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+e aim of this paper is to forecast monthly crude oil price with a hierarchical shrinkage approach, which utilizes not only LASSO
for predictor selection, but a hierarchical Bayesian method to determine whether constant coefficient (CC) or time-varying
parameter (TVP) predictive regression should be employed in each out-of-sample forecasting step. +is newly developed method
has the advantages of both model shrinkage and automatic switch between CC and TVP forecasting models; thus, this may
produce more accurate predictions of crude oil prices. +e empirical results show that this hierarchical shrinkage model can
outperform many commonly used forecasting benchmark methods, such as AR, unobserved components stochastic volatility
(UCSV), and multivariate regression models in forecasting crude oil price on various forecasting horizons.

1. Introduction

Crude oil price is one of the key indicators of the global
macroeconomy and financial markets [1–6]. However, the
oil price prediction is a complex process since various factors
affect oil pricing [2] and the influence degree of these factors
on oil price varies over time [7–11]. So, finding a proper oil
price forecasting method, which is not merely able to select
the important predictors but also reflect the dynamics of
predictors impact, is of interest for a wide range of appli-
cations [12–19].

A vast of literatures [2, 4, 5, 11, 13, 18, 20–25] indicate
that except for previous oil prices, other parameters such as
basic oil supply, demand and oil stock effects, financial
market forces, market sentiment and uncertainty, macro-
economy, and geopolitical influences are also main influ-
encing factors. If adding all these explanatory variables into
the multivariate regression or autoregression (AR) class
framework, it may lead to overfitting and misspecification
problems and thereby constrain the forecast accuracy
[7, 26, 27]. Additionally, time-varying effect of these pa-
rameters should be also considered in oil price forecasting,

but drawing the time-varying effect into regression models
would make the overfitting problem worse [7, 11, 28].

In this study, we introduce a prevailing Bayesian ap-
proach which not only overcomes overparametrization and
misspecification problems in oil price prediction, but also
discusses the time-varying properties of explanatory pa-
rameters in both short and long oil price forecasting hori-
zons. +is study mainly makes three contributions to the
literature on oil price forecasting as follows.

First, we can estimate a large number of explanatory
parameters with limited observations. Usually, low-fre-
quency dataset is easier to access and process than high-
frequency dataset; putting more informative explanatory
variables into the model can help macroeconomists, poli-
ticians, and other market participants get more compre-
hensive information on the crude oil price. Further, we
implement least absolute shrinkage and selection operator
(LASSO) shrinkage method to handle all the considered
endogenous and exogenous explanatory factors and select
the most powerful influential factors automatically. Al-
though previous studies [6, 29–33] simulate that LASSO-
based approaches show better out-of-sample forecasts and
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surpass both AR class models and time-varying parameter
models, it is unclear whether LASSO operator is also out-
performing other commonly used benchmark models in oil
price forecasting. Examining the LASSO operator effec-
tiveness may help oil market decision-makers identify sig-
nificant influential indicators efficiently and seize investment
opportunities.

Besides, for better explaining the oil price, we introduce
more comprehensive exogenous (see Table 1) and endog-
enous variables (e.g., observations from previous time steps)
as regression predictors. On the one hand, bringing previous
oil prices into the regression enables comparison with
autoregression models (AR) and time-varying vector
autoregression (TVP-VAR) models, which are commonly
used and proved models in energy price prediction that can
generate accurate forecasts [18, 34–37]. On the other hand,
we introduce a more comprehensive exogenous factors
framework, which avoids model misspecification. Most of
the oil price forecasting studies [3, 16, 34, 38–40] only focus
on several key oil price predictors and ignore the rest due to
the limited variables processing capacity; this leads to error
of misspecification, while using the LASSO operator in this
study can shrink the coefficient on unimportant explanatory
variables to zero and include all the exogenous variables
within the model without having to worry about multi-
indicators’ processing capacity.

Second, it has been well documented that the predictive
ability of the forecast parameters on crude oil prices varies
over time [7–11, 18, 41]. +is motivates us to study the time-
varying properties of the regression coefficients. Shrinkage
model in time-varying parameters is described by [28] and is
considered an effective forecasting method [32]. Accord-
ingly, we apply LASSO for the time-varying regression
model in the oil market and evaluate oil price forecasting
performance. +is Bayesian-based estimation method can
predict both long-term and short-term forecast horizons via
monthly information. With hierarchical shrinkage in oil
price predictors, we can select the most relevant predictors
and pick out time-varying parameters automatically. It is
worth noting that few works investigate parameters dynamic
properties incorporating a large set of predictors in a single
model. Our study provides empirical evidence regarding the
most powerful contributor in forecasting oil prices and
judges its dynamic properties simultaneously.

