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-is work considers a queueing system with N-policy and unreliable server, where potential customers arrive at the system
according to Poisson process. If there is no customer waiting in the system, instead of shutting down, the server turns into
dormant state and does not afford service until the number of customers is accumulated to a certain threshold. And in the working
state, the server is apt to breakdown and affords service again only after it is repaired. According to whether the server state is
observable or not, the numerical optimal arrival rates are computed to maximize the social welfare and throughput of the system.
-e results illustrate their tendency in two cases so that the manager has a strong ability to decide which is more crucial in making
management decision.

1. Introduction

Queueing system models are widely used in other research
areas, such as cognitive radio networks, signal transmission
system, traffic system, and service-inventory system. -e
customer, the basic element of these systems, enters the
system to seek service, and the service manager operates the
system for the customer. From the point of the manager, he
regards all the customers as a whole and expects to reach
more social welfare as one of his ultimate goal. However, for
an overcongested system, increasing the throughput and
relieving the system congestion are more crucial. -is paper
considers a queueing model with N-policy vacation and
unreliable server, analyzes the social welfare and throughput
with respect to system parameters, and determines in which
situation the social welfare and throughput have the same
tendency.

Information level plays an important role in analyzing
the customer behavior and manager decision. Naor [1] first
investigated customer’s behavior from the economic view-
point in an M/M/1 queueing system, established the social
welfare function, and obtained the optimal threshold

strategy when the queue length is observable to customers.
Edelson and Hilderbrand [2] considered the same queueing
model in unobservable cases and found the social optimal
joining probability. Guo and Zipkin [3] analyzed the effects
of different levels of information on customers and the
overall system and focused on which delay information can
improve performance or hurt the provider or the customers.
Recently, many researchers focus on the influence of in-
formation level on kinds of queueing systems.

For an unreliable server, Economou and Kanta [4]
obtained the optimal threshold of customer in fully and
almost observable cases. For an N-policy vacation queue,
Guo and Hassin [5] found the social optimal arrival rate and
optimal threshold N, respectively, in observable and un-
observable cases. Wang et al. [6] analyzed the strategic
behavior of the primary user (PU) and secondary users (SUs)
in the different information levels. Zhang and Wang [7]
considered a make-to-stock production system where the
system operates with different service rates. And the cus-
tomer makes the decision on whether to stay for the product
or leave without purchase on the basis of the system in-
formation. Sun et al. [8] considered a Markovian queue with
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single vacation and abandonment opportunities in four
information levels and analyzed the behavior of the cus-
tomer along with the effect of abandonment on them.

Different from the strategic behavior of the customer,
many papers also investigate the social optimal behavior
from the social manager’s preference. Sun et al. [9] con-
sidered site-clearing and non-site-clearing Markovian
queues with server failures and unreliable repairer and
compared the equilibrium and social optimal arrival rates
along with the degree of deviation. In addition, Sun et al. [10]
considered exhaustive and nonexhaustive M/M/1/N queues
with working vacation and threshold policy and compared
the optimal arrival rate, optimal threshold, and corre-
sponding social welfare. Wang and Wang [11] separated
customers into two streams, so only part of them can observe
the server state in retrial queue. According to the fraction of
the observed customers, the authors determined the situa-
tion when the social welfare and throughput can reach
maximum. Cui et al. [12] developed a queueing-game-
theoretic model to analyze the interaction among customers,
the line-sitting firm, and the service provider. And they also
compared and examined the difference of line-sitting and
selling priority on them. -erefore, the information level
plays an important role to analyze the behavior of the
customer and social manager.

In this paper, we consider a vacation queueing model
with N-policy where the unreliable server has three dif-
ferent states. According to whether the server state is
observed or not, we investigate the tendency of social
welfare and throughput with information levels and sys-
tem parameters. -e results will offer managerial guide-
lines for the manager, and the main contributions can be
summarized as follows: First, this paper considers an
M/M/1 queueing system with an N-policy and unreliable
server. Second, for observable and unobservable cases, we
establish social welfare function to seek the optimal arrival
rate along with the corresponding throughput. -ird, by
particle swarm optimization algorithm, numerical results
illustrate that social welfare and throughput may not have
the same tendency, and we get new insights into how to
operate the queueing system for achieving more benefit
and throughput.

