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(is paper presents a new parametric optimization design to solve a class of reaction control system (RCS) problem with discrete
switching state, flexible working time, and finite-energy control for maneuverable reentry vehicles. Based on basic particle swarm
optimization (PSO) method, an exponentially decreasing inertia weight function is introduced to improve convergence per-
formance of the PSO algorithm. Considering the PSO algorithm spends long calculation time, a suboptimal control and guidance
scheme is developed for online practical design. By tuning the control parameters, we try to acquire efficacy as close as possible to
that of the PSO-based solution which provides a reference. Finally, comparative simulations are conducted to verify the proposed
optimization approach.(e results indicate that the proposed optimization and control algorithm has good performance for such
RCS of maneuverable reentry vehicles.

1. Introduction

Nowadays, hypersonic maneuverable reentry vehicles have
received considerable attention from various countries,
owing to its promising application in civilian and military
aspects [1]. In the military, high mobility and large-scale
hypersonic vehicles are characterized by their ability to cope
with future near-space operations, break through ballistic
defence systems, and achieve rapid global precision strikes.
Usually, the initial reentry flight is with high altitude and
thin atmosphere density, which results in low aerodynamic
control efficiency. Reaction control system (RCS) is a kind of
spacecraft system that uses thrusters arranged around the
side direction of aircraft to provide attitude control torque
[2], and sometimes translation force. Consequently, RCS is a
better solution scheme to provide efficient control perfor-
mance. Currently, a lot of research studies on RCS are fo-
cused on RCS thruster configuration [2], RCS nozzle
selection logic [3, 4], and RCS combined with pneumatic
rudder surface control [5, 6]. Liu provides a new method to
obtain necessary and sufficient conditions for impulse
controllability in continuous linear dynamics, which per-
forms discrete-time actions for spacecraft maneuvering [7].

However, due to the discontinuity and limited working time
of RCS, it is different from conventional continuous servo
control.

At present, mathematical optimal control is divided into
two categories, the direct method [8, 9] and indirect method
[10, 11]. (e direct method uses the original discrete optimal
control problem as the parameter optimization problem and
then finds the optimal solution through nonlinear pro-
gramming [12, 13]. Generally, the direct method is more
popular than the indirect method because the direct ana-
lytical solution of the complex nonlinear system is easier to
solve [14, 15]. HP adaptive pseudospectral method is a
combination of Legendre pseudospectral method and HP
adaptive method. (e HP adaptive pseudospectral method
discretizes state variables and control variables into a series
of Legendre–Gauss–Lombarto (LGL) points, which is one of
the most popular and effective direct methods at present
[16, 17]. Due to the nondifferentiability of RCS variables and
flexible time interval, the application of pseudospectral
method in RCS is limited, and the Karush–Kuhn–Tucker
(KKT) condition is not satisfied.

In order to effectively solve such problems, some in-
telligent algorithms such as PSO algorithm, genetic
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algorithm (GA), and neural network algorithm are be-
coming more and more attractive due to their high speed
and high precision. (ese intelligent algorithms are in-
spired by natural phenomena, such as the association
between ants, birds, and even human social behaviour
[18, 19]. PSO was proposed by Eberhart and Kennedy [20]
in 1995 and later promoted by other researchers [21]. Due
to its advantages of simple theory, easy programming, and
high computational efficiency, PSO has achieved excellent
results in solving discontinuous problems. For example,
Pires et al. proposed a new method to control the con-
vergence rate of PSO algorithm in 2010 by using the
concept of fractional calculus [22]. Unlike traditional
optimization methods, PSO algorithm does not depend on
the strict mathematical characteristics (derivability,
continuity) and constraints of the optimization problem.
In 2010, Yang et al. proposed a new method for solving
missile fuel impulse optimal control problem using im-
proved PSO technology, but this method did not consider
the optimal operating mode and elastic interval [23].
Rahimi et al. proposed a novel PSO method to solve the
optimal control problem of spacecraft reentry orbit, which
avoided the computational burden of common analytical
methods [24]. Zhou et al. using the particle swarm al-
gorithm for the design of hypersonic vehicle guidance
[25].