+ird, we extend our ideas for using the mean of the log
predictive likelihood (MLPL) to check the entire of predictive
distribution robustness, which fill gaps of the commonly used
forecasting performance measurement—the mean of the
squared forecast errors (MSFE) and the mean of the absolute
value of the forecast errors (MAFE) [19, 23, 27, 28]—which
can only judge the point forecasts. We also examine the
forecasting performance by changing regressors, dependence
variables, and rolling window estimation regimes for ro-
bustness check. Our out-of-sample evidence indicates that
LASSO hierarchical shrinkage models outperform other
competing models in most cases; LASSO can select infor-
mational variables automatically and efficiently.

+e remainder of this paper is organized as follows:
Section 2 presents the econometric approach and

comparison models. Section 3 introduces our data. Section 4
provides the out-of-sample empirical results and discussion.
In Section 5, we present the robustness checks, and Section 6
concludes.

2. Empirical Models and
Computation Processes

2.1. Empirical Models. Crude oil has both commodity and
financial properties. As aforementioned, apart from the
previous oil prices, we still have hundreds of influencing
exogenous variables and seasonal adjustment should also be
taken into account. In this case, the suitable full model for
forecasting crude oil price is given by

Oilt+h � c + 
k

k�1
βkxkt + 

p− 1

r�0
αrOilt− r + 

11

j�1
cjdumj + εt+h,

(1)

where Oilt+h is the future crude oil price we want to forecast
at h-periods ahead, c is the intercept, and εt ∼ N(0, σ2t ) is the
error term. 

k
k�1 βkxkt represents the sum of exogenous

variables part, k is the number of explanatory variables, and
βk is the kth regression parameter. 

p
i�0 αrOilt− r includes the

sum of p lags of oil price;αr is the rth lag coefficient.


11
j�1cjdumj is the sum of 11 monthly dummies which is

added for seasonal adjusting. cj is the jth dummy variable
coefficient. In total, the number of potential independent
variables should be m � 1 + k + p + 11.

Each part of the model (intercept11
j�1cjdumj,


p− 1
r�0 αrOilt− r, or 

k
k�1 βkxkt) can be excluded from the

model. Briefly, the computation steps can analyze models by
adding different terms into the model, then judging the
time-varying properties, and selectively do LASSO shrinkage
for the variable parameters in both constant variance
(homoskedasticity of σt ) and stochastic variance (hetero-
skedasticity of σt ) regimes. So, the model structure is di-
versifying to the following three restrictive forms:

(1) AR(p) model

Oilt+h � c + 

p− 1

r�0
αrOilt− r + 

11

j�1
cjdumj + εt+h. (2)

+e model specifies that the future crude oil price
depends linearly on its past values.

(2) Multivariate regression model

Oilt+h � c + 
k

k�1
βkxkt + 

11

j�1
cjdumj + εt+h. (3)

+e model considers the effect of several key exog-
enous variables but excludes endogenous variables’
influence on the oil price.
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(3) +e unobserved components stochastic volatility
(UCSV) model

Oilt+h � c + 
11

j�1
cjdumj + εt+h, (4)

which assumes that the future oil price consists of com-
ponents with a direct interpretation that cannot be observed.

+ese three models are commonly used and proved that
they can generate relatively accurate linear regression pre-
diction [18, 34–37, 42–45]. Same as the full model (equation
(1)), these three restricted model versions can also do hi-
erarchical parameter shrinkage and decide which variable
parameter varies with time. In Section 4.2, we compare the
full model and the three restricted models in prediction
performance with the same prior choices and basic model
structures. +e specific econometric method computation
processes are as follows.

2.2. Judging Time-Varying Properties and Forecasting
Power of Predictors. To briefly describe the computation
processes, the full variable model (equation (1)) can be
simplified as

Oilt+h � β∗t zt + εt+h,

β∗t � β∗t− 1 + vt,
(5)

where the variable of interest, Oilt+h, can be defined as
Oilt+h � log(pt+h) − log(pt). +e variable matrix zt � [1, x1,

. . . , xk,Δ log(pt), . . . ,Δ log(pt− p+1), dum1, . . . , dum11], and
the corresponding coefficients matrix of zt is β∗t � [ c, β1,
. . . , βk+p+11 ]′.