-is paper is organized as follows.-emodel description
is given in Section 2. Section 3 presents the main perfor-
mance measures in unobservable and observable cases. Fi-
nally, Sections 4 and 5 give the numerical experiments and
conclusions, respectively.

2. Model Description

-is paper considers an M/M/1 queueing system where
all the customers arrive according to a Poisson process
with rate Λ and the service discipline is first-come, first-
served (FCFS). -e service times are all assumed to be
exponentially distributed with rate μ. Once the system is
empty, the server turns into dormant state and the va-
cation time is exponentially distributed with rate α. In the
dormant state, the server does not afford service until the
number of customers in the system is accumulated to a

predetermined constant N. Besides this, the server is
liable to break down and its lifetime is exponentially
distributed with rate β. In the period of breakdown,
customers always can join the system, but the server does
not afford service similar to the dormant state. Assume
that the repair times are also exponentially distributed
with rate c. Without loss of generality, the interarrival
times, the service times, the lifetimes, and the repair times
are mutually independent.

-e system state is specified at time t by the pair
(I(t), J(t)), where I(t) denotes the number of customers in
the system and J(t) denotes the state of the server. Con-
cretely, J(t) � 0 means the server is in the dormant state
and does not afford service; J(t) � 1 means the server is in
the working state with service rate μ; and J(t) � 2 means
the server is in the breakdown state and also does not afford
service. It is clear that the process (I(t), J(t)), t≥ 0{ } is a
continuous time Markov chain with state space
Ω � (i, 0), 0≤ i≤N − 1; (i, j), i≥ 0, j � 1, 2􏼈 􏼉.

Being served, the customer can obtain a reward of R

units, and a waiting cost of c units per unit time is con-
tinuously accumulated from the time he enters the system to
the time he completes the service. In this paper, the number
of customers in the system is unobservable, and according to
whether the state of the server is observable or not to
customer upon arrival, the following two cases are inves-
tigated in this paper:

(i) Unobservable case: customers cannot observe the
state of the server

(ii) Observable case: customers can observe the state of
the server

3. Main Results

Since the number of customers is unobservable, this section
considers the mixed joining strategy of the customer and
presents the main performance measures of this system in
two different situations. Based on these measures, it can help
to establish the social welfare and throughput function to
find the optimal arrival rate.

3.1.UnobservableCase. In this part, all the customers cannot
observe the state of the server. Since all the customers are
assumed to be homogeneous, this section considers the
following mixed strategy: “customer joins the system with
probability q; balks with probability 1 − q.” And for sim-
plicity, denote Λq � λ. -e corresponding transition rate
diagram is shown in Figure 1.

To discuss this situation, the steady-state probabilities of
the system are necessary and the preliminary results are
summarized in the following proposition. It is readily proved
that the system is stable if and only if μc − λ(β + c)> 0.

Proposition 1. In the unobservable case, define the steady-
state probabilities of the system state as pu(i, j): (i, j) ∈ Ω􏼈 􏼉.
1en, the steady-state probabilities of the server in states
0, 1, and 2, respectively, are
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P0 � Npu(0, 0),

P1 �
λc(μ + αN)

α[μc − λ(β + c)]
pu(0, 0),

P2 �
λβ(μ + αN)

α[μc − λ(β + c)]
pu(0, 0),

(1)

where pu(0, 0) � α[μc − λ(β + c)]/μ[λ(β + c) + αcN].

Proof. From the first line of Figure 1, the following steady-
state equations

λpu(0, 0) � αpu(0, 1),

λpu(i, 0) � λpu(i − 1, 0), i � 1, . . . , N − 1,
(2)

show that

pu(0, 0) � pu(1, 0) � · · · � pu(N − 1, 0),

pu(0, 0) �
α
λ

pu(0, 1).