(erefore, a new method of solving RCS problem of
maneuverable reentry vehicles with discrete and flexible
time intervals by using improved particle swarm optimi-
zation (PSO) method is proposed in this paper. (is dis-
crete and flexible time optimization problem cannot be
solved by HP adaptive pseudospectral method. (e rest of
this paper is organized as follows. In Section 2, the
mathematical model of RCS control for maneuverable
reentry vehicle is deduced, and the optimal RCS problem is
given. Section 3 details the modifications based on basic
PSO and RCS design. Aiming at the optimal setting of RCS
control for maneuverable reentry vehicles, the structure
and parameter design of the controller are discussed. On
this basis, a suboptimal control guidance law based on PSO
is proposed, which can be used in real-time designs. In
Section 4, comparative simulations are conducted to verify
the proposed optimization approach. (e results indicate
that the proposed optimization and control algorithm has
good performance for such RCS of maneuverable reentry
vehicles. Finally, Section 5 gives some conclusions of this
paper.

2. Problem Description

2.1. Dynamics of the Vehicle System. (e mathematical
model of the maneuverable reentry vehicle includes the
body dynamic model, the RCS thrust model, and the
aerodynamic model, as well as the path constraint con-
ditions during the reentry process of the vehicle [26, 27]. In
order to facilitate discussion, only the motion of maneu-
verable reentry vehicle in longitudinal plane is considered,
and the earth is assumed to be flat and stationary. (us the
dynamic equations are
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(1)

where the state variables include flight velocity V, the
horizontal position x, trajectory inclination angle θ,
height position y, pitch angular ratio ωz, pitch angle ϑ,
gravity acceleration g, mass of the reentry vehicle m, and
RCS thrust total impulse IRCS. Engine thrust P, RCS thrust
FRCS, RCS thrust to centroid distance Xcg. uRCS is the
switching quantity of the RCS nozzle, which has three
states: 1, 0, −1. Jz is the moment of inertia of the z-axis.mc
is mass flow. α means the attack of angle (Figure 1). (e
lift force L, drag force D, and aerodynamic pitch moment
Mz are all the functions of reference area S, dynamic
pressure q, and reference length l. (e lift, drag, and pitch
moment coefficients CL, CD, and mz are shown in
equation (2).

Ma �
V

Sonic
,

L � qSCL(α, Ma),

D � qSCD(α, Ma),

Mz � qSlmz(α, Ma).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

(e Mach number Ma here is a function of velocity V
and local sonic speed.

(e RCS can rapidly provide thrust force and control
torque to maneuverable reentry vehicle by a nozzle switch.
Since the nozzle switch between ON andOFF is very fast, the
switching time delay here can be almost ignored. (us, the
RCS thrust model is
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Fi �
FRCS, U � 1,

0, U � 0,
􏼨 (3)

where Fi is the thrust force generated by the nozzle i. U is
switch instruction of the nozzle, 0 means OFF, 1 means ON.
RCS nozzles are generally symmetrically arranged, and the
resulting control torque is shown in Figure 2.

2.2. Constraints during Flight Process

2.2.1. Path Constraints. During the reentry phase, to ensure
the structural safety of the maneuverable reentry vehicle, the
constraints of dynamic pressure and angle of attack must be
strictly satisfied, and the reentry trajectory should be as
smooth as possible [28].

(a) Dynamic pressure: dynamic pressure is an important
characteristic variable in aerodynamics.(e dynamic
pressure at the reentry stage strictly meets the fol-
lowing constraints:

q �
ρV2

2
< qmax. (4)

(b) Angle of attack: the angle of attack is an important
state variable in flight dynamics, which determines
the heat rate and overload experienced by the reentry
vehicle. (e angle of attack during the reentry phase
strictly meets the following constraints:

αmin < α< αmax. (5)

2.2.2. Terminal Constraint. In order to ensure the terminal
guidance, the terminal guidance status during the reentry
phase must satisfy the terminal constraints [28]. (e error of
the trajectory inclination angle θ inclination should be less
than a certain value, i.e.

θmin < θ< θmax. (6)

2.2.3. Control Constraints. Due to the fuel limitation and
nozzle switch delay of RCS, we consider total working time
and minimum working time limitation [29], i.e.

􏽐
n

i�1
Ti ≤TTotal_Max,

Ti ≥TMin.

