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Based on the mean-variance criterion, this paper investigates the continuous-time reinsurance and investment problem. ,e
insurer’s surplus process is assumed to follow Cramér–Lundberg model. ,e insurer is allowed to purchase reinsurance for
reducing claim risk. ,e reinsurance pattern that the insurer adopts is combining proportional and excess of loss reinsurance. In
addition, the insurer can invest in financial market to increase his wealth.,e financial market consists of one risk-free asset and n

correlated risky assets. ,e objective is to minimize the variance of the terminal wealth under the given expected value of the
terminal wealth. By applying the principle of dynamic programming, we establish a Hamilton–Jacobi–Bellman (HJB) equation.
Furthermore, we derive the explicit solutions for the optimal reinsurance-investment strategy and the corresponding efficient
frontier by solving the HJB equation. Finally, numerical examples are provided to illustrate how the optimal reinsurance-in-
vestment strategy changes with model parameters.

1. Introduction

Reinsurance is an effective way to reduce claim risk, while
investment is the most common way to increase wealth.
,erefore, reinsurance and investment are two core prob-
lems of paramount importance in insurance and actuarial
science. Many scholars have studied this subject. For ex-
ample, Browne [1] and Chen and Yang [2] studied the
optimal strategy to maximize the expected exponential
utility of the terminal wealth, where the surplus process is
modeled by a Brownian motion with drift; Yang and Zhang
[3] and Zhao et al. [4] studied the optimal strategy to
maximize the expected exponential utility of the terminal
wealth with a jump-diffusion model; Asmussen and Taksar
[5] and Chen et al. [6] investigated the optimal strategy to
maximize the expected value of discounted dividends paid
until time of ruin; Belkina and Luo [7] and Sun [8] con-
sidered the optimal strategy to minimize the ruin
probability.

,emean-variance (MV) criterion for portfolio selection
pioneered by Markowitz [9] refers to the selection of an

optimal portfolio balancing the gain and the risk, which are
measured by the expectation and variance of random
returns, respectively. Since the pioneer work of Markowitz
[9], the MV portfolio selection problem has become a main
research topic in finance. Zhou and Li [10] and Li and Ng
[11] extended Markowitz’s model to the multiperiod setting
and continuous-time setting, respectively, and they derived
the analytical optimal investment strategy and efficient
frontier. Bielecki et al. [12] studied the continuous-time MV
portfolio selection problem under bankruptcy prohibition.
However, these studies did not consider reinsurance. Under
the MV criterion, the optimal reinsurance-investment
problem has also been studied in many papers. Bäuerle [13]
considered the optimal reinsurance problem under the MV
criterion, where the surplus process of an insurer is de-
scribed by the Cramér–Lundberg model. Yang [14] inves-
tigated the MV reinsurance-investment strategy with
dependence between the finance market and the insurance
market. Wang et al. [15] studied the MV reinsurance-in-
vestment strategy under default risk. Sun et al. [16] studied
the MV reinsurance-investment strategy in a class of
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dependence insurance model. Yang et al. [17] investigated
the MV reinsurance-investment strategy under a new in-
teraction mechanism and a general investment framework.

,e above-mentioned studies on reinsurance focused
primarily on pure proportional reinsurance or pure excess
of loss reinsurance. Proportional reinsurance means that
no matter how large the amount of claims that the in-
surance company encounters is, it will seek the protection
of the reinsurance company. Excess of loss reinsurance
means that no reinsurance will be conducted when the
claim amount is lower than a certain set value, and the
excess amount will be distributed to reinsurance when the
claim amount is larger than the set value. When reinsur-
ance is implemented, the insurance company must pay a
certain amount of expenses for the reinsurance company
because it bears part of the claim for the insurance com-
pany. ,erefore, insurance companies are very cautious
about reinsurance. ,e pure excess of loss reinsurance or
the pure proportional reinsurance has been widely studied
in literature and insurance practice. However, very few
scholars discuss the optimal combinational reinsurance
problem, which is more difficult to deal with than the pure
proportional reinsurance problem or the pure excess of loss
reinsurance problem. Liang and Guo [18] considered the
optimal combination of proportional and excess of loss
reinsurance to maximize the expected utility. Hu et al. [19]
considered the problem of minimizing the probability of
ruin by controlling the combination of proportional and
excess of loss reinsurance. However, Liang and Guo [18]
and Hu et al. [19] did not consider investment. It is well
known that the insurer can increase wealth through
investment.

Motivated by the above-mentioned studies, this paper
investigates an optimal combination of proportional and
excess of loss reinsurance and investment problem under the
MV criterion. ,ere exist very often many risky assets in a
financial market; however, few papers consider multiple
risky assets in reinsurance-investment problem. ,ere is a
well-known proverb in economics: “do not put all eggs in
one basket.” ,is shows that insurer can effectively reduce
his investment risks by investing in multiple risky assets. In
view of the present status, we assume that the financial
market consists of one risk-free asset and n correlated risky
assets. Furthermore, we assume that the reinsurance takes
the form of combining proportional and excess of loss re-
insurance. We derive the explicit optimal reinsurance-in-
vestment strategy and corresponding efficient frontier.
Numerical examples are also provided to illustrate how the
optimal reinsurance strategy and investment strategy vary
with model parameters.

,e main contributions of this paper include the
following:

(i) We first study combining proportional and excess of
loss reinsurance and investment problem under the
MV criterion and multiple risky assets. Although
Liang and Guo [18] and Hu et al. [19] also con-
sidered the combining proportional and excess of

loss reinsurance, they did not consider investment.
It is well known that the insurer can increase wealth
through investment. Investment is very important
for insurance companies and cannot be ignored.

(ii) Our objective is different from Liang and Guo [18]
and Hu et al. [19]. ,e objective of Liang and Guo
[18] is to maximize the expected utility, and the
objective of Hu et al. [19] is to minimize the ultimate
ruin probability. Our objective is the MV criterion;
that is, we find an optimal reinsurance-investment
strategy to minimize the variance of the terminal
wealth under given expected value of the terminal
wealth. Liang and Guo [18] and Hu et al. [19] did
not directly consider the claim risk and the in-
vestment risk. However, these risks significantly
affect the insurer’s reinsurance-investment behav-
ior. ,e MV criterion that we consider can directly
measure the claim risk and the investment risk
through variance.

(iii) We compare the pure excess of loss reinsurance
with the pure proportional reinsurance. We find
that the pure proportional reinsurance might be
better than the pure excess of loss reinsurance.

,e rest of the paper is organized as follows. In Section 2,
we describe the models and assumptions. In Section 3, we
introduce the portfolio selection problem under MV cri-
terion. ,e optimal reinsurance-investment strategy to an
auxiliary problem is obtained in Section 4. Section 5 derives
the explicit expressions for the optimal strategy and the
efficient frontier. In Section 6, numerical examples illustrate
the results obtained in Section 5. ,e final section sum-
marizes the paper.

2. Model Setting and Assumptions

In this section, we present a continuous-time reinsurance-
investment model and introduce some basic assumptions.
We follow the standard assumption in continuous-time
financial models: continuous trading is allowed, there is no
transaction cost or tax, and all assets are infinitely divisible.
We also assume that all processes and random variables are
defined on a filtered probability space (Ω,F, Ft t≥ 0, P)

satisfying the usual conditions; that is, F ≔ Ft, t≥ 0  is
right continuous and P-complete; Ft stands for the in-
formation available until time t.