(3)

From the second and third lines of Figure 1, the fol-
lowing equations are at hand:

(λ + α + β)pu(0, 1) � μpu(1, 1) + cpu(0, 2), (4)

(λ + μ + β)pu(i, 1) � μpu(i + 1, 1) + λpu(i − 1, 1)

+ cpu(i, 2), i � 1, . . . , N − 1,
(5)

(λ + μ + β)pu(N, 1) � μpu(N + 1, 1) + λpu(N − 1, 1)

+ cpu(N, 2) + λpu(N − 1, 0),
(6)

(λ + μ + β)pu(i, 1) � μpu(i + 1, 1) + λpu(i − 1, 1)

+ cpu(i, 2), i � N + 1, . . . ,
(7)

(λ + c)pu(0, 2) � βpu(0, 1), (8)

(λ + c)pu(i, 2) � βpu(i, 1) + λpu(i − 1, 2), i � 1, . . . . (9)

Define the following partial generating functions as

P0(z) � 􏽘
N−1

i�0
pu(i, 0)z

i
,

P1(z) � 􏽘
∞

i�0
pu(i, 1)z

i
,

P2(z) � 􏽘
∞

i�0
pu(i, 2)z

i
.

(10)

From equation (3), it leads to

P0(z) � 􏽘

N−1

i�0
pu(0, 0)z

i
�
1 − zN

1 − z
pu(0, 0). (11)

Multiplying pu(i, 1) by zi, summing i from 0 to∞, and
considering equations (3)–(7) yield

(λ + μ + β)P1(z) +(α − μ)pu(0, 1) �
μ
z

P1(z) − pu(0, 1)( 􏼁

+ λzP1(z) + cP2(z)

+ λpu(0, 0)z
N

.

(12)

Considering equation (8) and multiplying equation (9)
by zi for all i≥ 0 yield

(λ + c)P2(z) � βP1(z) + λzP2(z). (13)

Solving P1(z) from equation (13) and putting it into (12),
we obtain

P2(z) �
λβ μ(z − 1) + αz zN − 1( 􏼁􏼂 􏼃

α(λ + c − λz) (λ + μ + β)z − μ − λz2􏼂 􏼃 − αβcz
pu(0, 0),

(14)

P1(z) �
1
β

(λ + c − λz)P2(z)

�
λ(λ + c − λz) μ(z − 1) + αz zN − 1( 􏼁􏼂 􏼃

α(λ + c − λz) (λ + μ + β)z − μ − λz2􏼂 􏼃 − αβcz
pu(0, 0).

(15)

From equations (11), (14), (15) and limz⟶1[P0(z) +

P1(z) + P2(z)] � 1, the following probabilities are at hand:

(0, 0) λ (1, 0) λ ··· λ (N − 1, 0)
λ

(0, 1)
λ

β

α

(1, 1)
λ

μ
β

···
λ

μ
(N − 1, 1)

λ
μ

β

(N, 1)
λ

μ
β

(N + 1, 1)
λ

μ
β

···
μ

(0, 2) λ

γ

(1, 2) λ

γ

··· λ (N − 1, 2) λ

γ

(N, 2) λ

γ

(N + 1, 2) λ

γ

···

Figure 1: Transition rate diagram of the system in the unobservable case.
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P0 � lim
z⟶1

P0(z),

P1 � lim
z⟶1

P1(z),

P2 � lim
z⟶1

P2(z),

pu(0, 0) �
α[μc − λ(β + c)]

μ[λ(β + c) + αcN]
.

(16)

-is completes the proof. ■
After getting P0(z), P1(z), P2(z), the expected number

of customers in system E[Nu] can be computed as follows:

E Nu􏼂 􏼃 �
dP0(z)

dz
+

dP1(z)

dz
+

dP2(z)

dz
􏼢 􏼣

z�1

� pu(0, 0)
N(N − 1)

2
+

λNum0

2α[μc − λ(β + c)]2
􏼨 􏼩,

(17)

where Num0 � α(β + c)[μc − λ(β + c)]N2 + α[λ(β + c)2 +

μ(c2 + βc + 2λβ)]N + 2λμ[(β + c)2 + βμ].

According to Little’s formula, the expected sojourn time
of the customer in the system is E[Wu] � E[Nu]/λ.
Moreover, the social welfare function is Su(λ) �

λ(R − cE[Wu]) � λR − cE[Nu], and the system throughput
is Tu(λ) � λ.

