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Highways provide the basis for safe and efficient driving. Road geometry plays a critical role in dynamic driving systems.
Contributing factors such as plane, longitudinal alignment, and traffic volume, as well as drivers’ sight characteristics, determine
the safe operating speed of cars and trucks. In turn, the operating speed influences the frequency and type of crashes on the
highways.Methods. Independent negative binomial and Poisson models are considered as the base approaches to modeling in this
study. However, random-parameter models reduce unobserved heterogeneity and obtain higher dimensions. (erefore, we
propose the random-parameter multivariate negative binomial (RPMNB) model to analyze the influence of the traffic, speed, road
geometry, and sight characteristics on the rear-end, bumping-guardrail, other, noncasualty, and casualty crashes. Subsequently,
we compute the goodness-of-fit and predictive measures to confirm the superiority of the proposed model. Finally, we also
calculate the elasticity effects to augment the comparison. Results. Among the significant variables, black spots, average annual
daily traffic volume (AADT), operating speed of cars, speed difference of cars, and length of the present plane curve positively
influence the crash risk, whereas the speed difference of trucks, length of the longitudinal slope corresponding to the minimum
grade, and stopping sight distance negatively influence the crash risk. Based on the results, several practical and efficient measures
can be taken to promote safety during the road design and operating processes. Moreover, the goodness-of-fit and predictive
measures clearly highlight the greater performance of the RPMNB model compared to standard models. (e elasticity effects
across all the models show comparable performance with the RPMNB model. (us, the RPMNB model reduces the unobserved
heterogeneity and yields better performance in terms of precision, with more consistent explanatory power compared to the
traditional models.

1. Introduction

(e highway is a dynamic system that includes drivers,
vehicles, roads, and environment. Drivers play important
roles, and inattention, distraction, and misjudgment are the
main causes of highway crashes. Nowadays, research studies
mainly focus on drivers. Meanwhile, the road characteristics,
which serve as an important basis of the dynamic system and
influence safety, are often neglected [1–3]. As the basis of
driving, road geometry has a very important impact on

safety. Almost 40% of all crashes attributed to driver mistake
or vehicle failure are fundamentally caused by road ge-
ometry [4]. Babukov et al. studied the internal relationship
between plane, profile parameters, and road safety in the
design of highways and made significant suggestions for
improving safety [4–7]. McGee et al. established statistical
models between the curve length, curvature, traffic volume,
and the crash frequency [8].

After studying 141,812 crashes, Pei and Ma focused on
the relationship between road design factors (plane, vertical,
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cross section, and intersection) and crashes and put forward
corresponding countermeasures [9]. Many types of research
have evaluated the safety of road geometry by visualization
and computer simulation. Hassan et al. simulated the in-
fluence of the 3D environment on driver vision and analyzed
the influence of a combination of the horizontal and vertical
curve on road safety [10–14]. (en, the Federal Highway
Administration developed the Interactive Highway Safety
Design Model (IHSDM). Software used the lane width, lane
number, horizontal alignment, vertical alignment, cross
section, and superelevation as the evaluation parameters to
check the consistency of the design [15–17]. Drivers often
attempt to improve the efficiency of transportation when
road and traffic conditions allow speeding, which causes
many crashes on the highway.(e Solomon and theMonash
University Accident Research Center modeled the rela-
tionship between crash rate and vehicle speed and found that
the higher the difference between the operating speed and
the average speed, the higher the crash rate [18, 19]. (e
average speed is often exceeded because of the favorable
geometry and environmental conditions of modern high-
ways. Meanwhile, the speed difference between cars and
trucks increases owing to the relatively poor power and
braking performance of trucks, which lead to frequent rear-
end crashes.

(e initial road alignment design was based on the
design speed, which was first proposed by the American
Association of State Highway and Transportation Officials
(AASHTO) as the key factor in road design. At the same
time, designers and researchers also used design speed to
evaluate the consistency of horizontal and longitudinal
profiles. (e expected speed would greatly exceed the design
speed during favorable road conditions, and the traditional
design method based on the design speed led to poor
continuity and imbalance in actual driving. In addition, the
drivers’ visual perception expressed poor consistency with
actual vehicle control [20]. Due to these limitations,
AASHTO later adopted the operating speed to dominate the
design, which is defined as the driving speed at the 85th
percentile selected by the actual measurement of medium-
skilled drivers under a free-flow state with good weather and
road conditions [21]. Lamm et al. studied the influence of
curve on the operating speed based on the design data,
vehicle speed, traffic volume, and crash data of 261 inter-
continental highway sections and determined the model of
the curve radius and operating speed [22, 23]. Anderson
et al. investigated the influence of curve radius on the op-
erating speed according to the speed attenuation while
passing the curve [24, 25]. Krammes et al. established the
operation speed model by collecting the operating speed and
design data of 138 plane curve sections based on 1,126 curve
sections as samples for a preliminary evaluation to deter-
mine the causes of accidents in curve sections and select
improvement methods [26]. Collins et al. evaluated the free-
flow condition by measuring the actual driving speed at the
midpoint of the curve [27–33]. Sil and Maji measured the
operating speed through the curve on three sections and

established a model between the speed at the curve and the
combined curves on the four-lane highway [34]. Based on
the existing research abroad, the operating speed model of
different vehicle types has been adopted in research in
China. In 2004, the Guidelines for Safety Evaluation of
Highway Projects proposed the highway speed model based
on many research datasets. Specifications for the Highway
Safety Audit published in 2015 optimized and improved the
speed model of low-grade highways [35]. (e evaluated
sections are divided into tangent sections, longitudinal slope
sections, horizontal curve sections, curved slope combina-
tion sections, tunnel sections, interchange sections, and
other sections for calculation according to the radius of the
horizontal curve and the slope of the profile. A sufficient
driving sight distance is directly related to the safety and
speed on the highway and is an important index of evalu-
ation. (e stopping sight distance enables drivers to stop,
meet, and overtake smoothly, and the transverse clear dis-
tance measures the safe zone allowed for lateral offset during
driving. Both distances are measurable representations of
sight characteristics [35].