2.1. Risk Model. Suppose that an insurer’s surplus process
follows the Cramér–Lundberg model:

dXt � cdt − d 

N(t)

j�1
Yj, (1)

where c> 0 is the rate of premium per unit time;
Yj, j � 1, 2, . . . , +∞  is a sequence of independent and
identically distributed nonnegative random variables with a
common distribution function F(y) with F(0) � 0 and the
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density function f(y) with finite mean μ1 � E(Yj) and
second moment μ2 � E(Y2

j); N(t), t≥ 0{ } is a Poisson
process with intensity being λ> 0, representing the number
of claims up to time t; and Xt is the surplus of the insurer at
time t.

We assume that F(y), the distribution function of Yj,
satisfies

0<F(y)< 1, for 0<y<N,

F(y) � 1, fory≥N,

⎧⎨

⎩ (2)

with N ≔ sup y: F(y)≤ 1 < +∞. Note that P(Yj ≤N) �

1; this is because, for y≥N, we have F(y) � 1, so F(N) � 1.
,at is, P(Yj ≤N) � F(N) � 1.

,e insurer often takes reinsurance in order to transfer
claim risk. We assume that the insurer can reinsure his claim
risk by combining proportional and excess of loss rein-
surance. For each t ∈ [0, T], the reinsurance level is asso-
ciated with the parameters at and bt. Here, at ∈ [0, 1] is the
decision variable representing the retention at time t, and
bt ∈ [0, N] is the decision variable representing the excess of
loss retention limit at time t. Assume (at, bt) t≥0, denoted by
(a, b) for simplicity. After the combination of a proportional
reinsurance with an excess of loss reinsurance, the insurer
will retain, from the jth claim, Yj(a, b) � min aYj,

b} � aYj ∧ b, j � 1, 2, . . . , +∞. We assume that both the
premium income rate c of the insurer and the premium
income rate c of the reinsurer are calculated according to the
expected value premium principle. Under the expected value
premium principle, we can obtain that c � (1 + θ)λμ1 and
c � (1 + η)λ[μ1 − aE(Yj ∧ (b/a))]. Note that when a � 0,
we have c � (1 + η)λμ1. On the other hand, lima⟶0
(1 + η) λ [μ1 − aE(Yj ∧ (b/a))]  � (1 + η) λ [μ1 − lima⟶0a

lima⟶0E(Yj ∧ (b/a))] � (1 + η)λμ1. ,erefore, we do not
need to discuss whether a is 0. Here θ ≥ 0 and η≥ 0 are the
safety loadings of the insurer and the reinsurer, respectively.
θ≥ 0 implies that c≥ λμ1. ,is is a natural assumption in
insurance practice, because the premium income must be
greater than the claim expenditure. Otherwise, the insurer
will not accept the client’s insurance business. Many ref-
erences, for example, Wang et al. [15], Zhao et al. [20], and
Huang et al. [21], also assume θ≥ 0. Without loss of gen-
erality, we assume that η> θ; that is, the reinsurance is more
expensive than the original insurance, which is reasonable in
actuarial practice. To this end, the premium income rate
c(a, b) with the combinational reinsurance strategy (a, b)

becomes

c(a, b) � c − c � c1 + (1 + η)λaE Yj∧
b

a
 , (3)

where c1 � (θ − η)λμ1.
Let Zj � Yj∧(b/a); it is not difficult to get that

E Zj  � 
b/a

0
[1 − F(y)]dy ≔ μ(a, b),

E Z
2
j  � 

b/a

0
2y[1 − F(y)]dy ≔ σ2(a, b).

(4)

,en, the corresponding surplus process Xa,b
t of the

insurer after combinational reinsurance becomes

dX
a,b
t � c1 +(1 + η)λaμ(a, b) dt − ad 

N(t)

j�1
Zj. (5)

2.2. Financial Market. ,e financial market consists of one
risk-free asset, whose price at time t is denoted byP(t), and n

risky assets with common dependence, whose price at time t

is denoted by Si(t), i � 1, 2, . . . , n. P(t) is assumed as follows:

dP(t) � rP(t)dt, (6)

where r> 0 is the interest rate of the risk-free asset. ,e price
process Si(t) of the ith risky asset satisfies the following
stochastic differential equation (SDE):

dSi(t) � Si(t) μidt + σidBi(t) + σidB(t) , (7)

where μi ≥ r; σi and σi are positive constants. μi is the ap-
preciation rate; σi and σi are the volatilities rate of the risky
asset i. Bi(t), t≥ 0 , i � 1, 2, . . . , n, and B(t), t≥ 0  are n + 1
mutually independent standard Brownian motions. ,e
Brownian motion B(t) induces a correlation among the
prices of n risky assets.

2.3.WealthProcess. Insurer can invest in financial market to
increase his wealth. Let π1(t), π2(t), . . . , πn(t) denote the
dollar amounts that the insurer invests in risky assets
1, 2, . . . , n at time t; the rest of his wealth is then invested in
the risk-free asset. Denote π(t) � (π1(t), π2(t), . . . , πn(t))

by π � (π1, π2, . . . , πn) for simplicity. At any time t≥ 0,
(a, b) � (a(t), b(t)) and π � π(t) are chosen by the insurer
as control strategies, and we denote them as u(·) �

(a(·), b(·), π(·)). With respect to each strategy u(·), the
wealth process Xu

t of the insurer with reinsurance and in-
vestment can be described as the following SDE:

dX
u
t � c1 +(1 + η)λaμ(a, b) + rX

u
t + 

n

i�1
πi μi − r( ⎡⎣ ⎤⎦dt

+ 
n

i�1
πiσidBi(t) + 

n

i�1
πiσidB(t) − ad 

N(t)

j�1
Zj,

(8)

with the initial capital being Xu
0 � x0.

Definition 1. A control strategy u(·) � (a(·), b(·), π(·)) is
said to be admissible if a(·), b(·), and π(·) are predictable
with respect toFt and, for each t≥ 0, the processes a(·), b(·),
and π(·) satisfy the following conditions: (i) 0≤ a(t)≤ 1, (ii)
0≤ b(t)≤N, (iii) P 

∞
0 

n
i�1 π2

i (t)dt<∞  � 1, and (iv) the
SDE (8) with respect to u has a unique strong solution.

,e set of all admissible strategies is denoted by U.

3. Problem Formulation

In this section, we introduce the MV portfolio selection
problem. Let Xu

T denote the terminal wealth under the

Discrete Dynamics in Nature and Society 3



strategy u(·). For simplicity of notation, let Et,x[·] � E[| ·

|Xu
t � x] and Vart,x[·] � Var[| · |Xu

t � x].
,e MV portfolio selection problem aims to maximize

the expected terminal wealth E0,x0
(Xu

T) and at the same time
to minimize the variance of the terminal wealth Var0,x0

(Xu
T).

,is is a biobjective optimization problem with two con-
flicting criteria. Concretely, we have the following problem:

max − Var0,x0
Xu

T( ,E0,x0
Xu

T(  

s.t. Xu
t satisfies(8), u ∈ U,

(9)

where max(Var0,x0
(Xu

T),E0,x0
(Xu

T)) means that we simul-
taneously maximize − Var0,x0

(Xu
T) and E0,x0

(Xu
T). Problem

(9) is equivalent to the following problem:

min Var0,x0
Xu

T( , − E0,x0
Xu

T(  

s.t. Xu
t satisfies (8), u ∈ U,

(10)

where min(Var0,x0
(Xu

T), − E0,x0
(Xu

T)) means that we simul-
taneously minimize Var0,x0

(Xu
T) and − E0,x0

(Xu
T).