In equation (5), we assume εt ∼ N(0, σ2t ) and
vt ∼ N(0,Ω). σ2t can be stochastic or constant volatility. +e
errors are assumed to be independent of each other and

independent at all leads and lags. Ω is of dimension m × m,
which can be large relative to the number of observations. To
keep the model relatively brief, we assume Ω is a diagonal
matrix, Ω � diag(ω2

1, . . . ,ω2
m).Ω introduces shrinkage in the

time variation then switches the constant coefficients to
time-varying coefficients. If ωi is zero, the ith (i � 1, . . . , m)
coefficient is constant over time, and larger values ofωi mean
more time variation. In order to elicit ωi, Belmonte et al. [28]
separate the model into two parts, one part is constant
(represented by βzt) and the other part is time-varying
(represented by βtzt). Equation (5) will change to

Oilt+h � βzt + βtzt + εt+h,

βt � βt− 1 + vt+h,

β0 � 0,

(6)

where β � β∗0 and βt � β∗0 − β. +en, let βt,t � βi,t/ωi and
transform equation (6) to

Oilt+h � 
r

i�1
βizi,t + 

r

i�1
ωi

βi,tzi,t + εt+h,

βi,t � βi,t− 1 + vi,t,

βi,0 � 0,

(7)

where vi,t ∼ N(0, 1) for i � 1, . . . , r.
+rough implementing LASSO in terms of equation (7),

we can judge the time-varying properties and forecasting
power of predictors. Four possible computation cases are
discussed as follows:

(1) ωi shrank to 0, but βi is not shrunk to 0; then, the ith
variable parameter is constant over time

(2) Both ωi and βi shrank to 0; then, the ith variable is
irrelevant for forecasting the oil price

Table 1: Variable definitions.
Category Label Definition Unit Data source

Crude oil price WTI WTI spot price Dollars per barrel
Energy Information
Administration (EIA)

Brent Europe Brent spot price
Crude oil supply OS_World Crude oil production, world +ousand barrels

per dayCrude oil demand OD_cons Total petroleum consumption
Crude oil stocks OD_stocks Total petroleum stocks Million barrels

Gold price P_gold Gold fixing price US dollars per troy
ounce

Federal Reserve Bank of St. LouisExchange rate US_ex Trade weighted US dollar index: broad,
goods, index Percentage

Stock market price index S&P500 S&P500 index

Natural gas price P_gas Henry Hub Natural Gas Spot Price Dollars per million
btu

Energy Information
Administration (EIA)

Market sentiment VIX VIX index
Percentage Federal Reserve Bank of St. LouisMacroeconomy affecting

factors
IP_total Industrial production: total index
Kilian Kilian index Kilian’s website

Political change
EPU Global policy uncertainty Percentage Economic policy uncertainty

website

Google Google trend index Percentage of
popularity Google trends

All the variables are calculated by the first log difference in order to make them stationary, except for the Kilian index, which is naturally stationary series.
Neither measures of these variables are seasonally adjusted.
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(3) ωi is not shrunk to 0, but βi shrank to 0; then, the ith
variable parameter has small time-varying charac-
teristics (since βi,0 � 0, the coefficient will volatile
around a value of zero)

(4) Both ωi and βi are not shrunk to 0; then, the ith
variable is relevant for forecasting the oil price and
the time-varying coefficient is unrestricted around
zero

2.3. Hierarchical Parameter Shrinkage. +e parameters of
interest are β � (β1, . . . , βm)′, βt � (β1,t, . . . , βm,t)′, and
ω � (ω1, . . . ,ωm)′; we can use the Bayesian LASSO
shrinkage priors to estimate these parameters. According to
the study of [28], the LASSO shrinkage can be obtained by
starting from normal hierarchical priors for β and ω.

Hierarchy shrinkage 1: for the constant coefficients, the
priori for βi (i � 1, . . . , m) is independent with
βi|τ2i ∼ N(0, τ2i ) and exponential mixing density
τ2i |λ ∼ exp(λ2/2). λ is the shrinkage parameter for constant
coefficients and we assume λ2 ∼ Gamma(a1, a2). So, the first
hierarchy is conditional on λ to estimate τ2i then obtain βi.