In summary, previous research studies focused on the
contributing factors of road geometry or operating speed
characteristics separately, and the sight characteristics de-
termined by the road geometry alignments were rarely
studied. (is study takes the geometric, speed, and sight
characteristics into consideration simultaneously under a
single condition and then adopts the random-parameter
approach to reduce the interactions between various vari-
ables to acquire a higher dimension and discover the con-
tributing factors. (e traditional negative binomial and
Poisson models used in previous research studies become
complicated when analyzing crash types. In contrast, this
random-parameter multivariate negative binomial
(RPMNB) model allows for a more simplified framework
and reduces the unobserved heterogeneity with higher ac-
curacy. In this study, we collect three-year (2009–2011)
statistical crash data of the Beijing-Shanghai Highway as a
sample to analyze whether the road geometry, operating
speed, traffic volume, and sight characteristics affect the
crash types (rear-end, bumping-guardrail, roll-over, etc.).

2. Methodology

Many methodological approaches, such as the multivariate
Poisson (lognormal) model, zero-inflated negative binomial
model, and Poisson lognormal spatial and/or temporal
model typically address the crash rate considering the
number of crashes occurring over a roadway segment or at
an intersection [36–38].

Generally, some of the significant factors affecting the
crash rate are missed in the collected data or difficult to
analyze. (ese factors (called unobserved heterogeneity)
make a variation in the influence on the observed factors,
which may lead to misspecified parameters and erroneous
inferences. To reduce the influence of the unobserved
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heterogeneity, random parameters, latent-class (finite-
mixture) models, and Markov switching models are con-
sidered in the multivariate models [39].

2.1. Poisson (Negative Binomial) Regression Model. In sta-
tistics researches on crash frequency, Poisson regression is a
generalized linear model analysis used to model crash data.
(e response variable Y is assumed yielding to Poisson
distribution, with the expected value modeled by a linear
combination of unknown parameters. In Poisson regression,
the Poisson incidence rate μ is determined by Xk (the re-
gressor variables) [40–42]:

μ � te
β1X1+β2X2+···+βkXk( ). (1)

(e fundamental Poisson regression model (PRM) for
an observation i is written as

Pr Yi � yi|μi, ti( 􏼁 �
e

− μi ,ti μi, ti( 􏼁
yi

yi!
,

μi � tiμ xi
′β( 􏼁 � tie

β1X1i+β2X2i+···+βkXki( ),

(2)

where t is the exposure of a period of time and β1, β2, . . . , βk

are coefficients estimated as unknown parameters.
Negative binomial (NB) regression is a common gen-

eralization of Poisson regression including a gamma noise
variable [43]. (is model is very popular because it models
the Poisson heterogeneity with a gamma distribution, and
the variance is not equal to the mean restrictively. (e
negative binomial regression model (NBRM) meets the
equation

Pr Y � yi|μi, α( 􏼁 �
Γ yi + α− 1

􏼐 􏼑

Γ yi + 1( 􏼁Γ α−1
􏼐 􏼑

1
1 + αμi

􏼠 􏼡

α−1

αμi

1 + αμi

􏼠 􏼡

yi

, (3)

μi � e
ln ti( )+β1X1i+β2X2i+···+βkXki( ). (4)

When α is significantly different from 0, the negative
binomial regression is appropriate. Otherwise, the Poisson
model is better.

2.2. Zero-Inflated Poisson Model. When the crash data
contain excess zero-count values in the model, the well-
known zero-inflated Poisson model is adopted.

Pr(Y � 0) � π +(1 − π)e
− λ

,

Pr Y � yi( 􏼁 � (1 − π)
λyi e

− λ

yi!
, yi � 1, 2, 3, . . . ,

(5)

where yi is the nonnegative integer value; λ is the ith expected
Poisson count; and π is the probability of extra zeros.

2.3. Random-Parameter Multivariate Negative Binomial
Model

2.3.1. Random Parameters for Unobserved Heterogeneity.
(e PRM restricts the mean to be equal to the variance
(E�VAR), and the PRM model does not fit well in some
cases. When the model does not hold the equality, the data
may be overdispersed (E<VAR) or underdispersed
(E>VAR), and the standard errors of the estimated pa-
rameter of the PRM will be incorrect. To account for
overdispersion in the crash count data, PRM is promoted
and derived.

λik � e
b′xi+εik( ), (6)

where eεik are error terms following the gamma distribution
with mean 1 and variance α.

In response to the nonconstant explanatory variables in
the models, we developed the random parameters in each
estimated parameter to account for unobserved heteroge-
neity [39].

βlk � bk + φlk, (7)

where βlk denotes the lth explanatory variable for observation
l; bk are the mean parameter estimates; and φlk is a randomly
distributed term capturing unobserved heterogeneity.

2.3.2. Multivariate Negative Binomial Model. In recent re-
search studies, the general framework of the random-pa-
rameter multivariate negative binomial (RPMNB) model is
mostly proposed with the expected number of crashes
[44, 45], λ, in the ith road segment and kth crash types (in this
paper, these types are rear-end, bumping-guardrail, and
crash):

λik � e
βlkXik
′+εik( ), k � 1, 2, 3, (8)

where Xik � (1, X1k, X2k, . . . , XNk) is the independent
variable vector; βlk � (β0k, β1k, . . . , βNk) is the coefficient
vector; and εik is the multivariate error term distributed with
zero mean and variance θ2.

In the RPMNB model, the correlation ρ follows the
unstructured correlation covariance matrix, which repre-
sents the correlation between εik of models for crash type a
and b:
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M �

θ21 θ1θ2ρ12 θ1θ2ρ13
θ2θ1ρ21 θ22 θ2θ3ρ23
θ3θ1ρ31 θ3θ2ρ32 θ23

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

2.4. Model Comparison and Evaluation

2.4.1. Goodness of Fit. When analyzing the structure of the
crash datamodel across different crash types, it is important and
necessary to confirm the structure of the unobserved parame-
ters. (e likelihood ratio test is used to assess the models [46].

χ2 � −2 LL βR( 􏼁 − LL βU( 􏼁􏼂 􏼃, (10)

where βR and βU denote the log-likelihood at the conver-
gence of the restricted and unrestricted model, respectively.

Bayesian information criterion (BIC) is also used for
model comparison, which is a generalized version of the
Akaike information criterion (AIC) considering the
Bayesian equivalent [47]:

BIC � k ln(n) − 2 ln(L),

AIC � 2k − 2 ln(L),
(11)

where k and L denote the number of model parameters and
the likelihood function, respectively.

