 60%–75%.
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SBTs increasing (or the actual flight block time decreasing)
based on the historical flight data from March 25, 2018, to
March 30, 2019. )e objective of this paper is to develop and
solve a novel strategic standard SBTs-setting model that
simultaneously considers the fairness among airlines and the
reliability of flight block time constraints. It generates and
presents to all stakeholders information supporting the
transparency of the decision-making process. Moreover, we
improved WOA by using a novel nonlinear update equation
of convergence factor. WOA and IWOA are employed to
solve the model and generate the standard SBTs. By com-
paring the results of the two algorithms, we observed that
IWOA evolves faster and could obtain lower maximum
distance between the fairness metric of an airline and the
average fairness metrics of all airlines. In addition, the values
of evaluation metrics for the optimized model, such as MSE,
RMSE, MAE, and MAPE of IWOA, are relatively smaller.
)erefore, IWOA performs better than WOA.

To better understand how reliability constraints affect
the SBTs, the proposed model is then applied to optimize
standard SBTs under 5 different ranges of flight block time
reliability in addition to the standard reliability range. From
the results of evaluation metrics, it is seen that the values of
MSE, RMSE, MAE, MAPE, and)eil of the reliability in the
60%–70% range are always the smallest. )e values of
evaluation metrics of the reliability in the 70%–80% and
80%–90% ranges are much bigger than those in the 60%–
70% range. )e average fairness metric values of the reli-
ability in the 60%–75% and 60%–70% ranges are 0.97 and
0.99, respectively, which are very close. Besides, the average
fairness of the reliability in the 60%–70% range is closer to 1
than that of the 60%–75% range. Based on the above
findings, we suggest that the range of original standard
reliability should be changed to 60%–70%.

Our further research will be directed towards the weights
of different flights considered during the standard SBTs-
setting process. Another research direction is to solve the
standard SBTs-setting problem with other methodologies.
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