3.2. Observable Case. In this section, all the customers can
observe the state of the server. And according to the server
states 0, 1, and 2, the customer chooses appropriate proba-
bilities q0, q1, and q2 to join the system. -at is to say,
“customer joins the system with probability qi(i � 0, 1, 2);
balks with probability 1 − qi.” And for simplicity, denote
Λqi � λi. -e corresponding transition rate diagram is
shown in Figure 2. Similar to Section 3.1, the system is stable
if and only if μc − λ1c − λ2β> 0.

Proposition 2. In the observable case, define the steady-state
probabilities of the system state as po(i, j): (i, j) ∈ Ω􏼈 􏼉. 1en,
the steady-state probabilities of the server in states 0, 1, and 2,
respectively, are

Q0 � Npo(0, 0),

Q1 �
λ0c(μ + αN)

α μc − λ1c − λ2β( 􏼁
po(0, 0),

Q2 �
λ0β(μ + αN)

α μc − λ1c − λ2β( 􏼁
po(0, 0),

(18)

where po(0, 0) � α(μc − λ1c− λ2β)/αN(μc − λ1c − λ2β) +

λ0(μ + αN)(β + c).

Proof. From the first line of Figure 2, the following steady-
state equations

λ0po(0, 0) � αpo(0, 1),

λ0po(i, 0) � λ0po(i − 1, 0), i � 1, . . . , N − 1,
(19)

show that

po(0, 0) � po(1, 0) � · · · � po(N − 1, 0),

po(0, 1) �
λ0
α

po(0, 0).

(20)

From the second and third lines of Figure 2, the fol-
lowing equations are at hand:

λ1 + α + β( 􏼁po(0, 1) � μpo(1, 1) + cpo(0, 2), (21)

λ1 + μ + β( 􏼁po(i, 1) � μpo(i + 1, 1) + cpo(i, 2)

+ λ1po(i − 1, 1), i � 1, . . . , N − 1,

(22)

λ1 + μ + β( 􏼁po(N, 1) � μpo(N + 1, 1) + cpo(N, 2)

+ λ1po(N − 1, 1) + λ0po(N − 1, 0),

(23)

λ1 + μ + β( 􏼁po(i, 1) � μpo(i + 1, 1) + cpo(i, 2)

+ λ1po(i − 1, 1), i � N + 1, . . . ,

(24)

λ2 + c( 􏼁po(0, 2) � βpo(0, 1), (25)

λ2 + c( 􏼁po(i, 2) � βpo(i, 1) + λ2po(i − 1, 2), i � 1, . . . .

(26)

Denote the corresponding partial generating functions
as

Q0(z) � 􏽘
N−1

i�0
po(i, 0)z

i
,

Q1(z) � 􏽘
∞

i�0
po(i, 1)z

i
,

Q2(z) � 􏽘
∞

i�0
po(i, 2)z

i
.

(27)

Considering equation (20) yields

Q0(z) �
1 − zN

1 − z
po(0, 0). (28)

Considering equations (21)–(24) and multiplying
po(i, 1) by zi, i � 0, 1, . . ., yield

λ1 + μ + β( 􏼁Q1(z) +(α − μ)po(0, 1) �
μ
z

Q1(z) − po(0, 1)􏼂 􏼃

+ cQ2(z) + λ1zQ1(z)

+ λ0po(0, 0)z
N

.

(29)

4 Discrete Dynamics in Nature and Society



Similarly, considering equations (25)-(26) and multi-
plying po(i, 2) by zi, i � 0, 1, . . ., yield

λ2 + c( 􏼁Q2(z) � βQ1(z) + λ2zQ2(z). (30)

Solving Q1(z) from equation (30) and putting it into
(29), we obtain

Q2(z) �
λ0β (μ − α)z − μ + αzN+1􏼂 􏼃

α λ1 + μ + β( 􏼁z − μ − λ1z2􏼂 􏼃 λ2(1 − z) + c􏼂 􏼃 − βcz􏼈 􏼉
po(0, 0), (31)