AIC introduces the penalty term to minimize the pa-
rameters of the model, which helps to reduce the possibility of
overfitting and promote the degree of model fitting (maximum
likelihood). BIC considers the number of samples, leading to a
larger penalty term than AIC. When the number of samples is
too large, BIC can effectively prevent the excessively high
complexity caused by the precision of the model. So, the
models with smaller AIC and BIC values perform better.

2.4.2. Prediction Accuracy. Other than BIC, we used root
mean square error (RMSE) to evaluate the accuracy of the
models. Similar to BIC, smaller RMSE values mean the
model predicts more accurately.

RMSE �

��������������

1
n0

􏽘

n0

j�1
Oj − Pj􏼐 􏼑

2

􏽶
􏽴

. (12)

At the same time, the mean absolute error (MAE) and
mean absolute percentage error (MAPE) are also used to
estimate the accuracy of models:

MAE �
1
n0

􏽘

n0

j�1
Oj − Pj􏼐 􏼑,

MAPE �
100%

n0
􏽘

n0

j�1

Oj − Pj

Oj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(13)

where Oj is the jth observation value; Pj is the jth predicted
value; and n0 is the number of observations.

3. Data Description

Yearly crash data from the Beijing-Shanghai Highway from
Xinyi to Jiangdu, from 2009 to 2011, were collected from the
traffic management department. Originally, the data were
used to record the emergency vehicle on the highway. (e
crash data contained 3,293 crashes in detail, including crash
type, location, time, vehicle type, climate, road surface
condition, and casualty condition. Rear-end and bumping-
guardrail crashes made up 52.9% and 30.3% of the crash
data, respectively. (e rear-end and bumping-guardrail
crash type are the focus of this research, but the other crash
types (roll-over, fire, scrub, and others) are also utilized in
the models to better explore the correlations to the first two
crash types. Table 1 summarizes descriptive statistics of the
five crash types in each section on the highway.

Besides, roadway geometric data are collected by road
design and construction drawings, which include road
geometric features. (e undivided four-lane highway from
Xinyi to Jiangdu in this study is 259.5 km in total, with the
design speed of 120 km/h, and includes 27 interchanges and
rest areas. We divide the road into 426 different sections
according to different horizontal alignment, vertical align-
ment, and interchange both-way. We obtain the AADT of
426 sections reported by roadway management agencies.

We adopt the modified crash frequency method to
identify the crash black spots and calculate the average crash
number of each section:

λ �
􏽐 mi

n
. (14)

(e critical value of the crash number is determined with
the confidence level of 95%:

R � λ + 1.96λ, i � 1, 2, . . . , n, (15)

where λ is the average crash number; mi is the crash number
in the ith section; n is the total number of sections; and R is
the critical value of the crash number.

(e actual crash number of each section is compared
with the critical value, and the section is identified as crash
black spots if the actual number is greater than R.

Based on the models in the Specifications for Highway
Safety Audit published in 2015, we calculated the operating
speeds of cars and trucks by segments according to different
geometric features [35].

(e stopping sight distance means the shortest distance
required for one ordinary driver to react and slow down or
stop when encountering obstacles while driving at a certain
speed. Based on the Guidelines for Design of Highway
Grade-separated Intersections [48], the stopping sight dis-
tances of the car and truck are equations (16) and (17),
respectively.

Scar �
v85t

3.6
+

v85/3.6( 􏼁
2

2gf
. (16)

(e truck drivers can see the vertical plane of the ob-
stacles at a considerable distance from the point of view with
the low speed, but this advantage is not enough to make up
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for the poor braking performance. Despite the high view-
point, truck drivers also lose their sight in places with limited
lateral line of sight, especially

Struck �
v85t

3.6
+

v85/3.6( 􏼁
2

2g(f + i)
, (17)

where Scar and Struck are the stopping sight distance of the
car and truck, respectively; v85 is the the operating speed
(km/h); t is the reaction time, takes 2.5 s generally (judging
time as 1.5 s and running time as 1.0 s); g is the gravitational
acceleration, takes 9.8m/s2; i is the longitudinal grade; and f

is the longitudinal friction coefficient between truck tires and
the road surface which takes 0.17 generally.

Corrugated beam guardrails are set in the middle and
beside the road across all sections, which affect the drivers`
sight. We consider the biggest transverse clear distance to
confirm the sight safety, which means the distance between
the curve of sight and the track. When the plane curve is
sharp, the transverse clear distance should be judged on the
inside lane.We calculate the required stopping sight distance
of each section for safety following the equation

H � Rs 1 − cos
c

2
􏼒 􏼓, (18)

where H is the biggest transverse clear distance; Rs is the
radius of the inside lane; and c is the central angle of line of
sight.

As shown in Table 2, we summarize the traffic, speed,
geometric, and sight characteristics as the independent
variables.

4. Results and Discussion

4.1. Model Specification. Estimation of traditional and
proposed models is involved in the empirical analysis: (1)
traditional model: independent (separate model for 5 dif-
ferent crash types) NB model and independent Poisson
model are adopted as bases. Meanwhile, two models are
estimated including the zero-inflated multivariate NB
(ZIMNB) model and zero-inflated multivariate Poisson
(ZIMP) model considering the excess zero-count data; (2)
proposed model: random-parameter multivariate NB
(RPMNB) model and random-parameter multivariate
Poisson (RPMP) model are proposed to estimate.(e results
of the proposed models are shown in Tables 3 and 4, and
Appendix provides the results of corresponding traditional
models.

Subsequently, each base effect is estimated for common
exogenous variables across five crash types, and we estimate
the deviation of variables versus the base for each crash type.
(e corresponding t-statistic will present statistically sig-
nificant if the deviation term offers a difference from the base
effect. Based on the t-statistic, the parameter does not reveal
differential sensitivity for the base crash type if the variable is
statistically insignificant.

4.2. Model Estimation Results. In this section, we conduct a
detailed discussion of the significant factors affecting crash
count components on different crash types. (e model es-
timation results for the RPMPmodel and RPMNBmodel are
shown in Tables 3 and 4, respectively.

Similar to the traditional approach, we presented the
individual effect of each exogenous variable accommodating
to the crash propensity. Taken the constants estimated in
various crash type propensity equations as an example, the
effect of the casualty crash in Table 3 can be computed as
1.867 (base of the rear-end crash) ±1.000 (casualty crash
deviation)� 0.867. At the same time, we identify the number
of significant parameters estimated across the five crash
types and estimate one individual parameter across 5 crash
types. (e positive value of the variable in Table 3 indicates
there will be more crashes with the increase of the variable,
and less crashes, otherwise. As shown in Tables 3 and 4, the
significant factors in the two models are not exactly the
same. (en, we focus on the results of the RPMNB model
while analyzing the effects of factors, and the differences in
the RPMP model are appended.