Let J1(u(·)) � Var0,x0
(Xu

T) and J2(u(·)) � E0,x0
(Xu

T).
Moreover, an admissible strategy u∗ is called an efficient
strategy if there exists no admissible strategy u(·) such that

J1(u(·))≤ J1 u
∗
(·)( ,

J2(u(·))≥ J2 u
∗
(·)( ,

(11)

and at least one of the inequalities holds strictly. In this case,
we call (J1(u∗(·)), J2(u∗(·))) ∈ R2 an efficient point. ,e set
of all efficient points forms the efficient frontier.

We consider the problem of finding an admissible re-
insurance-investment strategy such that the expected ter-
minal wealth satisfies E0,x0

(Xu
T) � k; here k is a constant,

while the risk measured by the variance of the terminal
wealth,

Var0,x0
X

u
T(  � E0,x0

X
u
T − E0,x0

X
u
T(  

2
  � E0,x0

X
u
T − k( 

2
 ,

(12)

is minimized. Concretely, we have the following problem.
Problem (10) can be formulated as the following opti-

mization problem:

min Var0,x0
X

u
T(  � minE0,x0

X
u
T − k( 

2
 

s.t. E0,x0
X

u
T(  � k,

X
u
t satisfies (8), u ∈ U.

(13)

,e optimal strategy for problem (13) (corresponding to
a fixed k) is called a variance minimizing portfolio, and the
set of all points (Var0,x0

(Xu∗

T ), k), where Var0,x0
(Xu∗

T ) de-
notes the optimal value of problem (13), is called the variance
minimizing frontier.

An efficient portfolio is one for which there does not
exist another strategy that has higher mean and no higher
variance and/or has less variance and no less mean at the
terminal time T. In other words, an efficient portfolio is one
that is Pareto optimal. From problem (9) and problem (10),
we know that the efficient frontier is a subset of the variance

minimizing frontier. In the following, we will only discuss
the variance minimization problem (13).

Since problem (13) is a convex programming problem,
the equality constraint E0,x0

(Xu
T) � k can be dealt with by

introducing a Lagrange multiplier q ∈ R. In this way,
problem (13) can be solved via the following optimization
(for every fixed q):

min E0,x0
Xu

T − k( 
2

  + 2qE0,x0
Xu

T − k( 

s.t. Xu
t satisfies (8), u ∈ U,

(14)

where factor 2 in the front of q is just for convenience. To
obtain the optimal value and optimal strategy for problem
(13), we need to maximize the optimal value of problem (14)
with respect to q ∈ R, according to the Lagrange duality
theory (see Luenberger [22]). Clearly, problem (14) is
equivalent to

min E0,x0
Xu

T − (k − q) 
2

 

s.t. Xu
t satisfies (8), u ∈ U,

(15)

in the sense that the two problems have exactly the same
optimal control for fixed q.

To solve problem (15), we firstly solve an auxiliary
problem. Consider the following SDE:

dL
u
t � m +(1 + η)λaμ(a, b) + rL

u
t + 

n

i�1
πi μi − r( ⎡⎣ ⎤⎦dt

+ 
n

i�1
πiσidBi(t) + 

n

i�1
πiσidB(t) − ad 

N(t)

j�1
Zj,

(16)

with the initial capital being Lu
0 � l0 and the corresponding

optimization problem

min E0,l0

1
2

L
u
T( 

2
 

s.t. Lu
t satisfies (16), u ∈ U.

(17)

Note that if we set Lu
t � Xu

t − (k − q), m � c1 + (k − q)r,
and Lu

0 � Xu
0 − (k − q), equation (8) can be derived from

equation (16).
To apply the dynamic programming technique to solve

problem (17), we define the optimal value function J(t, l) at
time t as

J(t, l) � inf
u∈U

J
u
(t, l) � inf

u∈U
Et,l

1
2

L
u
T( 

2
 , (18)

where Et,l[·] � E[Lu
t � l].

Obviously, when t � 0, J(0, l0) is the optimal value of
problem (17). We start with the associated Hamil-
ton–Jacobi–Bellman (HJB) equation for the optimal value
function J(t, l).

Theorem 1. Assume that J(t, l) is continuously differentiable
in t on [0, T] and twice continuously differentiable in l on R;
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that is to say, J(t, l) ∈ C1,2([0, T] × R). 6en, J(t, l) satisfies
the following HJB equation:

inf
u∈U

Jt(t, l) + m +(1 + η)λaμ(a, b) + rl + 
n

i�1
πi μi − r( ⎡⎣ ⎤⎦Jl(t, l)

⎧⎨

⎩

+
1
2



n

i�1
π2

i σ
2
i + 

n

i�1
πiσi

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Jll(t, l)

+ λE[J(t, l − aZ) − J(t, l)]} � 0,

J(T, l) �
1
2
l
2
.

(19)

,e proof of this theorem is standard; one can refer to
the proof of Lemma 4.2 by Fleming and Soner [23].

,eorem 1 requires J(t, l) ∈ C1,2([0, T] × R). But in
most of the examples this is not the case, so we study the
viscosity solution of problem (18). Next, we will give the
definition of viscosity solution according to that of Defi-
nition 3.1 in Bi and Guo [24].

Definition 2. Let V ∈ C([0, T] × R), which denotes the set of
continuous functions on [0, T] × R.

(1) We say that V is a viscosity subsolution of problem
(18) in (t, l) ∈ [0, T] × R, if, for each ψ ∈ C1,2([0,

T] × R),

inf
u∈U

ψt(t, l) + m +(1 + η)λaμ(a, b) + rl + 
n

i�1
πi μi − r( ⎡⎣ ⎤⎦ψ

l
(t, l)

⎧⎨

⎩

+
1
2



n

i�1
π2i σ

2
i + 

n

i�1
πiσi

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ψ

ll
(t, l) + λE[ψ(t, l − aZ) − ψ(t, l)]

⎫⎪⎬

⎪⎭
≥ 0,

(20)

at every (t, l) ∈ [0, T] × R which is a maximizer of
V − ψ on [0, T] × R with V(t, l) � ψ(t, l).

(2) We say that V is a viscosity supersolution of problem
(18) in (t, l) ∈ [0, T] × R, if, for each ψ ∈ C1,2([0,

T] × R),

inf
u∈U

ψt(t, l) + m +(1 + η)λaμ(a, b) + rl + 
n

i�1
πi μi − r( ⎡⎣ ⎤⎦ψ

l
(t, l)

⎧⎨

⎩

+
1
2



n

i�1
π2

i σ
2
i + 

n

i�1
πiσi

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ψ

ll
(t, l) + λE[ψ(t, l − aZ) − ψ(t, l)]

⎫⎪⎬

⎪⎭
≤ 0,

(21)

at every (t, l) ∈ [0, T] × R which is a minimizer of
V − ψ on [0, T] × R with V(t, l) � ψ(t, l).

(3) We say that V is a viscosity solution of problem (18)
in (t, l) ∈ [0, T] × R, if it is both a viscosity sub-
solution and a viscosity supersolution of problem
(18) in (t, l) ∈ [0, T] × R.