Q1(z) �
λ0 (μ − α)z − μ + αzN+1􏼂 􏼃 λ2(1 − z) + c􏼂 􏼃

α λ1 + μ + β( 􏼁z − μ − λ1z2􏼂 􏼃 λ2(1 − z) + c􏼂 􏼃 − βcz􏼈 􏼉
po(0, 0). (32)

Using equations (28), (31), (32) and limz⟶1
[Q0(z) + Q1(z) + Q2(z)] � 1, the following probabilities
show the results:

Q0 � lim
z⟶1

Q0(z),

Q1 � lim
z⟶1

Q1(z),

Q2 � lim
z⟶1

Q2(z),

po(0, 0) �
α μc − λ1c − λ2β( 􏼁

αN μc − λ1c − λ2β( 􏼁 + λ0(μ + αN)(β + c)
.

(33)

-is completes the proof.
And the expected number of customers in the system in

states 0, 1, and 2 is

E N0􏼂 􏼃 �
dQ0(z)

dz

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�1
�

N(N − 1)

2
po(0, 0),

E N1􏼂 􏼃 �
dQ1(z)

dz

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�1
�

Num1

2α μc − λ1c − λ2β( 􏼁
2λ0po(0, 0),

E N2􏼂 􏼃 �
dQ2(z)

dz

􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�1
�

Num2

2α μc − λ1c − λ2β( 􏼁
2λ0po(0, 0),

(34)

where Num1 � αc(μc − λ1c − λ2β)N2 + α[2λ22β + λ2βc +

c2(λ1 + μ)]N + 2μ(λ22β + λ2βc + λ1c2) and Num2 � β α{
(μc − λ1c − λ2β)N2 + α[c(λ1 + μ) + λ2(β − 2λ1 + 2μ)]N +

2μ[λ1c + λ2(μ − λ1 + β)]}.
Denote T(i, 0), 1≤ i≤N − 1, T(i, 1), i≥ 1, and

T(i, 2), i≥ 1, respectively, as the expected sojourn time of a

tagged customer, given that he is at the ith position of the
system and the state of the server is j � 0, 1, 2. -e following
conclusion gives their concrete description.

Proposition 3. In the observable case, the expected sojourn
time of a tagged customer, given that he is at the ith position of
the system and the state of server is j � 0, 1, 2, is, respectively,

T(i, 0) �
β + c

μc
i +

N − i

λ0
, 1≤ i≤N − 1;

T(i, 1) �
β + c

μc
i, i≥ 1;

T(i, 2) �
1
c

+
β + c

μc
i, i≥ 1.

(35)

Proof. -e transition rate diagram illustrated in Figure 2
shows that T(i, j) satisfies the following linear system of
equations:

T(i, 0) �
N − i

λ0
+ T(i, 1), 1≤ i≤N − 1, (36)

T(1, 1) �
1

μ + β
+

β
μ + β

T(1, 2), (37)

T(i, 1) �
1

μ + β
+

μ
μ + β

T(i − 1, 1) +
β

μ + β
T(i, 2), i≥ 2,

(38)

T(i, 2) �
1
c

+ T(i, 1), i≥ 1. (39)

Solving T(i, 2) from equation (39) and substituting it
into (38) yield

(0, 0)
λ0

(1, 0)
λ0

···
λ0

(N − 1, 0)
λ0

(0, 1)
λ1

β

α

(1, 1)
λ1

μ
β

···
λ1

μ
(N − 1, 1)

λ1

μ
β

(N, 1)
λ1

μ
β

(N + 1, 1)
λ1

μ
β

···
μ

(0, 2)
λ2

γ

(1, 2)
λ2

γ

···
λ2

(N − 1, 2)
λ2

γ

(N, 2)
λ2

γ

(N + 1, 2)
λ2

γ

···

Figure 2: Transition rate diagram of the system in the observable case.
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T(i, 1) − T(i − 1, 1) �
β + c

μc
, i≥ 2. (40)

Similarly, considering equations (37) and (39) yields
T(1, 1) � β + c/μc, and moreover, combining the above
equation yields

T(i, 1) �
β + c

μc
i, i≥ 1. (41)

Substituting T(i, 1) into equations (36) and (39), the
results are at hand. -is completes the proof. ■

After this, conditioning on the number of customers in
the system, the expected sojourn time of the customer, who
can observe the server’s state, can be computed.