4.2.1. Constant. (e constant represents the intercept of the
crash type with exogenous variables, without any substantive
interpretation.

4.2.2. Traffic Characteristics. Whether there is an inter-
change in the section is found to negatively influence other,
noncasualty, and casualty crashes indicating a lower like-
lihood of crash propensity for these three crash types in
interchange sections. Compared with the general sections,
more vehicles accelerate, decelerate, and change lanes
leading to more interweaving areas in the interchange
sections, getting more attention from drivers and causing
fewer crashes to some extent. (e results are consistent with
the earlier research on the highway interchange [48]. And
the impact is also found not significantly different for rear-

Table 1: Descriptive statistics of dependent variables.

Variable names Definitions Minimum Maximum Mean SD
Rear-end crash Rear-end crash occurs when a vehicle strikes the one in front of it 1 27 4.58 3.93
Bumping-guardrail
crash A vehicle strikes the guardrails in the middle of or outside the highways 1 14 3.08 2.23

Other crash
(is type includes roll-over (a vehicle tips over onto its side or roof), fire (a
vehicle caught fire due to mechanical failure), scrub (crashes caused by side

scrub between vehicles), and other crashes
0 14 1.18 1.59

Noncasualty crash Crashes leading to property damage only 0 42 6.70 6.41
Casualty crash Crashes resulted in injury, disability, or fatality 0 5 0.39 0.75
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Table 3: Random-parameter multivariate Poisson model estimation results.

Variables1 No.2 Rear-end estimate
(t-stat)

Bumping-guardrail estimate
(t-stat)

Other estimate
(t-stat)

Noncasualty estimate
(t-stat)

Casualty estimate
(t-stat)

Constant 5 0.0432 (0.27) 0.501 (3.17) −0.527 (−2.11) −0.0332 (−0.21) −0.430 (−1.13)
Traffic characteristics
Interchange 3 —3 — −0.422 (−2.91) −0.164 (−1.95) −0.601 (−2.55)
Black spots 5 0.0986 (1.24) 0.859 (9.77) 1.276 (7.17) 1.196 (9.54) 1.322 (4.88)
AADT 4 1.057 (11.06) 0.00000936 (3.00) 0.0000126 (2.52) 0.0000365 (11.55) —
Speed characteristics
VO−car 5 −0.0131 (−3.63) −0.00812 (−2.38) −0.0140 (−2.63) −0.0177 (−4.58) −0.016 (−1.85)
ΔVO−car 5 0.0114 (3.31) 0.00828 (2.45) 0.0109 (2.09) 0.0119 (3.25) 0.0237 (2.45)
VO−truck 2 0.0210 (3.14) — — −0.0272 (3.82) —
ΔVO−truck 4 −0.0190 (−4.09) −0.00148 (0.22) −0.0182 (−2.67) −0.0221 (−4.40) —
Geometric characteristics
Lfront 1 — — — — 0.000251 (2.13)
Rpresent 2 0.000000361 (3.69) — — 0.000000375 (3.63) —
Lpresent 5 0.000588 (10.32) 0.000468 (8.12) 0.000755 (8.09) 0.000753 (11.64) 0.000748 (6.25)
Lback 1 — −0.000133 (−2.48) — — —
Lsmin 2 −0.000357 (−2.51) — — −0.000423 (−2.83) —
Sight characteristics
Struck 5 −0.00540 (−2.78) −0.00633 (−2.86) −0.0111 (−3.20) −0.00706 (−3.44) −0.0135 (−2.51)
Hcar 3 −0.0860 (−2.13) −0.105 (−2.57) — −0.0878 (−2.06) —
Note: variables not shown here attribute to insignificant. 1Variable definitions and units can be seen in Table 2. 2Number of parameters estimated. 3In-
significant at the 95% significance level. Total number of parameters: 52; log-likelihood: −14353.079; AIC: 28996.159; BIC: 29567.814; χ2: 21264.957.

Table 2: Summary statistics of independent variables.

Variable names Definition Min. Max. Mean SD
Traffic characteristics
Interchange 1, interchange in the section (25.8%); 0, otherwise (74.2%) 0.00 1.00 0.25 0.44
Black spots 1, the crash number is higher than 18 (7.0%); 0, otherwise (93.0%) 0.00 1.00 0.07 0.26
AADT Average annual daily traffic volume 31158 68836 46685.94 11969.59
Speed characteristics
VO−car Operating speed of cars 88.92 134.37 121.91 21.70
ΔVO−car Speed difference of cars with the adjacent segment −85.93 78.03 0.00 34.07
VO−truck Operating speed of trucks 60.38 104.86 78.80 12.34
ΔVO−truck Speed difference of trucks with the adjacent segment −34.01 25.72 0.01 19.89
ΔVO Speed difference between cars and trucks 12.64 73.99 43.11 16.99
Geometric
characteristics
Rfront Radius of the plane curve of the front section 5597.0 1000000.0 370713.6 478894.40
Lfront Length of the plane curve of the front section 45.0 3677.0 1218.48 703.48
Rpresent Radius of the present plane curve 5597.0 1000000.0 370717.10 478891.70
Lpresent Length of the present plane curve 45.0 3677.0 1218.48 703.48
Rback Radius of the plane curve of the back section 5597.0 1000000.0 373043.70 479536.80
Lback Length of the plane curve of the back section 45.0 3677.0 1218.48 703.48
imin Minimum longitudinal grade of the current section −1.63 1.63 0.00 0.47

Lsmin
Length of the longitudinal slope corresponding to the minimum

grade 240.00 1740.00 773.33 296.03

imax Maximum longitudinal grade of the current section −2.50 2.50 0.00 0.97

Lsmax
Length of the longitudinal slope corresponding to the maximum

grade 362.00 1740.00 652.63 248.00

Sight characteristics
Scar Stopping sight distance of cars 244.00 1009.90 439.06 142.23
Struck Stopping sight distance of trucks 52.00 279.50 87.48 29.92
Hcar Transverse clear distance of cars 0.02 6.59 1.66 1.71
Htruck Transverse clear distance of trucks 0.00 0.47 0.06 0.06
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end and bumping-guardrail crashes, which shows that these
two crash types are not associated with the interchange
areas.