4. Solution to the Auxiliary Problem

In this section, using the stochastic control technique, we
solve problem (18). According to the boundary condition in

,eorem 1, we will try to find a solution of problem (18) with
the following parametric form:

V(t, l) �
1
2

Q(t)l
2

+ W(t)l + K(t). (22)

Here, Q(t), W(t), and K(t), to be determined later on,
respectively, satisfy the boundary conditions Q(T) � 1,

W(T) � 0, K(T) � 0.
To simplify our description, we shall use the following

notations:
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Δi �
μi − r

σ2i
−

σi

σ2i 1 + 
n
i�1σ

2
i /σ2i( 



n

i�1

σi μi − r( 

σ2i
⎡⎣ ⎤⎦, i � 1, 2, . . . , n,

ρ1 � 
n

i�1
Δ2i σ

2
i + 

n

i�1
Δiσi

⎛⎝ ⎞⎠

2

,

ρ2 � 
n

i�1
Δi μi − r( ,

ρ3 �
λη2μ21
μ2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

By (22), we have

Vt �
1
2
Q′(t)l

2
+ W′(t)l + K′(t),

Vl � Q(t)l + W(t),

Vll � Q(t),

E[V(t, l − aZ) − V(t, l)] �
1
2

Q(t)a
2σ2(a, b) − [Q(t)l + W(t)]aμ(a, b),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where Vt, Vl, and Vll represent the partial derivatives of
V(t, l) with respect to the corresponding variables.

Substituting (24) into (19), we have after simplification
that

1
2
Q′(t)l

2
+ W′(t)l + K′(t) +(m + rl)[Q(t)l + W(t)]

+ inf
π∈U

g(π) + inf
(a,b)∈U

f(a, b) � 0,

(25)

with

g(π) �
1
2

Q(t) 
n

i�1
π2i σ

2
i + 

n

i�1
πiσi

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+[Q(t)l + W(t)] 
n

i�1
πi μi − r( ,

(26)

f(a, b) � λη(Q(t)l + W(t))a 
b/a

0
[1 − F(y)dy]

+
1
2
λQ(t)a

2


b/a

0
2y[1 − F(y)]dy.

(27)

Setting zg(π)/zπi � 0, we obtain

πi σ2i + σ2i  + σi 
j≠i

πjσj

� − μi − r(  l +
W(t)

Q(t)
 , i � 1, 2, . . . , n.

(28)

,e following lemma is essential for deriving the explicit
optimal investment strategy.

Lemma 1. Equation (28) has a unique solution πi, which is
given by

πi � − Δi l +
W(t)

Q(t)
 , i � 1, 2, . . . , n. (29)

Proof. Equation (28) can be rewritten as

πi +
σi

σ2i


n

i�1
σiπi � −

μi − r

σ2i
l +

W(t)

Q(t)
 , i � 1, 2, . . . , n.

(30)

Multiplying both sides of (30) by σi and then averaging
over i � 1, 2, . . . , n, we obtain



n

i�1
σiπi � − l +

W(t)

Q(t)
  1 + 

n

i�1

σ2i
σ2i

⎞⎠

− 1



n

i�1

σi μi − r( 

σ2i
.⎛⎝ (31)
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By substituting (31) into (30), we can deduce that the
unique solution of equation (28) is given by (29).

Substituting (29) into (25), we obtain

l
2 1
2
Q′(t) + r +

1
2
ρ1 − ρ2 Q(t) 

+ l W′(t) + r + ρ1 − 2ρ2( W(t) + mQ(t) 

+ K′(t) + mW(t) +
1
2
ρ1 − ρ2 

W2(t)

Q(t)
+ inf

(a,b)∈U
f(a, b) � 0.

(32)

Differentiating f(a, b) with respect to b yields

zf(a, b)

zb
� λ 1 − F

b

a
   bQ(t) + η[Q(t)l + W(t)] .

(33)

Let

b � − η l +
W(t)

Q(t)
 ,

m1 � λη

b

0
[1 − F(y)]dy,

m2 �
1
2
λ

b

0
2y[1 − F(y)]dy,

(34)

and we will discuss the excess of loss reinsurance strategy b

for the following three cases, that is, b≤ 0, 0< b< aN, and
b≥ aN. □

4.1. 0< b< aN. In this section, we discuss the case
0< b< aN. We first give two lemmas and then present the
solution to problem (18).

Lemma 2. For any t≥ 0, we have Q(t)> 0.
6e proof is similar to that of6eorem 8.3.1 in Zhang [25],

so we omit it here.

When 0< b< aN, it is easy to see that zf(a, b)/zb< 0 for
any b ∈ (0, b), which means that f(a, b) is a decreasing
function with respect to b when b ∈ (0, b). ,erefore, the
optimal excess of loss reinsurance strategy is b∗ � b.

Plugging b∗ � b into (27) and differentiating it with
respect to a yield

zf(a, b)

za
� − λQ(t) 

b/a

0
[1 − F(y)][− 2ya + b]dy. (35)

Lemma 3. 
b/a
0 [1 − F(y)][− 2ya + b]dy> 0 holds for any

0< a≤ 1.

Proof. Let g(y) � − 2ya + b, y ∈ [0, b/a]. We have g′(y) �

− 2a< 0 for any y ∈ [0, b/a]; thus g(y) is a strictly decreasing
and continuous function with g(0) � b> 0 and g(b/a) �

− b< 0. ,erefore, there exists a unique y0 ∈ (0, b/a) which

satisfies g(y0) � 0; moreover, g(y)> 0 for 0≤y<y0, and
g(y)< 0 for y0 <y≤ b/a.

In addition, 1 − F(y) is a decreasing function; that is,
1 − F(y)> 1 − F(y0) for 0≤y<y0, and 1 − F(y)< 1− F(y0)

for y0 <y≤ b/a. ,en, (1 − F(y))g(y) > (1 − F(y0))g(y)

holds for 0≤y≤ b/a.

Since 
b/a
0 g(y)dy � 0, we have



b/a

0
[1 − F(y)]g(y)dy> 

b/a

0
1 − F y0(  g(y)dy

� 1 − F y0(   

b/a

0
g(y)dy � 0,

(36)

which completes the proof. □

Theorem 2. When 0< (m + m1/r)[er(t− T) − 1] − l η<N,
the solution to problem (18) is as follows.6e optimal excess of
loss reinsurance strategy is given by

b
∗

�
m + m1

r
e

r(t− T)
− 1  − l η, (37)

the optimal proportional reinsurance strategy is a∗ � 1, the
optimal investment strategy is given by

π ∗i � Δi

m + m1

r
e

r(t− T)
− 1  − l , i � 1, 2, . . . , n,

(38)

and the candidate optimal value function V(t, l) is given by

V(t, l) �
1
2
e

2ρ2− ρ1− 2r( )(t− T)
l −

m + m1

r
e

r(t− T)
− 1  

2

+
m2

2ρ2 − ρ1 − 2r
1 − e

2ρ2− ρ1− 2r( )(t− T)
 .

(39)

Proof. For any 0< a≤ 1, we obtain from Lemmas 2 and 3
that zf(a, b)/za< 0. ,erefore, the candidate optimal pro-
portional reinsurance strategy is 1.

From (27), we have

z2f(a, b)

za2 � λQ(t) 
b/a

0
y
2
f(y)dy −

λb2

a3 f
b

a
 

· bQ(t) + η[Q(t)l + W(t)] .

(40)

From (33), we have

z2f(a, b)

zb za
�
λb

a2 f
b

a
  bQ(t) + η[Q(t)l + W(t)] ,

z2f(a, b)

zb2
� λ 1 − F

b

a
  Q(t) −

λ
a

f
b

a
 

· bQ(t) + η[Q(t)l + W(t)] .