Hierarchy shrinkage 2: from equation (4), we can infer
that the time-varying parameters βt(for t � 1, . . . , T) prior is
of the form βt|

βt− 1 ∼ N(βt− 1, Ir), where β0 � 0. +e hier-
archical priori of ωi, conditionally independent with
ωi|ξ

2
i ∼ N(0, ξ2i ), is also with exponential mixing density

ξ2i |κ ∼ exp(κ2/2). +e shrinkage parameter κ lies at the
bottom of the hierarchy and we assume
κ2 ∼ Gamma(b1, b2). +e second hierarchy is conditional on
κ; we can in turn to derive ξ2i and ωi, at last, judge whether β
is time-varying or not.

For the two hierarchy shrinkage processes mentioned
above, we set the prior hyperparameters a1 � a2 � b1 �

b2 � 0.001, which implies proper but very noninformative
priors. For constant coefficients model, which removes the
TVP part of the model, we set b1 � 100000 to make ωi shrink
very close to zero and its prior variance is 0.1.

To complete these two hierarchical shrinkage compu-
tations, [28] provides Markov Chain Monte Carlo (MCMC)
algorithm blocks and precise steps to draw the parameter
posteriors. After using a nonparametric kernel smoothing
algorithm on the parameter posteriors, we can obtain an
approximation of the oil price predictive density.

As LASSO shrinkage can be applied to both constant
coefficients and time-varying coefficients, the full model and
restricted models can derive several versions for the
following:

(1) LASSO on constant coefficients and time-varying
parameters: both constant and time-varying part use
LASSO priors and do hierarchical shrinkage.

(2) LASSO only on constant coefficients: this model
omits the time-varying part (r

i�1 ωi
βi,tzi,t in equa-

tion (7)) LASSO priors and uses a relatively non-
informative and nonhierarchical normal prior for ωi.

(3) LASSO only on time-varying parameters: this model
omits the constant part (r

i�1 βizi,t) LASSO priors

and uses a relatively noninformative and nonhier-
archical normal prior for βi.

(4) TVP regression model: this model is traditional
time-varying multivariate parameter model which
does not hierarchical shrinkage for parameters. Use
noninformative LASSO priors for both ωi and β.

(5) Constant coefficients model: this model removes the
time-varying part (r

i�1 ωi
βi,tzi,t) by setting prior

hyperparameters b1 � 100000, b2 � 0.001, which
implies an extremely tight prior on ωi with prior
concentrated very close to 0.

2.4. Evaluation Criteria. +e results of predictive density or
forecasting points from the previous steps are useful to
quantitatively compare the out-of-sample predictive per-
formance among different models. Following the conven-
tion in the literature on prediction measurement, we use
point forecasting loss functions of MAFE and MSFE to
demonstrate the ranking of model forecasts [17, 23, 29, 31].
Further, since researchers and policymakers focus more on
total distribution forecast uncertainty than just a point
forecast, we also adopt the mean of the log predictive
likelihood (MLPL) to evaluate the entire predictive distri-
butions. +e specific formulations of these three measuring
statistics are listed below:

MAFE �
1

T − h − t0 + 1


T− h

t�t0

|Oilt+h − Oil0t+h|,

MSFE �
1

T − h − t0 + 1


T− h

t�t0

Oilt+h − Oil0t+h 
2
,

MLPL �
1

T − h − t0 + 1


T− h

t�t0

log p Oilt+h � Oil0t+h|Datat  .

(8)

Respectively, T is the end date, t0 is the start date, h is
prediction length, Oilt+h is the predictive median of oil price,
and Oil0t+h is the corresponding real value. Smaller MAFE
and MSFE and larger MLPL indicate stronger forecasting
ability.

3. Data

+is paper uses two prevailing proxies in crude oil pricing:
the monthly spot price of Brent crude oil as dependent
variable and West Texas Intermediate (WTI) oil futures for
robustness check. Both datasets span from January 2004 to
December 2018 yielding t� 180 observations; the out-of-
sample evaluation period consists of the last 110
observations.