(e corresponding parameter of black spots offers a
positive impact on crash occurrence for rear-end, bumping-
guardrail, other, noncasualty, and casualty crashes revealing
a higher likelihood of crashes with the increased proportion
of black spots. More crashes across all the crash types oc-
curred in the black spots than other sections. Similarly, the
AADT offers a positive influence across the five crash types
in the RPMNB model indicating more crashes occur with
more traffic. Greater traffic volume results in higher crash
risk [49]. (en, the AADT indicates no significance on the
casualty crashes in the RPMP model.

4.2.3. Speed Characteristics. In terms of operating speed, the
estimated results of both RPMP model and RPMNB model
show that the higher operating speed of cars is likely to result
in less crash risk across five crash types. (e finding is
expected because drivers of cars are likely to drive at a higher
speed under good traffic conditions in the sections with great
geometric alignment.

(e estimated results show that the speed difference of
cars with the adjacent segment shows the same positive effect
on all the crash types. (e higher speed difference of cars
between adjacent segments leads to higher crash risk, and
this finding is corresponding to the Solomon curve [18].
Oppositely, the speed difference of trucks with the adjacent
segment shows the same negative effect on all the crash types
except the casualty crash.

(e result of trucks is contrary, and the estimated
variable of the speed difference of trucks shows a negative
influence on the rear-end, bumping-guardrail, other, and
noncasualty crashes and an insignificant effect on the ca-
sualty crashes. (e reasonable explanation is that the poor
power and braking performance of trucks limit the operating
speed. When the design speed reaches a certain value, the
operating speed will not increase with the improvement of
the geometric alignment. And the operating speed restricted
by the poor geometric alignment of the sections reduces the
crash risk. (e operating speed of trucks has a positive
influence on the risk of rear-end crashes and a negative
influence on the noncasualty crashes. (e higher operating
speed of trucks leads to more rear-end crashes and less
casualty in the crashes.

Relative to the cars, the trucks show poor power and
braking performance. (e greater operating speed results in
a higher propensity of rear-end crashes and a smaller dif-
ference between cars and trucks, which lead to less collision
impact and damage in the crashes.

4.2.4. Geometric Characteristics. (e length of the present
plane curve presents a positive effect on the five crash types,
which is perhaps indicating that the longer length of the
plane curve results in more crash risk propensity. (e
reasonable explanation for this result is that the drivers will
adapt to the curvature of the curve gradually, causing the
fatigue or distraction of drivers. Otherwise, this adaption
causes the drivers to accelerate to the speed not suitable for
the geometric alignment, leading to more crashes. (e

Table 4: Random-parameter multivariate negative binomial model estimation results.

Variables1 No.2 Rear-end estimate
(t-stat)

Bumping-guardrail
estimate (t-stat)

Other estimate
(t-stat)

Noncasualty estimate
(t-stat)

Casualty estimate
(t-stat)

Constant 5 1.867 (1.77) 15.393 (15.21) 11.763 (0.02) −0.604 (−3.49) 0.867 (0.85)
Traffic
characteristics
Interchange 3 —3 — −0.422 (−2.91) −0.165 (−2.05) −0.636 (−2.58)
Black spots 5 1.048 (11.25) 0.859 (9.77) 1.276 (7.17) 1.052 (12.37) 1.274 (4.97)
AADT 5 0.0000254 (7.90) 0.00000936 (3.00) 0.0000126 (2.52) 0.0000322 (11.11) −0.0000128 (−1.63)
Speed characteristics
VO−car 5 −0.0120 (−3.37) −0.00795 (−2.32) −0.0161 (−3.10) −0.0180 (−5.34) −0.0165 (−1.89)
ΔVO−car 5 0.00999 (2.76) 0.00788 (2.29) 0.0120 (2.22) 0.0103 (3.07) 0.0231 (2.30)
VO−truck 2 0.0200 (2.92) — — −0.0326 (4.93) —
ΔVO−truck 4 −0.0189 (−4.02) −0.00948 (−2.12) −0.020 (−3.18) −0.0243 (−5.44) —
Geometric characteristics
Rfront 2 0.000000173 (1.98) — — 0.00000017 (1.91) —
Lfront 1 — — — — 0.000278 (2.44)
Rpresent 2 0.000000359 (3.72) — — 0.000000365 (3.75) —
Lpresent 5 0.000557 (9.86) 0.000468 (8.12) 0.000672 (7.32) 0.000685 (11.07) 0.000747 (6.44)
Lback 1 — −0.000133 (−2.48) — — —
Lsmin 3 −0.000319 (−2.34) — — −0.000453 (−3.19) −0.000608 (−1.85)
Lsmax 1 — — — −0.000420 (−2.17) —
Sight characteristics
Struck 5 −0.00493 (−2.29) −0.0059 (−2.61) −0.0107 (−3.01) −0.00706 (−3.44) −0.0135 (−2.51)
Hcar 2 — −0.100 (−2.40) — −0.0878 (−2.06) —
Total number of parameters: 56; log-likelihood: −14326.558; AIC: 28985.114; BIC: 29610.316; χ2:23043.735.

Discrete Dynamics in Nature and Society 7



positive effect of the radius of the present plane curve on the
rear-end and casualty crashes shows the same tendency.

Concerning the radius of the plane curve of the front
section, the variable is found to have a positive influence on
the rear-end and noncasualty crashes with relatively little
influence coefficients (0.000000359 and 0.000000365) in the
RPMNB model. However, the estimated results are not
found in the RPMP model. (e vehicles will run at an
uncoordinated speed when transiting to a smaller radius and
increasing the rear-end crash propensity. Similarly, the
coefficient of the length of the plane curve of the front
section shows a positive influence on the casualty crashes.
(e length of the longitudinal slope corresponding to the
minimum grade is also found to have a negative influence on
the probability of rear-end, noncasualty, and casualty
crashes in the RPMNBmodel. And in the RPMPmodel, only
the rear-end and noncasualty crashes show significance.
Among the road sections with the small longitudinal grade,
the trucks show greater speed with less speed difference from
cars, which promotes safety. In the RPMNB model, the
length of the longitudinal slope corresponding to the
maximum grade also presents a negative influence on the
noncasualty crashes. However, the results are not present in
the RPMP model.