(41)

Since a≠ 0, it is easy to prove that z2f(a, b)/zb za and
z2f(a, b)/za zb are continuous. Hence, z2f(a, b)/
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zb za � z2f(a, b)/za zb. Furthermore, we can obtain the
following Hessian matrix:

z2f(a, b)

zb2

 (1,b)

z2f(a, b)

zb za



(1,b)

z2f(a, b)

za zb



(1,b)

z2f(a, b)

za2



(1,b)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

λQ(t)[1 − F(b)] 0

0 λQ(t) 
b
0 y2f(y)dy

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠,

(42)

is a positive definite matrix. ,erefore, 1 and b are optimal
proportional and excess of loss reinsurance strategies, re-
spectively. Substituting a∗ � 1 and b∗ � b into (32), we
obtain

l
2 1
2
Q′(t) + r +

1
2
ρ1 − ρ2 Q(t) 

+ l W′(t) + r + ρ1 − 2ρ2( W(t) + m + m1( Q(t) 

+ K′(t) + m + m1( W(t)

+
1
2
ρ1 − ρ2 

W2(t)

Q(t)
+ m2Q(t) � 0.

(43)

In this case, we assume Q(t) ≔ Q1(t), W(t) ≔W1(t),
and K(t) ≔ K1(t). Comparing the coefficients of l2, l, and
the term without l, respectively, and adding to the boundary
conditions, we have the following ordinary differential
equations (ODEs) with associated terminal conditions:

1
2
Q1′(t) + r +

1
2
ρ1 − ρ2 Q1(t) � 0, Q1(T) � 1,

W1′(t) + r + ρ1 − 2ρ2( W1(t) + m + m1( Q1(t) � 0, W1(T) � 0,

K1′(t) + m + m1( W1(t) +
1
2
ρ1 − ρ2 

W2
1(t)

Q1(t)
+ m2Q1(t) � 0, K1(T) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Solving these ODEs gives us

Q1(t) � e 2ρ2− ρ1− 2r( )(t− T),

W1(t) � −
m + m1

r
e

2ρ2− ρ1− r( )(t− T)
− e

2ρ2− ρ1− 2r( )(t− T)
 ,

K1(t) �
m + m1

r
 

2 1
2
e

2ρ2− ρ1( )(t− T)
+
1
2
e

2ρ2− ρ1− 2r( )(t− T)
− e

2ρ2− ρ1− r( )(t− T)
 

+
m2

2ρ2 − ρ1 − 2r
1 − e

2ρ2− ρ1− 2r( )(t− T)
 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

By substituting Q1(t), W1(t), and K1(t) into b, (29), and
(22), we can obtain the optimal excess of loss reinsurance
strategy, the optimal investment strategy, and the candidate
optimal value function V(t, l) given by (37)–(39), respec-
tively. Considering b � (m + m1/r)[er(t− T) − 1] − l η and
a∗ � 1, the inequality 0< b< aN becomes 0< (m + m1/r)

[er(t− T) − 1] − l}η<N.
From ,eorem 2, the inequalities b≤ 0 and b≥ aN be-

come (m + m1/r)[er(t− T) − 1] − l η≤ 0 and (m + m1/r)

[er(t− T) − 1] − l}η≥N, respectively. In the next two sub-
sections, we will discuss (m + m1/r)[er(t− T) − 1] − l η≤ 0
and (m + m1/r)[er(t− T) − 1] − l η≥N, respectively. □

4.2. b≤ 0(that is, (m + m1/r)[er(t− T) − 1] − l η≤ 0)

Theorem 3. When (m + m1/r)[er(t− T) − 1] − l η≤ 0, the
solution to problem (18) is as follows. 6e optimal excess of
loss reinsurance strategy is b∗ � 0, the optimal proportional
reinsurance strategy is a∗ � 1, the optimal investment strategy
is given by

π ∗i � Δi

m

r
e

r(t− T)
− 1  − l , i � 1, 2, . . . , n, (46)

and the candidate optimal value function V(t, l) is given by
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V(t, l) �
1
2
e

2ρ2− ρ1− 2r( )(t− T)
l −

m

r
e

r(t− T)
− 1  

2
. (47)

Proof. When b≤ 0, it is easy to obtain that the optimal excess
of loss reinsurance strategy is b∗ � 0. For any a ∈ [0, 1], the
insurer will retain, from the jth claim,
Yj(a, b∗) � aYj∧b∗ � aYj∧0 � 0. ,is shows that the in-
surer transfers all claims to the reinsurer through excess of
loss reinsurance. Hence, the insurer will not take propor-
tional reinsurance. ,erefore, the corresponding optimal
proportional reinsurance strategy is a∗ � 1. By substituting
them into (32), we obtain

l
2 1
2
Q′(t) + r +

1
2
ρ1 − ρ2 Q(t) 

+ l W′(t) + r + ρ1 − 2ρ2( W(t) + mQ(t) 

+ K′(t) + mW(t) +
1
2
ρ1 − ρ2 

W2(t)

Q(t)
� 0.

(48)

In this case, we assume Q(t) ≔ Q2(t), W(t) ≔W2(t),
and K(t) ≔ K2(t). To ensure that (48) always holds, we have
that the coefficients of l2, l, and the term without l, re-
spectively, should be equal to 0. From this and the boundary
conditions, we obtain the following ODEs with associated
terminal conditions:

1
2
Q2′(t) + r +

1
2
ρ1 − ρ2 Q2(t) � 0, Q2(T) � 1,

W2′(t) + r + ρ1 − 2ρ2( W2(t) + mQ2(t) � 0, W2(T) � 0,

K2′(t) + mW2(t) +
1
2
ρ1 − ρ2 

W2
2(t)

Q2(t)
� 0, K2(T) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

Solving these ODEs, we obtain

Q2(t) � e 2ρ2− ρ1− 2r( )(t− T),

W2(t) � −
m

r
e

2ρ2− ρ1− r( )(t− T)
− e

2ρ2− ρ1− 2r( )(t− T)
 ,

K2(t) �
m

r
 

2 1
2
e

2ρ2− ρ1( )(t− T)
+
1
2
e

2ρ2− ρ1− 2r( )(t− T)
− e

2ρ2− ρ1− r( )(t− T)
 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

By substituting Q2(t), W2(t), and K2(t) into (29) and
(22), we can obtain the optimal investment strategy and the
candidate optimal value function V(t, l) given by (46) and
(47), respectively. □

4.3. b≥ aN(that is, (m + m1/r)[er(t− T) − 1] − l η≥N). We
first define a as

a � −
ημ1
μ2

l +
W(t)

Q(t)
 . (51)

Theorem 4. When (m + m1/r)[er(t− T) − 1] − l η≥N, the
solution to problem (18) can be classified into the following
three cases:

(i) When (m + m1/r)[er(t− T) − 1] − l η≥N and ημ1/
μ2 (m/r)[er(t− T) − 1] − l ≤ 0, the optimal propor-
tional reinsurance strategy is 0, and the optimal
excess of loss reinsurance strategy is N. 6e optimal
investment strategy and the candidate optimal value
function V(t, l) are the same as those in 6eorem 3,
so we will not repeat them here.