Theorem 1. In the observable case, given arrival rates
(λ0, λ1, λ2), the expected sojourn time of a tagged customer
seeing the server’s states 0, 1, and 2 upon arrival is

E W0􏼂 􏼃 �
β + c

μc
−

1
λ0

􏼠 􏼡
E N0􏼂 􏼃

Q0
+ 1􏼠 􏼡 +

N

λ0
,

E W1􏼂 􏼃 �
β + c

μc

E N1􏼂 􏼃

Q1
+ 1􏼠 􏼡,

E W2􏼂 􏼃 �
β + c

μc

E N2􏼂 􏼃

Q2
+ 1􏼠 􏼡 +

1
c

.

(42)

Proof. When a tagged customer observes the number of
customers in system as i and the server is in state 0 upon
arrival, denote W0(i) as his expected sojourn time. It is
readily seen that his expected sojourn time is the ex-
pected sojourn time of the (i + 1)th customer in the
system, i.e.,

W0(i) �

T(i + 1, 0) �
β + c

μc
(i + 1) +

N − i − 1
λ0

, if 0≤ i≤N − 2,

T(N, 1) �
β + c

μc
N, if i � N − 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(43)

Moreover, denote p(i | 0) as the probability that the
number of customers in the system is i upon his arrival,

conditioning on the server in state 0, i.e., p(i | 0) � po(i, 0)/Q0.
Hence, the expected sojourn time upon seeing state 0 is

E W0􏼂 􏼃 � 􏽘
N−1

i�0
W0(i)p(i | 0) �

1
Q0

􏽘

N−1

i�0

β + c

μc
(i + 1) +

N − i − 1
λ0

􏼢 􏼣po(i, 0)

�
􏽐

N−1
i�0 po(i, 0) ((β + c)/(μc)) − 1/λ0( 􏼁( 􏼁i + ((β + c)/(μc)) + (N − 1)/λ0( 􏼁( 􏼁􏼂 􏼃
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(44)

Similarly, denote p(i | 1) and p(i | 2) as the
probabilities that the number of customers in the system
is i upon arrival, conditioning on the server in states
1 and 2, and define W1(i) and W2(i) as his sojourn

time. Combining the definitions of T(i + 1, 1)

and T(i + 1, 2), conditioning on the customer number
i, the expected sojourn times upon seeing states 1 and 2
are
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Figure 3: Social welfares Su(λ∗) and So(λ∗0 , λ∗1 , λ∗2 ) and the system throughputs Tu(λ∗) and To(λ∗0 , λ∗1 , λ∗2 ) vs. μ, β, and c.

Discrete Dynamics in Nature and Society 7



E W1􏼂 􏼃 � 􏽘
∞

i�0
W1(i)p(i | 1) � 􏽘

∞

i�0
T(i + 1, 1)

po(i, 1)

Q1
�

1
Q1

􏽘

∞

i�0

β + c

μc
(i + 1)po(i, 1)

�
(β + c)/μc

Q1
􏽘

∞

i�0
(i + 1)po(i, 1) �

β + c

μc

E N1􏼂 􏼃

Q1
+ 1􏼠 􏼡,

E W2􏼂 􏼃 � 􏽘
∞

i�0
W2(i)p(i | 2) � 􏽘

∞

i�0
T(i + 1, 2)

po(i, 2)

Q2
�

1
Q2

􏽘

∞

i�0

β + c

μc
(i + 1) +

1
c

􏼢 􏼣po(i, 2)

�
1

Q2

β + c

μc
􏽘

∞

i�0
ipo(i, 2) +

β + c

μc
+
1
c

􏼠 􏼡 􏽘

∞

i�0
po(i, 2)⎡⎣ ⎤⎦ �

β + c

μc

E N2􏼂 􏼃

Q2
+
β + μ + c

μc
.

(45)

-is completes the proof. ■

After this, we can define the social welfare function
So(λ0, λ1, λ2) � 􏽐

2
i�0 λiQi(R − cE[Wi]) and the system

throughput To(λ0, λ1, λ2) � μ(Q1 − po(0, 1)).