4.2.5. Visibility Characteristics. As expected, the coefficient
associated with the stopping sight distance of trucks offers a
negative effect on the crash risk of all the crash types. (e
likelihood of all single-vehicle crashes will reduce with
higher stopping sight distance of trucks.

(e visibility field and distance in front of the vehicle are
important for safe and effective driving on the highway. (e
speed and direction of the vehicles depend on the visibility of
the ahead road and surrounding environment. (erefore,
the higher stopping sight distance of the truck facilitates the
drivers to control the direction more accurately, leading to
fewer crashes. Meanwhile, the transverse clear distance of
cars indicates negative effects on the rear-end, bumping-
guardrail, and noncasualty crashes in the RPMPmodel. And
the transverse clear distance of cars only shows a negative
influence on bumping-guardrail and noncasualty crashes in
the RPMNBmodel. (emore transverse safe zone allows for
a higher tolerance for vehicles, which leads to fewer crashes.

4.3. Model Comparisons. Statistical measures such as log-
likelihood, AIC, and BIC values are calculated to measure
the goodness of fit in the estimated models, and the results
are shown in Table 5.

Based on the comparison of AIC and BIC values, we
firstly find the models with zero-inflated effects are not
suitable for the crash data in this study. Secondly, the models
considering effects caused by unobserved heterogeneity
perform better than the independent models. Finally, the
proposed models estimate efficient and accurate parameters
in the parsimonious model systems. To assess the predictive
accuracy of the estimatedmodels, we used RMSE (root mean
square error), MAE (mean absolute error), and MAPE

(mean absolute percentage error) for discussion. Table 6
presents the values of these measures.

Despite the difference in the total number of parameters
between the two models (56 vs. 52), the performance of the
two models across five crash types is quite similar. From the
total values of the three measures, we can observe that the
RPMNB model performs better than the RPMP model.
From the perspective of different crash types, the RPMP
model performs marginally better than the RPMNB model
for the measures with respect to bumping-guardrail and
noncasualty crashes, and RPMNB performs better in terms
of rear-end, other, noncasualty, and casualty crashes. (e
difference in the number of parameters across the two
models makes no effects on the deviation measures.

4.4. Elasticity Effects. To provide more insight and explain
the marginal effects of the exogenous variables, the elasticity
effect is computed for RPMNB and RPMNB across all the
crash types. Elasticity effect denotes an estimate of the effect
of a variable on the expected frequency assuming all the
other variables take the average values. (e elasticity effect is
the effect on the expected frequency λi of a 1% change in the
variable, which is as follows:

E
λi

xik
�

zλi

λi

×
xik

zxik

� βkxik, (19)

where xik is the value of the kth independent variable for
observation i; βk is the estimated parameter for the kth
independent variable; and λi is the expected frequency for
observation i.

As shown in Figure 1, there is not any large difference in
the elasticity effects of the two models across five crash types.
And almost half of the number of the variables make very
little effects (41 out of 79).

We observe that there are significant differences in the
elasticity effects for different crash types across different
models. With respect to the length of the present plane curve
for the rear-end crashes, the RPMNBmodel predicts a 27.4%
increase, while a 52.7% increase from the RPMP.Most likely,
the nonlinearity of the two models results in such
differences.

5. Conclusions

(e empirical analysis was based on the traffic crash data
from the Beijing-Shanghai Highway for the year 2009–2011
and the road design and construction drawings including the
road geometric features. (e road geometric alignment,
operating speed, traffic volume, and sight distance are
considered as the exogenous variables across the traditional
and proposed models.

(e traditional negative binomial and Poisson models
are commonly adopted in the analysis on crash count fre-
quency to analyze the impacts of various factors. To reduce
the influence of the unobserved heterogeneity and get higher
dimensions, we adopt the random-parameter multivariate
NB (RPMNB) model and random-parameter multivariate
Poisson (RPMP) model to analyze the impacts on different
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crash types including rear-end, bumping-guardrails, non-
casualty, and casualty crashes, with the traditional models as
the base.

Viewing on the traffic characteristic, more rear-end,
bumping-guardrail, other, and noncasualty crashes occurred
with more black spots and AADT, while other, noncasualty,
and casualty crashes happened in interchange sections less
likely. For speed characteristics, the crash risk of five types is
greater with the higher operating speed of cars, while greater
speed difference of cars results in more crashes across five
types. Oppositely, the greater speed difference of trucks

results in less rear-end, bumping-guardrail, other, and
noncasualty crashes. As for the road geometry, more crashes
occurred on the longer length of the present plane curve,
while the greater length of the longitudinal slope corre-
sponding to the minimum grade reduces the crash pro-
pensity. Considering the sight characteristics, truck drivers
with greater stopping sight distance perform safer on the
highways.

From the perspective of road design, to avoid the long
length of a plane curve with big curvature and reduce the
length of the longitudinal slope with large grade are

Interchange

Black spots 
AADT

Vo-car

ΔVo-car
ΔVo-truck

L present

S truck
H car

Rear-end crash Bumping-guardrail crash Other crash

Elasticity effect across two models for five crash types

Noncasualty crash Casualty crash
RPMNB RPMP RPMNB RPMP RPMNB RPMP RPMNB RPMP RPMNB RPMP

–1.00

–0.50

0.00

0.50

1.00

1.50

Figure 1: Elasticity effects across two models (RPMNB and RPMP) for 5 crash types.

Table 5: Goodness-of-fit measure of six models.

Model Total no. Log-likelihood AIC BIC
Independent NB model 55 −14,352.787 29,007.581 29,602.802
Independent Poisson model 61 −16,595.848 33,441.697 33,934.501
ZIMNB model 53 −14,352.888 29,131.770 29,674.168
ZIMP model 53 −16,194.117 32,662.229 33,203.686
RPMNB model 52 −14,326.558 28,985.114 29,610.316
RPMP model 56 −14,353.079 28,996.159 29,567.814

Table 6: Predictive performance measure of two models (RPMNB and RPMP).