(ii) When (m + m1/r)[er(t− T) − 1] − l η≥N and 0<
(ημ1/μ2) (m/r)[er(t− T) − 1] − l < 1, the optimal
proportional reinsurance strategy is given by

a
∗

�
ημ1
μ2

m

r
e

r(t− T)
− 1  − l , (52)

the optimal excess of loss reinsurance strategy is
b∗ � N, the optimal investment strategy is given by

π∗i �Δi

m

r
e

r(t− T)
− 1  − l , i � 1,2, . . . ,n, (53)

and the candidate optimal value function V(t, l) is
given by

V(t, l) �
1
2
e

2ρ2− ρ1+ρ3− 2r( )(t− T)
l −

m

r
e

r(t− T)
− 1  

2
.

(54)

(iii) When (m + m1/r)[er(t− T) − 1] − l η≥N and
ημ1/μ2 m/r[er(t− T) − 1] − l ≥ 1, the optimal pro-
portional reinsurance strategy is 1, the optimal excess
of loss reinsurance strategy is N, the optimal in-
vestment strategy is given by

π∗i �Δi

m +λημ1
r

e
r(t− T)

− 1  − l , i � 1,2, . . . ,n,

(55)

and the candidate optimal value function V(t, l) is
given by
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V(t, l) �
1
2
e

2ρ2− ρ1− 2r( )(t− T)
l −

m +λημ1
r

e
r(t− T)

− 1  

2

+
1

2ρ2 − ρ1 − 2r
e

2ρ2− ρ1− 2r( )(t− T)
− 1 .

(56)

Proof. When b≥ aN, that is, (m + m1/r)[er(t− T) −

1] − l}η≥N, we have zf(a, b)/zb < 0 for any b ∈ (0, N) and
zf(a, b)/zb � 0 for all b≥N. ,at is to say, f(a, b) is a
decreasing function with respect to b when b ∈ (0, N) and is
flat for all b≥N. ,erefore, the optimal excess of loss re-
insurance strategy is b∗ � N. In this case,

Yj a, b
∗

(  � min aYj, b
∗

  � aYj∧b
∗

� aYj∧N � aYj,

(57)

and here, j � 1, 2, . . . , +∞. ,erefore, the problem of
combining proportional and excess of loss reinsurance is
then equivalent to the problem of pure proportional rein-
surance. ,en, equation (32) becomes

l
2 1
2
Q′(t) + r +

1
2
ρ1 − ρ2 Q(t) 

+ l W′(t) + r + ρ1 − 2ρ2( W(t) + mQ(t) 

+ K′(t) + mW(t) +
1
2
ρ1 − ρ2 

W2(t)

Q(t)

+ inf
a∈U

λημ1a[Q(t)l + W(t)] +
1
2
λμ2Q(t)a

2
  � 0.

(58)

According to the first-order optimality conditions, a

solving the inner infimum problem in equation (58) is given
by (51). We discuss the value of a in the following three
cases: a≤ 0, 0< a< 1, and a≥ 1.

(i) When a≤ 0, the optimal proportional strategy is
a∗ � 0. By substituting a∗ � 0 into (58), we obtain
that equation (58) is equivalent to equation (48).
,erefore, the optimal investment strategy and the
candidate optimal value function V(t, l) are the
same as those in ,eorem 3, so we will not repeat
them here.

(ii) When 0< a< 1, the optimal proportional reinsur-
ance strategy is

a
∗

� a � −
ημ1
μ2

l +
W(t)

Q(t)
 . (59)

In this case, we assume Q(t) ≔ Q3(t),
W(t) ≔W3(t), and K(t) ≔ K3(t). By substituting
Q3(t), W3(t), K3(t), and a∗ � a into (58), we obtain

l
2 1
2
Q3′(t) + r −

1
2

2ρ2 − ρ1 +ρ3(  Q3(t) 

+ l W3′(t) + r − 2ρ2 − ρ1 +ρ3(  W3(t) + mQ3(t) 

+ K3′(t) + mW3(t) −
1
2

2ρ2 − ρ1 +ρ3( 
W2

3(t)

Q3(t)
� 0.

(60)

To ensure that (60) always holds, we have that the
coefficients of l2, l, and the term without l, re-
spectively, should be equal to 0. From this and the
boundary conditions, we obtain the following ODEs
with associated terminal conditions:

1
2
Q3′(t) + r −

1
2

2ρ2 − ρ1 + ρ3(  Q3(t) � 0, Q3(T) � 1,

W3′(t) + r − 2ρ2 − ρ1 + ρ3(  W3(t) + mQ3(t) � 0, W3(T) � 0,

K3′(t) + mW3(t) −
1
2

2ρ2 − ρ1 + ρ3( 
W2

3(t)

Q3(t)
� 0, K3(T) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

Solving these ODEs, we obtain

Q3(t) � e 2ρ2− ρ1+ρ3− 2r( )(t− T),

W3(t) � −
m

r
e

2ρ2− ρ1+ρ3− r( )(t− T)
− e

2ρ2− ρ1− 2r( )(t− T)
 ,

K3(t) �
m

r
 

2 1
2
e

2ρ2− ρ1+ρ3( )(t− T)
+
1
2
e

2ρ2− ρ1+ρ3− 2r( )(t− T)
− e

2ρ2− ρ1+ρ3− r( )(t− T)
 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)
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By substituting Q3(t), W3(t), and K3(t) into (59),
(29), and (22), we can obtain the optimal propor-
tional reinsurance strategy, the optimal investment
strategy, and the candidate optimal value function
V(t, l) given by (52)–(54), respectively.

(iii) When a≥ 1, the optimal proportional reinsurance
strategy a∗ is 1. Similar to (ii), by substituting a∗ � 1
into (58), we can obtain Q(t), W(t), and K(t).
Furthermore, we can obtain π ∗i and V(t, l) given by
(55) and (56), respectively. □

Remark 1. ,e candidate optimal value function V(t, l)

given by ,eorems 2–4 is a viscosity solution of problem

(18). In fact, V(t, l) is the optimal value function of problem
(18); that is, V(t, l) � J(t, l). Similar to that of ,eorem 2 in
Bi and Guo [24], we can prove this conclusion. Since the
methods are similar, we omit ours here.

5. Efficient Strategy and Efficient Frontier

In this section, we apply the auxiliary results established in
the previous section to the original MV problem (13). We
will obtain the optimal reinsurance-investment strategy and
the efficient frontier of problem (13).

To simplify the following description, we define the cases
discussed in ,eorems 2–4 as follows:

case I: 0<
m + m1

r
e

r(t− T)
− 1  − l η<N,

case II:
m + m1

r
e

r(t− T)
− 1  − l η≤ 0,

case III:
m + m1

r
e

r(t− T)
− 1  − l η≥N ∩

ημ1
μ2

m

r
e

r(t− T)
− 1 , − l ≤ 0 ,

case IV:
m + m1

r
e

r(t− T)
− 1  − l η≥N ∩ 0<

ημ1
μ2

m

r
e

r(t− T)
− 1  − l < 1 ,

caseV:
m + m1

r
e

r(t− T)
− 1  − l η≥N ∩

ημ1
μ2

m

r
e

r(t− T)
− 1  − l ≥ 1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

First of all, we derive the optimal value of problem (14).
Set Lu

t � Xu
t − (k − q) (then, Xu

t � Lu
t + (k − q), Xu

0 � Lu
0 +

(k − q)) and m � c1 + (k − q)r in (16); we can get (8) from
(16). Note that

E0,l0

1
2

L
u
T( 

2
  � E0,x0

1
2

X
u
T − (k − q) 

2
 

� E0,x0

1
2

X
u
T − k( 

2
  + qE0,x0

X
u
T − k(  +

1
2
q
2
.