⎧⎪⎪⎨

⎪⎪⎩
(7)

2.3. Objective of the System Design. For maneuverable re-
entry vehicles, the accuracy of control and the fuel con-
sumption of RCS are a contradictory relationship. If high
control accuracy is required, the nozzle must be opened
frequently to consume fuel. Considering that the RCS fuel of
the maneuverable reentry vehicle is limited, the purpose of
optimizing the RCS thrust control is to ensure the control
accuracy while reducing the amount of fuel consumed.
(erefore, the objective function J for minimizing control
energy and control errors is written as

min J � λ
􏽚

tf

t0

|u|FRCSdt

IRCS

+ 􏽚
tf

t0

e(t)
2dt,

(8)

where λ is the weight coefficient, u means the switching
quantity of the RCS nozzle, and the control error
e(t) � x1 − xc � θ − θc. Here t0 and tf, respectively, represent
the initial and end times.

Obviously, the above design is optimization problem
with various constraints, so how to transform a constrained
optimization problem to an unconstrained optimization
problem will make the design easier. Penalty function
method is a good way to do this [26]. In order to enhance the
computational efficiency of trajectory optimization, penalty
function P(t) can be introduced to rewrite the objective
function [30, 31]. When the constraints in Section 2.2 are not
satisfied, P(t) will take a very large value to penalize the
objective function. So equation (8) can be modified as
follows:

min J � λ
􏽒

tf

t0
|u|FRCSdt

IRCS

+ 􏽚
tf

t0

e(t)
2dt + μP(t), (9)

where μ is the penalty factor which is positive.

t0 tf

MRCS

–MRCS

T1 T2 T3 Tn–1 Tn

Figure 2: Schematic of RCS control torque. (e horizontal axis is
the working time, and the vertical axis is the control torque
generated by the RCS.
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Figure 1: Motion coordinate systems of the maneuverable reentry
vehicle. (is is the basic shape of the maneuverable reentry, with
the tail of the main engine and the RCS nozzle.
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3. Optimization and Control Design

3.1. Optimal Design Based on Improved PSO. PSO algorithm
is one of popular optimization techniques, which was
originally developed to graphically simulate the bird flock.
(e birds form groups andmove in a flock, and each bird is a
particle. Each particle is assumed to have two characteristics:
position and velocity. Each particle wanders around in the
design space and remembers the best position (in terms of
objective function value) it has discovered. (e particles
communicate information or good positions to each other
and adjust their individual positions and velocities based on
the information received on the good positions [32]. Several
variants of the PSO technique have been proposed so far,
following Eberhart and Kennedy [33, 34].

Here we define the notation: assuming the search space is
d-dimensional, the i-th particle of the group is represented by
a d-dimensional vector xi � xi1, xi2, . . . , xid􏼈 􏼉, and the ex-
perienced best position is expressed as pi � pi1, pi2, . . . , pid􏼈 􏼉.
(e particle the best position that has been experienced is
gi � gn, gi2, . . . , gid􏼈 􏼉 and the position change (velocity) of
the i-th particle is vi � vi1, vi2, . . . , vi3􏼈 􏼉 [21]. During the it-
eration, particle i updates its position and velocity according
to the following formulas:

v
k+1
id � w · v

k
id + c1 · rand · p

k
id − x

k
id􏼐 􏼑

+ c2 · rand · g
k
id − x

k
id􏼐 􏼑,

(10)

x
k+1
id � x

k
id + v

k+1
id , (11)

where w is the inertia weight, c1, c2 are the acceleration
factors, k is the iteration counter, and rand() is a random
number between (0, 1). In addition, the velocity of each
dimension of the particle is limited by the maximum velocity
vmax. When the value of vmax is large, the particle can fly fast,
which is conducive to global search, but it is possible to fly
over the optimal solution. When vmax is small, the particle
can be searched in the feature area, but it is easy to fall into
the local optimal solution.