Crash type
RMSE MAE MAPE

RPMNB RPMP RPMNB RPMP RPMNB RPMP
Rear-end 7.413 8.374 6.551 6.941 1.433 1.638
Bumping-guardrail 11.070 10.833∗ 9.781 9.551∗ 3.639 2.919∗
Other crash 12.222 12.983 10.661 11.051 5.349 5.989
Noncasualty crash 1.643 1.597∗ 1.253 1.252∗ 0.136 0.128∗
Casualty crash 14.351 15.105 12.811 13.298 10.372 11.116
Total 46.699 48.892 41.055 42.092 20.929 21.789
Note: RPMNB� random-parameter multivariate negative binomial model. RPMP� random-parameter multivariate Poisson model. ∗Measures where the
RPMP model performs better.
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beneficial for highway safety. To reduce the interference
between cars and trucks, it is suggested to adopt the lane
distribution mode of different vehicle types. Set up door-
frame traffic signs along with pavement markings to remind
the drivers of trucks to drive in the outside lane and the ones
of cars to drive in the inside lane.

With respect to the data fit, the comparison exercise
including log-likelihood, AIC, and BIC value highlights the
superiority of the multivariate models over the traditional
models. Based on the exercise, the RPMNB model shows
identical performance even with more numbers of signifi-
cant parameters compared with the RPMPmodel (56 vs. 52).

Table 7: Independent negative binomial model estimation results.

Variables1 No.2 Rear-end estimate
(t-stat)

Bumping-guardrail estimate
(t-stat)

Other estimate
(t-stat)

Noncasualty estimate
(t-stat)

Casualty estimate
(t-stat)

Constant 5 0.043 (0.27) 0.502 (3.07) −0.528 (−2.11) −0.033 (−0.21) −0.431 (−1.13)
Traffic characteristics
Interchange 3 —3 — −0.422 (−2.91) −0.165 (−1.95) −0.601 (−2.55)
Black spots 5 1.057 (11.06) 0.859 (9.77) 1.276 (7.17) 1.196 (9.54) 1.322 (4.88)
AADT 0.00003 (8.66) 0.00001 (3.00) 0.00001 (2.52) 0.00004 (11.55) —
Speed characteristics
VO−car 5 −0.013 (−3.63) −0.008 (−2.38) −0.014 (−2.63) −0.017 (−4.58) −0.016 (−1.85)
ΔVO−car 5 0.011 (3.31) 0.008 (2.45) 0.010 (2.09) 0.011 (3.25) 0.023 (0.014)
VO−truck 2 0.021 (3.14) — — 0.027 (3.82) —
ΔVO−truck 4 −0.019 (−4.09) −0.009 (−2.11) −0.018 (−2.67) −0.022 (−4.40) —
Geometric characteristics
Lfront 1 — — — — 0.000251 (2.13)
Rpresent 2 0.00000036 (3.63) — — 0.000000379 (3.60) —
Lpresent 5 0.0005888 (10.28) 0.0004658 (8.04) 0.0007505 (8.02) 0.0007521 (11.57) 0.000750 (6.23)
Lback 1 — −0.0001341 (−2.49) — — —
Lsmin 4 −0.000356 (−2.5) — −0.0004069 (−1.88) −0.0004248 (−2.83) −0.000586 (−1.76)
Sight characteristics
Struck 5 −0.054 (−2.78) −0.006 (−2.86) −0.011 (−3.20) −0.007 (−3.44) −0.013 (−2.51)
Hcar 3 −0.086 (−2.13) −0.105 (−2.57) — −0.087 (−2.06) —
Note: 1variable definitions and units can be seen in Table 2. Variables not shown here attribute to insignificant. 2Number of parameters estimated. 3In-
significant at the 95% significance level. Total number of parameters: 55; log-likelihood: −14352.787; AIC: 29007.581; BIC: 29602.802; χ2:21274.146.

Table 8: Independent Poisson model estimation results.

Variables1 No.2 Rear-end estimate
(t-stat)

Bumping-guardrail estimate
(t-stat)

Other estimate
(t-stat)

Noncasualty estimate
(t-stat)

Casualty estimate
(t-stat)

Constant 5 0.177 (1.41) 0.515 (3.27) −0.460 (−2.31) 0.228 (2.51) −0.348 (−1.07)
Traffic characteristics
Interchange 3 —3 — −0.3482 (−3.01) −0.088 (−1.93) −0.529 (−2.54)
Black spots 5 1.020 (16.68) 0.859 (10.40) 1.227 (10.68) 1.083 (23.20) 1.316 (6.10)
AADT 5 0.0000236 (10.04) 0.00000909 (3.03) 0.000011 (2.77) 0.0000312 (18.14) −0.000014 (0.047)
Speed characteristics
VO−car 5 −0.0134 (−5.96) −0.00807 (−2.81) −0.0144 (−3.73) −0.0181 (−10.98) −0.0154 (−2.05)
VO−car 5 0.0119 (5.27) 0.00829 (2.85) 0.0112 (2.80) 0.0124 (7.53) 0.0219 (2.70)
VO−truck 2 0.0209 (4.86) — — 0.0285 (8.90) —
ΔVO−truck 4 −0.0196 (−6.81) −0.00939 (−2.54) −0.0190 (−3.90) −0.0234 (−11.05) —
Geometric characteristics
Rfront 2 0.000000154 (2.54) — — 0.000000148 (3.36) —
Lfront 3 — — — 0.0000506 (1.94) 0.000272 (2.62)
Rpresent 2 0.000000410 (6.12) — — 0.000000375 (7.71) —
Lpresent 5 0.000567 (15.62) 0.000460 (9.02) 0.000659 (10.59) 0.000630 (24.12) 0.00075 (7.16)
Lback 1 — −0.000131 (−2.71) — — —
imin 1 — — — −0.108 (−2.44) —
Lsmin 4 −0.0003483 (−3.67) — −0.0004866 (−2.91) −0.000437 (−6.18) −0.000644 (−2.12)
Sight characteristics
Struck 5 −0.00644 (−4.78) −0.00641 (−3.35) −0.0118 (−4.28) −0.00847 (−8.14) −0.0142 (−3.03)
Hcar 4 −0.104 (−3.93) −0.106 (−3.06) −0.110 (−2.37) −0.1232 (−6.11) —
Total number of parameters: 61; log-likelihood: −16595.848; AIC: 33441.697; BIC: 33934.501; χ2:50507.432.
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To quantify the predictive performance measure, we
calculate the elasticity effects of significant variables in-
cluding interchange, black spots, AADT, VO−car, ΔVO−car,
ΔVO−truck, Lpresent, Struck, and Hcar for both RPMNB and
RPMP models. Significant differences in the elasticity effects
exist for different crash types across the two models, which
are attributed to the nonlinearity of the two models.