(64)

Hence, for every fixed q, we have

minu∈UE0,x0

1
2

X
u
T − k( 

2
  + qE0,x0

X
u
T − k( 

� minu∈UE0,l0

1
2

L
u
T( 

2
  −

1
2
q
2

� V 0, l0(  −
1
2
q
2
,

(65)

that is

minu∈U E0,x0
Xu

T − k( 
2

  + 2qE0,x0
Xu

T − k(  � 2V 0, l0(  − q2.

(66)

Let f(q) � 2V(0, l0) − q2; we have
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f(q) �

for case I :

e− T 2ρ2− ρ1− 2r( ) x0 − k + q −
c1+(k− q)r+m1

r
e− rT − 1  

2

+
2m2

2ρ2 − ρ1 − 2r
1 − e

− T 2ρ2− ρ1− 2r( )  − q
2
,

for cases II and III :

e− T 2ρ2− ρ1− 2r( ) x0 − k + q −
c1+(k− q)r

r
e− rT − 1  

2
− q2,

for case IV :

e− T 2ρ2− ρ1+ρ3− 2r( ) x0 − k + q −
c1+(k− q)r

r
e− rT − 1  

2
− q2,

for case V :

e− T 2ρ2− ρ1− 2r( ) x0 − k + q −
c1+(k− q)r+λημ1

r
e− rT − 1  

2

+
2

2ρ2 − ρ1 − 2r
e

− T 2ρ2− ρ1− 2r( ) − 1  − q
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)

To obtain the optimal value (i.e., the minimum variance
Var0,x0

(Xu∗

T )) and the optimal strategy for portfolio selection
problem (13), we need to maximize the function f(q) in (67)
over q ∈ R according to the Lagrange duality theorem.

We can see from (67) that f(q) is a concave function. A
simple calculation shows that f(q) attains its maximum
value at q∗:

q
∗

�

for case I: q∗1 �
x0 − k − c1 + kr + m1/r(  e− rT − 1(  e− 2ρ2− ρ1− r( )T

1 − e− 2ρ2− ρ1( )T
,

for cases II and III: q∗2 �
x0 − k − c1 + kr/r(  e− rT − 1(  e− T 2ρ2− ρ1− r( )

1 − e− 2ρ2− ρ1( )T
,

for case IV: q∗3 �
x0 − k − c1 + kr/r(  e− rT − 1(  e− T 2ρ2− ρ1+ρ3− r( )

1 − e− T 2ρ2− ρ1+ρ3( )
,

for case V: q∗4 �
x0 − k − c1 + kr + λημ1/r(  e− rT − 1(  e− T 2ρ2− ρ1− r( )

1 − e− T 2ρ2− ρ1( )
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)

From the above discussion, we obtain the following
theorem.

Theorem 5. According to the above five cases, the solution to
problem (13) is as follows.

(1) For case I, the optimal proportional reinsurance
strategy is a∗ � 1, the optimal excess of loss reinsur-
ance strategy is given by

b
∗

�
c1 + kr + m1

r
e

r(t− T)
− 1  − x0 + k − q

∗
1 e

r(t− T)
 η,

(69)

and the optimal investment strategy is given by

π ∗i � Δi

c1 + kr + m1

r
e

r(t− T)
− 1  − x0 + k − q

∗
1e

r(t− T)
 ,

i � 1, 2, . . . , n.

(70)
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Moreover, the efficient frontier is given by

Var0,x0
X

u∗

T  �
x0 − c1 + m1/r(  e− rT − 1(  − ke− rT 

2
e− 2ρ2− ρ1− 2r( )T

1 − e− 2ρ2− ρ1( )T

+
2m2

2ρ2 − ρ1 − 2r
1 − e

− 2ρ2− ρ1− 2r( )T
 .

(71)

(2) For case II, the optimal proportional reinsurance
strategy is a∗ � 1, the optimal excess of loss reinsur-
ance strategy is b∗ � 0, and the optimal investment
strategy is given by

π ∗i � Δi

c1 + kr

r
e

r(t− T)
− 1  − x0 + k − q

∗
2 e

r(t− T)
 ,

i � 1, 2, . . . , n.

(72)

Moreover, the efficient frontier is given by

Var0,x0
X

u∗

T  �
x0 − c1/r(  e− rT − 1(  − ke− rT 

2
e− 2ρ2− ρ1− 2r( )T

1 − e− 2ρ2− ρ1( )T
.

(73)

(3) For case III, the optimal proportional reinsurance
strategy is a∗ � 0, and the optimal excess of loss re-
insurance strategy is b∗ � N. 6e optimal investment

strategy and the efficient frontier are the same as those
in case II.

(4) For case IV, the optimal proportional reinsurance
strategy is given by

a
∗

� −
ημ1
μ2

c1 + kr

r
e

r(t− T)
− 1  − x0 + k − q

∗
3 e

r(t− T)
 ,

(74)

the optimal excess of loss reinsurance strategy is
b∗ � N, and the optimal investment strategy is given
by

π∗i �Δi

c1 + kr

r
e

r(t− T)
− 1  − x0 + k − q

∗
3 e

r(t− T)
 ,

i � 1,2, . . . ,n.

(75)

Moreover, the efficient frontier is given by

Var0,x0
X

u∗

T  �
x0 − c1/r(  e− rT − 1(  − ke− rT 

2
e− 2ρ2− ρ1+ρ3− 2r( )T

1 − e− 2ρ2− ρ1+ρ3( )T
. (76)

(5) For case V, the optimal proportional reinsurance
strategy is 1, the optimal excess of loss reinsurance
strategy is N, and the optimal investment strategy is
given by

π ∗i � Δi

c1 + kr + λημ1
r

e
r(t− T)

− 1  − x0 + k − q
∗
4 e

r(t− T)
 ,

i � 1, 2, . . . , n.

(77)

Moreover, the efficient frontier is given by

Var0,x0
X

u∗

T  �
x0 − c1 + λημ1/r(  e− rT − 1(  − ke− rT 

2
e− 2ρ2− ρ1− 2r( )T

1 − e− 2ρ2− ρ1( )T

+
2

2ρ2 − ρ1 − 2r
e

2ρ2− ρ1− 2r( )(t− T)
− 1 .

(78)

Remark 2. From ,eorem 5, we can see that, for the MV
portfolio selection problem (13), the optimal combination of

proportional and excess of loss reinsurance can be classified
into the following five cases: (1) the pure excess of loss
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reinsurance case, that is, case I; (2) the case without pro-
portional reinsurance and full excess of loss reinsurance, that
is, case II; (3) the case without excess of loss reinsurance and
full proportional reinsurance, that is, case III; (4) the pure
proportional reinsurance case, that is, case IV; and (5) the
case with neither excess of loss reinsurance nor proportional
reinsurance, that is, case V. It is clear that cases II, III, and V
are three special cases. ,ey maybe occur theoretically, but
they hardly occur in practice, because insurers rarely adopt
full reinsurance and do not take any reinsurance. In the next
section, we will numerically compare case I with case IV.

6. Numerical Experiments and
Sensitivity Analysis

In this section, we will conduct a series of numerical ex-
periments to illustrate the results obtained in the previous
section. We illustrate how optimal reinsurance and in-
vestment strategies vary with model parameters. Here,
numerical experiments are provided only for case IV we
obtained in ,eorem 5. Similar to this case, we can analyze
the other four cases, which are thus omitted here. Finally, we
compare the pure excess of loss reinsurance with the pure
proportional reinsurance.