(e inertia weight w was originally introduced by
Eberhart and Shi [35]. When using PSO found that usually
the particle velocities build up too fast and the minimum of
the objective function is easily skipped [32]. Hence, an
inertia weight w is added to reduce the velocity. Generally,
the value of w is assumed to be a constant. A large value of w

promotes global exploration and a smaller value promoted a
local search. (erefore, to achieve a balance between global
and local exploration to speed up convergence to the true
optimum, we design the inertia weight as an exponentially
decreasing function. (e exponentially changing inertia
weight coefficient w can achieve better global optimization
capabilities in the initial stage of optimization and better
local optimization capabilities in the later stages of opti-
mization, i.e.,

w � w0 − w∞( 􏼁e
−k

+ w∞. (12)

Simultaneously, RCS is a class of discontinuous actuators
with limitation of fuel consumption. Consequently, we select

the switch state ui and working time Ti as design variables,
where ui is discrete, and Ti is continuous. Since the
movement of the particle position is a continuous process,
the particle position vector is corresponded to the design
variable by a sign function.

(erefore, we define the structure of the particle’s po-
sition vector xi and sign function sign(x). u1, u2, . . . , uid/2􏼈 􏼉

and T1, T2, . . . , Tid/2􏼈 􏼉 form a complete RCS nozzle
assignment.

sign(x) �

+1(x> 0.5),

0(−0.5< x< 0.5),

−1(x< −0.5),
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xid

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� xi.

(13)

(e upper and lower bounds of the RCS nozzle switch
state ui and working time Ti are defined as

umax � +1,

umin � −1,
􏼨

Tmax � 5s,

Tmin � 0.1s.
􏼨

(14)

3.2. Improved PSO Algorithm Process. Combined with the
algorithm described in Section 3.1, the entire calculation
process is depicted in Figure 3. (e specific steps are as
follows:

(1) (e initial trajectory parameters include the initial
velocity, position, and attitude of the maneuvering
reentry vehicle. PSO initialization includes setting
group size, neighborhood size, iteration times, ac-
celeration coefficient, inertia weight, random group
position, and speed.

(2) (e inertia weight coefficient w and the particle
velocity vk+1

id and position xk+1
id information are

updated according to equations (10)–(12).
(3) Get ui and Ti as control variables based on the

updated particle position.
(4) Input control variables ui and Ti into trajectory

program for calculation. Since the RCS nozzle switch
status is only (1, 0, −1), so ui � sign(ui).

(5) (e value of objective function J was calculated to
update the individual optimal fitness and population
optimal fitness.

(6) Determine whether the new particles generated by
iteration reach the minimum objective value or
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whether the number of iterations reaches the preset
maximum value. If one of these two conditions is
satisfied, the optimal solution of the problem cor-
responds to the global optimal solution of the par-
ticle and stops iteration. Otherwise, go to step (2) to
update the position and velocity of particles in the
next iteration.

3.3. Suboptimal Online Controller Design. (rough the
particle swarm optimization method, the optimal solution of
the maneuverable reentry vehicle is obtained, which mini-
mizes the RCS consumption and control error. Obviously,
the particle swarm algorithm spent long time to converge,
which cannot satisfy real-time control requirements [14].
(erefore, it is very important to find an online control
scheme to obtain a suboptimal control design. By tuning the
suboptimal control parameters, we here try to acquire ef-
ficacy as close as possible to that of the PSO-based solution.
Figure 4 shows the guidance and control process of ma-
neuverable reentry vehicle.

For the optimal flight control problem consideration of
equation (1) and Figure 4, the mathematical model based on
disturbance linearization motion can be used as a reference
model for the controlled object [14].

_x � Ax + Bu, (15)

where x �

x1
x2
x3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

θ
_θ
€θ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, A �

0 1 0
0 0 1
0 −1/T2

M −2ξM/TM

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

B �

0
0

KM

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. Here KM, ξM, and TM, respectively, represent

the transfer coefficient, damping, and time constant of the
vehicle.

It can be seen from the schematic diagram of the
guidance control system of the maneuverable reentry vehicle
shown in Figure 4.(e detailed control structure is shown in
Figure 5, where f(e(t)) is the RCS designed with reference
model. (e work of this paper is mainly divided into two
steps: (1) In the previous section, the PSO numerical opti-
mization method was used to obtain the optimal RCS nu-
merical solution; (2) in this section, the suboptimal online
controller will be determined by establishing the mathe-
matical relationship between the error e(t) and the control
uRCS.