4. Numerical Experiments

In this section, particle swarm optimization (PSO) algorithm
presented by Carlisle and Dozier [13] is used to seek the
optimal arrival rate λ∗ or (λ∗0 , λ∗1 , λ∗2 ) of the social welfare
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Figure 4: Social welfares Su(λ∗) and So(λ∗0 , λ∗1 , λ∗2 ) and the system throughputd Tu(λ∗) and To(λ∗0 , λ∗1 , λ∗2 ) vs. α and N.
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functions Su(λ) or So(λ0, λ1, λ2). And then, the tendency of
the corresponding social welfares Su(λ∗) and So(λ∗0 , λ∗1 , λ∗2 )

and the system throughput Tu(λ∗) and To(λ∗0 , λ∗1 , λ∗2 ) with
respect to parameters μ, α, β, c, and N is shown.

PSO algorithm has been shown that to occupy preferred
properties in convergence and so in this paper, the algorithm
presented in [13] is used to search the optimal arrival rate λ∗
or (λ∗0 , λ∗1 , λ∗2 ). And the same parameters given in [13] are
used except that the number of particles is S � 100 and the
number of iterations is M � 2000. And in each situation, the
related parameter setting is Λ � 2, μ � 3, α � 0.5, β �

0.2, c � 1, R � 18, c � 2, andN � 4, if necessary. Any ex-
ample in this work is repeated 10 times, and the almost
identical result is achieved each time. -is fact shows PSO
algorithm is robust and appropriate to this model.

From Figure 3, the social welfare and the throughput
have the same tendency with respect to parameters
μ, β, and c. As the service rate μ increases, the sojourn time
of the customer in the system could be shortened and his
benefit is also improved. -erefore, more customers prefer
to join the system and the throughput is increasing, which
also incurs the increasing of social welfare.

Second, in observable cases, the social welfare is greater
than that in unobservable case. Hence, disclosing the server
state to the customer is advantageous to the systemmanager.
However, this adjustment is not fit for the throughput. For
greater μ, incomplete information is liable to reach more
throughput. Once μ is large enough, there is no obvious
difference between the observable and unobservable cases.
-e same tendency can be seen in Figure 3(f).

-ird, for the smaller failure rate β, customers without
any information have more motivations to join the system.
And as β increases, they cannot determine the state of server
and so their motivations decrease. -is tendency can be seen
in Figure 3(d). And it is readily understood that the social
welfare and throughput are all decreasing in Figure 3(c).

From the point of system manager, enhancing the
system throughput can relieve the system congestion and
strengthen the service capacity. However, in some situations,
this adjustment is adverse to social welfare. With the in-
crease in vacation rate α, the system has the greater prob-
ability in state 0 and hence more customers cannot be served
timely which leads to decrease in social welfare. On the other
hand, if the reward R is large enough, all the customers
would like to join the system and the throughput is equal to
the maximum of arrival rate Λ. If not, customers also have
the motivation to join the system only if their benefit is
positive. -erefore, the throughput is increasing no matter
what α is. But the social welfare is decreasing even if the
throughput is increasing, because customer has a higher
probability in state 0 and cannot obtain the reward without
being served. -e same tendency for parameter N can be
seen in Figures 4(c) and 4(d).

Besides, information disclosing level also influences the
social welfare and throughput. For example, information
level has the same effect on these two performance measures
in the case of smaller μ, greater β, or smaller c. Hence, which
is more crucial to the system manager is the basis of making
decision.

5. Conclusions

-is work considers a queueing model with N-policy va-
cation and unreliable server. According to whether the
server state is observable or not, the main two performance
measures, social welfare and throughput, are derived and
maximized by particle swarm optimization algorithm.
Numerical results illustrate that these two measures may not
have the same tendency on the information level and system
parameters. -at is to say, increased social welfare may lead
to decreased throughput. From the opinion of the manager,
how to achieve more benefit and greater throughput, how to
adjust the system parameter, and whether or not reveal
system information to customers are the key factors that the
manager should consider.
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