Without loss of generality, we assume that the financial
market consists of one risk-free asset and two risky assets. In
the following numerical experiments, unless otherwise
stated, the basic model parameters are set as those in Table 1.

Figure 1 demonstrates the effect of η on optimal rein-
surance strategy a∗. Here, η is the safety loading of the
reinsurer. Hence, η is positively correlated with the rein-
surance premium.,e larger η is, the greater the reinsurance
premium will be. Hence, as η increases, a∗ increases rapidly.

In the following, we illustrate the effects of model pa-
rameters on optimal investment strategy. We will only re-
port the results for π∗1 . Similar to π∗1 , we can analyze π∗2 .

Figures 2 and 3 show the influences of the appreciation
rates μ1 and μ2 of risky assets 1 and 2 on optimal investment
strategy π∗1 . From Figure 2, we see that π∗1 is an increasing
function of μ1; from Figure 3, we see that π∗1 is a decreasing
function of μ2. ,e larger μ1 (resp., μ2) is, the greater the
expected income of risky asset 1 (resp., risky asset 2) will be
and hence the more the insurer will invest in risky asset 1
(resp., risky asset 2; i.e., the insurer reduces his investment in
risky asset 1).

Figures 4 and 5 show the influences of the price vola-
tilities σ1 and σ2 of risky assets 1 and 2 on optimal in-
vestment strategy π∗1 . From Figure 4, we see that π∗1 is a
decreasing function of σ1; from Figure 5, we see that π∗1 is an
increasing function of σ2. With the increase of σ1, the risk of
risky asset 1 increases, while the risk of risky asset 2 remains
unchanged. ,erefore, the insurer gradually reduces his
investment in risky asset 1 and increases his investments in
risky asset 2. Figure 5 displays a similar phenomenon; that is,
when σ2 increases, the insurer will invest more money in
risky asset 1.

Finally, we compare the pure excess of loss reinsurance
with the pure proportional reinsurance, utilizing their ef-
ficient frontiers. In this part, we assume that the claim
amount obeys the exponential distribution with parameter 1
and T � 6, and other model parameters are chosen as those
in Table 1.

Table 2 illustrates the effect of the level of wealth
E0,x0

(Xu∗

T ) on Var0,x0
(Xu∗

T ) for case I and case IV, that is, the
pure excess loss reinsurance and the pure proportional
reinsurance strategy, respectively. We find that Var0,x0

(Xu∗

T )

Table 1: Values of model parameters in numerical experiments.

λ θ η T t x0 k r

2 0.3 0.8 10 0 10 15 0.03
μ1 μ2 μ1 μ2 σ1 σ2 σ1 σ2
1 3 0.06 0.08 0.1 0.2 0.15 0.25

η
0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78

a∗

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Effect of η on a∗.
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is an increasing function of E0,x0
(Xu∗

T ) in both cases. ,is
shows that the greater the income of the insurer is, the
greater the risk will be; this is consistent with the insurance
and investment practice. From Table 2, we can see that, for

given wealth level, the insurer bears more risk in the pure
excess of loss reinsurance than those in the pure propor-
tional reinsurance. In other words, the pure proportional
reinsurance strategymight be better than the pure excess loss
reinsurance.

7. Conclusion

In this paper, we considered an optimal reinsurance-in-
vestment problem under the MV criterion. ,e insurer’s
surplus process is governed by the Cramér–Lundberg
model. He can transfer the claim risk via combining pro-
portional and excess of loss reinsurance and invests the
surplus in a financial market consisting of one risk-free asset
and n correlated risky assets. We derive the explicit optimal
reinsurance-investment strategy and efficient frontier by
using stochastic control technique. Numerical experiments
are also provided to illustrate how the optimal reinsurance-
investment strategy changes with model parameters.

,ere are still some issues that need to be investigated in
the future. Firstly, it is more meaningful to consider the
interaction between the insurance market and the financial
market. Secondly, it is also interesting to consider the game
between the insurer and the financial market.
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Figure 2: Effect of μ1 on π∗1 .
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Figure 3: Effect of μ2 on π∗1 .
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Figure 4: Effect of σ1 on π∗1 .
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Figure 5: Effect of σ2 on π∗1 .

Table 2: Values of the efficient frontiers for case I and case IV.

Var0,x0
(Xu∗

T )
E0,x0

(Xu∗

T )

6 7 8 9 10 11 12

Case I 204.8 223.8 240.8 255.8 268.8 279.7 288.6
Case IV 0.004 0.029 0.076 0.147 0.240 0.355 0.494
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[13] N. Bäuerle, “Benchmark and mean-variance problems for
insurers,” Mathematical Methods of Operations Research,
vol. 62, no. 1, pp. 159–165, 2005.

[14] P. Yang, “Time-consistent mean-variance reinsurance-in-
vestment in a jump-diffusion financial market,”Optimization,
vol. 66, no. 5, pp. 737–758, 2017.

[15] S. Wang, X. Rong, and H. Zhao, “Mean-variance problem for
an insurer with default risk under a jump-diffusion risk
model,” Communications in Statistics-6eory and Methods,
vol. 48, no. 17, pp. 4221–4249, 2019.

[16] Z. Sun, K. C. Yuen, and J. Guo, “A BSDE approach to a class of
dependent risk model of mean-variance insurers with sto-
chastic volatility and no-short selling,” Journal of Computa-
tional and Applied Mathematics, vol. 366, p. 112413, 2020.

[17] P. Yang, Z. Chen, and Y. Xu, “Time-consistent equilibrium
reinsurance-investment strategy for n competitive insurers
under a new interaction mechanism and a general investment
framework,” Journal of Computational and Applied Mathe-
matics, vol. 374, p. 112769, 2020.

[18] Z. Liang and J. Guo, “Optimal combining quota-share and
excess of loss reinsurance to maximize the expected utility,”
Journal of Applied Mathematics and Computing, vol. 36,
no. 1-2, pp. 11–25, 2011.

[19] X. Hu, B. Duan, and L. Zhang, “De Vylder approximation to
the optimal retention for a combination of quota-share and
excess of loss reinsurance with partial information,” Insur-
ance: Mathematics and Economics, vol. 76, pp. 48–55, 2017.

[20] H. Zhao, Y. Shen, Y. Zeng, and W. Zhang, “Robust equi-
librium excess-of-loss reinsurance and CDS investment
strategies for a mean-variance insurer with ambiguity aver-
sion,” Insurance: Mathematics and Economics, vol. 88,
pp. 159–180, 2019.

[21] Y. Huang, Y. Ouyang, L. Tang, and J. Zhou, “Robust optimal
investment and reinsurance problem for the product of the
insurer’s and the reinsurer’s utilities,” Journal of Computa-
tional and Applied Mathematics, vol. 344, pp. 532–552, 2018.

[22] D. G. Luenberger, Optimization by Vector Space Methods,
John Wiley, New York, NY, USA, 1968.

[23] W. H. Fleming and H. M. Soner, Controlled Markov Processes
and Viscosity Solution, Springer, Berlin, Germany, 1993.

[24] J. Bi and J. Guo, “Optimal mean-variance problem with
constrained controls in a jump-diffusion financial market for
an insurer,” Journal of Optimization 6eory and Applications,
vol. 157, no. 1, pp. 252–275, 2013.

[25] X. Zhang, “Application of markov-modulated processes in
insurance and finance,” Ph. D. thesis, Nankai University,
Tianjin, China, 2009.

16 Discrete Dynamics in Nature and Society