Pulse width pulse frequency (PWPF) modulator is a
popular technique used in RCS nozzle control [36, 37],
which is designed by combining a first-order filter and a
Schmitt trigger in the feedforward loop (Figure 5) [5, 38].
PWPF modulator is widely used in spacecraft control sys-
tems [6] because it works with an almost linear input/output
relationship which makes the design easier. (e first-order
filter has the transfer function f(s):

f(s) �
K

Ts + 1
. (16)

(e Schmitt trigger [5, 39] is a switching relay with
hysteresis and dead zone, as shown in Figure 5. (e
mathematical description of the Schmitt trigger is formu-
lated as [37, 39]

u �

+1, e≥Uon,

+1, Uoff ≤ e<Uon, _e< 0,

0, −Uon ≤ e<Uoff , _e< 0,

0, −Uoff ≤ e<Uon, _e> 0,

−1, −Uon ≤ e − Uoff , _e> 0,

−1, e< −Uon.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Subject to the following restrictions:

(1) Due to the fuel limitations carried by the RCS system,
the total working time of the nozzle is shown in
equation (7)

(2) According to the discrete characteristics of the RCS
nozzle, the generated control torque is as follows:

Mc �

MRCS, (u � 1),

0, (u � 0),

−MRCS, (u � −1),

⎧⎪⎪⎨

⎪⎪⎩
(18)

whereMc is the control torque generated by the RCS nozzle.

Max epochs or precision 
reached?

Start

Initialize model parameters

According to equations (10), (11), and (12), particle 
velocity and position information are updated

Stop

No
Next-generation

Step 1:

Step 2:

Step 3:

Step 4:

Step 6:

Control time and control variables are selected and 
discretized

According to the control quantity, the trajectory is 
calculated

Update the individual optimal fitness and entire particle 
optimal fitness

Step 5:

Figure 3: Process of propose PSO algorithm. After the optimi-
zation program starts, the particle is initialized first and then it-
eratively calculated according to the algorithm until the program is
terminated after the stop condition is satisfied.
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By selecting suitable parameters K, T, Uon, and Uoff, the
online control effect is as close as possible to the trajectory
optimization result of PSO [14]. Similarly, the online con-
troller parameters can also be optimized by using the PSO
method.

3.4. Guidance Law Design. Guidance can be defined as a
method of guiding and controlling the flight of a vehicle
toward a target. We need to design an appropriate
guidance law to enable the maneuvering reentry vehicle
along the predetermined trajectory, that is, to express

guidance law in terms of the relative relationship between
the vehicle and the target. Proportional navigation (PN) is
one of the most popular guidance methods [40, 41]. Here,
considering the influence of gravity, a modified PN law is
expressed as

_θc � K1 _q + K2
g

V
cos θ, (19)

where _θc is guidance command, and K1, K2 are guidance
gains.

According to equation (19), the guidance law can be
written in an integral formation:

Flight dynamic 
equations 

Control 
law

Guidance 
law

uxT, yT

–

e(t)q, q·

x, y, x·, y·

Reference model

Integrated 
navigation

Target 
information

ω, V·

RCS nozzle 
allocation

uRCSθc

x· = Ax + Bu
y = Cx

θ

Figure 4: Guidance and control structure of maneuverable reentry vehicle. A guidance command is generated according to the guidance law
by the current location information and the location information of the target. (e control system controls the nozzle according to the
guidance command.

–
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Figure 5: Structure of RCS.

0 20 40 60 80 100 120 140 160 180 200
Iteration counter

0

0.5

1

1.5

2

2.5

3

3.5

J

×104

Basic PSO
Improved PSO

Figure 6: Curve of objective function J with iteration counter.

6 Discrete Dynamics in Nature and Society



θc(t) − θ0 t0( 􏼁 � K1 q(t) − q t0( 􏼁( 􏼁 + K2 􏽚
t

to

g

V
cos θ􏼒 􏼓dt.

(20)

4. Numerical Simulations

In this section, trajectory simulations are presented to verify
the efficacy of nonlinear RCS suboptimal control algorithm
in detail. (e fourth-order Runge–Kutta method is used to
integrate the dynamic model. (e simulation parameters are
as follows: the RCS control force FRCS � 150N, minimum
switching time of nozzle Tmin � 0.1 s, and maximumworking
time Ttotal_Max � 80 s. Initial state values of the maneuverable
reentry vehicle: t0 � 0 s, m0 �1248.95 kg, v0 � 2500m/s,
x0� 0m, y0�150000m, ωz0� 0 rad/s,� 0 deg, ϑ0 � θ0 � 0 deg,
l� 2.14m. Main engine thrust P � 40 kN, mass flow
mc� 10 kg/s, working time 60 s. Target position x� 300km
and the end condition of the trajectory calculation is that the
height reaches 70 km reentry height.