Really, more efforts can be done on further research.
With the respect to the variables, more detailed information
can be added to reduce the parameter explosion, such as the
proportion of trucks in each section and distinguishing the
rear-end crash between different vehicle types. Otherwise,
the spatial and temporal terms of the crashes are beneficial
for the models to reduce the potential unobserved effects,

Table 9: Zero-inflated multivariate negative binomial model estimation results.

Variables1 No.2 Rear-end estimate
(t-stat)

Bumping-guardrail estimate
(t-stat)

Other estimate
(t-stat)

Noncasualty estimate
(t-stat)

Casualty estimate
(t-stat)

Constant 5 0.0433 (0.27) 0.501 (3.07) −0.527 (−2.11) −0.0191 (−0.12) −0.430 (−1.13)
Traffic characteristics
Interchange 3 —3 — −0.422 (−2.91) −0.164 (−1.95) −0.601 (−2.55)
Black spots 5 1.057 (11.06) 0.859 (9.77) 1.276 (7.17) 1.196 (9.54) 1.322 (4.88)
AADT 4 0.0000263 (8.66) 0.00000936 (3.00) 0.0000126 (2.52) 0.0000365 (11.55) —
Speed characteristics
VO−car 5 −0.0131 (−3.63) −0.00812 (−2.38) −0.0140 (−2.63) −0.0177 (−4.58) −0.0161 (−1.85)
ΔVO−car 5 0.0114 (3.31) 0.00828 (2.45) 0.0109 (2.09) 0.0119 (3.25) 0.0237 (2.45)
VO−truck 2 0.0210 (3.14) — — 0.0272 (3.82) —
ΔVO−truck 4 −0.0190 (−4.09) −0.00934 (−2.11) −0.0182 (−2.67) −0.0221 (−4.40) —
Geometric characteristics
Lfront 1 — — — — 0.000251 (2.13)
Rpresent 2 0.000000361 (3.69) — — 0.000000375 (3.63) —
Lpresent 5 0.000588 (10.32) 0.000468 (8.12) 0.000755 (8.09) 0.000753 (11.64) 0.000748 (6.25)
Lback 1 — −0.000133 (−2.48) — — —
Lsmin 3 −0.000357 (−2.51) — — −0.000423 (−2.83) −0.000588 (−1.76)
Sight characteristics
Struck 5 −0.00540 (−2.78) −0.00633 (−2.86) −0.0111 (−3.20) −0.00706 (−3.44) −0.0135 (−2.51)
Hcar 3 −0.0860 (−2.13) −0.105 (−2.57) — −0.0878 (−2.06) —
Total number of parameters: 53; log-likelihood: −14352.888; AIC: 29131.777; BIC: 29674.168; χ2:19426.561.

Table 10: Zero-inflated multivariate Poisson model estimation results.

Variables1 No.2 Rear-end estimate
(t-stat)

Bumping-guardrail estimate
(t-stat)

Other estimate
(t-stat)

Noncasualty estimate
(t-stat)

Casualty estimate
(t-stat)

Constant 5 0.177 (1.41) 0.515 (3.27) −0.228 (−1.02) 0.426 (4.48) −0.0568 (−0.16)
Traffic characteristics
Interchange 2 —3 — −0.314 (−2.48) — −0.552 (−2.46)
Black spots 5 1.020 (16.68) 0.859 (10.40) 1.004 (7.92) 1.050 (22.56) 1.230 (5.18)
AADT 4 0.0000236 (10.04) 0.00000909 (3.03) 0.0000114 (2.62) 0.0000282 (15.83) —
Speed characteristics
VO−car 4 −0.0134 (−5.96) −0.00807 (−2.81) −0.00999 (−2.21) −0.0155 (−9.21) —
ΔVO−car 4 0.0119 (5.27) 0.00829 (2.85) — 0.0113 (6.76) 0.0235 (2.48)
VO−truck 2 0.0209 (4.86) — — 0.0228 (6.93) —
ΔVO−truck 4 −0.0196 (−6.81) −0.00939 (−2.54) −0.0142 (−2.62) −0.202 (−9.33) —
Geometric characteristics
Rfront 2 0.000000154 (2.54) — — 0.000000110 (2.45) —
Lfront 1 — — — — 0.000239 (2.13)
Rpresent 2 0.00000041 (6.12) — — 0.000000336 (6.75) —
Lpresent 5 0.000567 (15.62) 0.000460 (9.02) 0.000606 (8.71) 0.000595 (21.66) 0.000735 (6.54)
Rback 1 — — — 0.000000093 (2.08) —
Lback 1 — −0.000131 (−2.71) — — —
Lsmin 3 −0.000348 (−3.67) — −0.000545 (−3.07) −0.000423 (−2.83) —
Sight characteristics
Struck 5 −0.00644 (−4.78) −0.00641 (−3.35) −0.0106 (−3.51) −0.00696 (−6.65) −0.0137 (−2.61)
Hcar 3 −0.104 (−3.93) −0.106 (−3.06) — −0.107 (−5.39) —
Total number of parameters: 53; log-likelihood: −16194.117; AIC: 32662.229; BIC: 33203.686; χ2:41460.088.
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which can be considered in the future. Furthermore, the
other methodological approaches such as latent-class, finite-
mixture, and Markov switching models can be used to
confirm the finding of this study.

Appendix

(e estimation results of the independent negative binomial
(INB) model, independent Poisson (IP) model, zero-inflated
multivariate negative binomial (ZIMNB) model, and zero-
inflated multivariate Poisson (ZIMP) model are shown in
Tables 7–10. And the goodness-of-fit measure of the four
models is shown in Table 5.

Based on the comparison in Table 5, the ZIMNB model
has higher AIC and BIC values than the independent NB
model and RPMNB model. (e length of the longitudinal
slope corresponding to the minimum grade indicates a
negative influence on the casualty crashes in the ZIMNB
model, while the same result is not shown in the RPMNB
model.

As shown in Table 8, the number of parameters esti-
mated in the ZIMPmodel is 53, which is the least in the three
Poisson models. For example, the common significant
factors such as interchange show no significance on the
noncasualty crashes in the ZIMPmodel. However, the bigger
AIC and BIC values indicate that the ZIMP model performs
worse than the RPMP model, even with fewer parameters.
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