On the foundation of previous studies [3, 16, 34, 38–40],
we select a relatively comprehensive predictors framework
to forecast crude oil price and use available real-time data.
+e exogenous variable dataset consists of crude oil fun-
damentals (include crude oil supply, demand, and stocks),
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capital market prices (gold price, exchange rate, and stock
market price index), substitute product price (natural gas
price), market sentiment index (volatility index), macro-
economic influencing factors (industrial production and
Kilian indexes), and political change (global policy uncer-
tainty and Google trend). +is variable set not only captures
the information in both the supply and demand of crude oil
but also includes activities related to the financial market and
macroeconomy. Accordingly, they are widely used variables
for crude oil price forecasting.

+e ADF and PP test in Table 2 indicate that no variables
have unit roots after first-order logarithmic difference,
which means all the series are stationary time series, so we
can use these series for further econometric modeling. +e
two dependent variables—WTI and Brent—are left-skewed,
leptokurtic, and nonnormal distribution. Within 20 lags, the
Q-statistics of both WTI index and Brent spot price series
show significant autocorrelation, which suggest that past oil
prices have influences on the current oil price, so it is
reasonable to include AR terms in the model.

To examine whether the current oil price is affected by
the past oil prices, we further include the logged first dif-
ference of 12 lags of the Brent crude oil price index in the
model. In addition, an intercept and 11 monthly dummies
(omitting the January dummy) are designed to distinguish
monthly or seasonal effects on the crude oil prices.

All the explanatory variables are standardized to have
mean zero and variance one. +e model can flexibly include
an intercept, different numbers of lags, 11 monthly
dummies, and 12 predictors listed above. In addition, it can
forecast oil prices a month ahead (short term) and a year
ahead (long term).

In summary, the full variable model includes 36 coef-
ficients to estimate with fewer than 15 years of data, which is
a relatively short dataset. Omitting 12 predictors and 11
dummies, the model leads to ARmodels or TVP-ARmodels.
If the lags are further excluded, it leads to TVP models or
multivariate regression models. If only 11 dummies are left
in the model, model form changes to UCSV model. In total,
for each sample size rolling window estimation, we compute
20 different versions of full models and 100 competing
models to check the models’ robustness.

4. Empirical Results

4.1. Time-Varying and Shrinkage Parameters Results. +is
section focuses on time-varying and shrinkage coefficients
represented by ω2

i and τ2i .ωi close to zero means the ith
(i � 1, . . . , m) coefficient is constant over time; larger values
of ωi allow for more time variation. While the smaller value
of τ2 ensures a higher degree of shrinkage, larger τ2 indicates
the prior is more dispersed and shrinkage is less. In order to
better explain the time-varying and shrinkage properties, we
post the full model (LASSO shrinkage on both constant
coefficients and time-varying parameters) results for Brent
oil as an instant.

+ese results show moderate shrinkage in most coeffi-
cients, but the shrinkage degree varies. Table 3 shows that in
one-month ahead (h� 1) forecasting, ω2

i for crude oil

consumption, gold price, and industrial production index
tend to shrink more than the coefficients on other variables,
which indicate that the influence on crude oil price from
these three variables is relatively time-invariant. In contrast,
in short-term forecasting, the impacts of crude oil pro-
duction on oil prices vary over time. +e τ2i of gas price,
industrial production index, and the Kilian index shrink
most among all exogenous variables; this signifies that the
role of substitute product of oil, production level, and
macroeconomic factors will not exert a significant effect on
crude oil price in the short term. Instead, the three repre-
sentative market uncertainty variables—VIX, EPU, and
Google trend—show low-level shrinkage, so the policy
uncertainty, market sentiment, and topic heat have a greater
effect on the oil prices in the short term.

In the long-run (h� 12) forecasting, crude oil stocks,
SP500, and the Kilian index show larger ω2

i than other
variables, which means larger time variation in these co-
efficients. Moreover, the Kilian index presents the largest τ2,
which indicates that Kilian’s index is a powerful predictor for
oil price long-term forecasting. In the contrary, trade-
weighted US dollar index, gas price, and production level are
relatively unimportant factors.

Table 4 exhibits that the half-year ago oil prices have big
impact on current oil price in the short-run forecasting; the
influences from the end and beginning of the quarter are
moderate. Table 5 depicts that the crude oil prices bear little
relationship to the cycle of the seasons, because all the
monthly dummies shrink more than the most of the other
predictors and lags.

4.2. Forecasting Results Evaluation. In the tables, all the
results are presented relative to the corresponding full model
(LASSO on both constant coefficients and TVPs); smaller
MAFE or MSFE, or larger MLPL than full model statistics
indicate that the restricted model is forecasting better than
the benchmark model.