4.1. Efficacy of Improved PSO Algorithm. Here in order to
validate the performance of the improved PSO, comparative
simulations are conducted between improved PSO with
exponential decreasing inertia weight and basic PSO with
constant inertia weight. (e initial conditions for the op-
timization design are set as follows. (e control parameters
of PSO are particle number m� 10, dimension n� 100,
c1 � c2 �1.8.(e constant inertia weight w � 0.8, exponential
decreasing inertial weight w � (1 − 0.8)e−0.03k + 0.8, and the
number of iteration reaches 200. (e objective function J
results are shown in Figure 6.

As shown in Figure 6, the value of objective function
with improved PSOmethod drops faster than that with basic
PSO in the initial stage, which indicates its better global

optimization ability. At the later stage of optimization, the
value of objective function with improved PSO is smaller,
which indicates that it has better local optimization capa-
bilities. It is seen that the objective function value remains at
the same value for a long iteration period, which indicates
that the particles have reached the global optimum point in
the feasible area.

4.2. Verification of Suboptimal Algorithm. Controller gains
are K� 1, T� 0.05. (e parameters of the Schmitt trigger
Uon � 1, Uoff � 0.1. Additionally, α is chosen as a state con-
straint of αlower � −15 deg, αupper �+15 deg. Comparative
simulation results between optimal and suboptimal algo-
rithms are shown in Figures 7–13.

From Figures 7–13, it can be concluded that

(1) Figures 7 and 8 show that the trajectory and velocity
curves with the optimal PSO algorithm are similar to
those with the suboptimal online algorithm, which
indicates that the online design has good
performance.

(2) Figures 9–11 indicate that the velocity inclination θ
of the optimal trajectory is smoother than that of the
suboptimal trajectory. From the angle of attack and
pitch curve (Figures 10 and 11), it can be seen that
the oscillation amplitude of the optimal trajectory is
smaller. In addition, there is a high maneuverable
with large angle of attack at the initial stage of op-
timal scheme, and then the angle of attack gradually
converges to zero. Because the direction of the ve-
locity is easier to change at lower speed, maneu-
verable at this time is beneficial to the overall
trajectory performance. Also we find that the
changing trend of angle of attack with suboptimal
online control is similar to that of PSO scheme.
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Figure 7: Trajectory curves under different conditions.
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(3) As shown in Figures 12 and 13, it can be indicated
that the RCS nozzle with suboptimal scheme has very
close opening time and total impulse consumption to
that of the PSO algorithm, which verifies the effec-
tiveness of the propose algorithm.

5. Conclusions

Based on the basic particle swarm optimization (PSO)
method, an exponentially decreasing inertia weight
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function is introduced to improve convergence perfor-
mance of the PSO algorithm. Considering PSO algorithm
spends long calculation time, a suboptimal control and
guidance scheme is developed for online practical design.
By tuning the control parameters, we try to acquire efficacy
as close as possible to that of the PSO-based solution which
provides a reference. Finally, comparative simulations are
conducted to verify the proposed optimization approach.
(e results indicate that the proposed optimization and
control algorithm has good performance for such RCS of
maneuverable reentry vehicles. (is paper proposes a new
parametric optimization design to solve a class of reaction
control system (RCS) problem with discrete switching
state, flexible working time, and finite-energy control for
maneuverable reentry vehicles. In order to enhance the
nonlinear global optimization capacity, an improved PSO
algorithm is used to find the optimal setting of the RCS
nozzle control variable by selecting the switch state and
working time as the RCS nozzle. For practical application
requirements, a suboptimal guidance scheme is online
designed. (e simulation results demonstrate that the
online control algorithm has good performance, which is
very close to the optimal scheme. (e closed-loop system
has good performance, satisfy the process constraints and
limitation of fuel consumption.

Meanwhile, the proposed PSO control method can be
extended to the composite control with RCS and pneumatic
control for reentry vehicles. (e real-time online pro-
gramming of the PSO algorithm has attracted more and
more attention, but the further improvement of the con-
vergence speed of the PSO has yet to be resolved.
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