+e upper metrics of Table 6 results indicate that in one-
month ahead forecasting, there is evidence that LASSO on
constant coefficients outperforms other restricted models in
both stochastic and constant volatility, whichmeet the short-
term forecasting expectation that the majority coefficients do
not change over time. Table 3 results are consistent with
Table 6 and proved our opinion again.

In terms of the latter forecast metrics—the annual
forecasting horizon—coefficients tend to show more time
variation, so the full model has the best performance.

It is worth noting that the TVP regression models and
constant coefficients models produce the worst forecasts in
both cases according toMLPL.+e results verified again that
the new Bayesian hierarchical LASSO outperforms the
traditional counterparts and enhances the prediction ac-
curacy. Additionally, the bad performance of LASSO only on
time-varying parameters indicates that the inclusion of time-
variant parameters in themodel is necessary for the oil prices
forecasting.

To sum up, all results exhibit the advantages of the Bayesian
hierarchical shrinkage. Firstly, putting a LASSO prior allows
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Table 2: Descriptive statistics.
WTI BRENT OD_CONS OD_STOCKS OS_WORLD P_GOLD US_EX

Mean 0.0009 0.0015 − 0.0001 0.0003 0.0004 0.0028 0.0003
Median 0.0058 0.0069 − − 0.0008 0.0005 0.0005 0.0027 0.0002
Maximum 0.0929 0.0851 0.0242 0.0090 0.0094 0.0537 0.0440
Minimum − 0.1442 − 0.1351 − 0.0264 − 0.0086 − 0.0064 − 0.0904 − 0.0178
Std. dev. 0.0389 0.0395 0.0107 0.0033 0.0029 0.0222 0.0070
Skewness − 0.8849∗∗∗ − 0.9662∗∗∗ − 0.0293 − 2.2210 − 0.0453 − 0.4846∗∗∗ 1.4488∗∗∗
Kurtosis (excess) 1.7698∗∗∗ 1.5476∗∗∗ − 0.5727 − 0.0127 − 0.1753 1.4502∗∗∗ 8.2127∗∗∗
Jarque–Bera 46.7237∗∗∗ 45.7129∗∗∗ 2.4715 1.4584 0.2903 22.6911∗∗∗ 565.6776∗∗∗
Q(20) 45.1300∗∗∗ 40.8931∗∗∗ 282.3031∗∗∗ 108.7411∗∗∗ 43.0371∗∗∗ 27.1741 26.0612
PP test − 9.4826∗∗∗ − 9.7966∗∗∗ − 20.9879∗∗∗ − 14.3289∗∗∗ − 13.5263∗∗∗ − 15.2111∗∗∗ 12.0550∗∗∗
ADF − 6.6839∗∗∗ − 9.7414∗∗∗ − 3.2129∗∗ − 3.7359∗∗∗ − 7.0902∗∗∗ − 15.1254∗∗∗ − 11.9771∗∗∗

SP500 P_GAS VIX IP_TOTAL EPU KILIAN Google
Mean 0.0019 − 0.0010 0.0010 0.0004 0.0035 13.7941 0.0046
Median 0.0045 − 0.0034 − 0.0072 − 0.0005 0.0041 2.1302 0.0000
Maximum 0.0444 0.1649 0.3703 0.0162 0.2831 187.8978 0.3358
Minimum − 0.0806 − 0.1766 − 0.2111 − 0.0222 − 0.2448 − 163.4310 − 0.2320
Std. dev. 0.0172 0.0549 0.0887 0.0072 0.0835 79.2186 0.1000
Skewness − 1.0534∗∗∗ 0.1095 0.6745∗∗∗ 0.1728 0.3511∗ 0.3115∗ 0.8297∗∗∗
Kurtosis (excess) 3.1059∗∗∗ 1.1509∗∗∗ 1.5779∗∗∗ 0.0032 1.2777∗∗∗ − 0.7538∗∗ 1.0399∗∗∗
Jarque–Bera 105.0568∗∗∗ 10.2378∗∗∗ 32.1443∗∗∗ 0.8914 15.8510∗∗∗ 7.1318∗∗∗ 28.6037∗∗∗
Q(20) 40.0941∗∗∗ 24.4420 33.8112∗∗ 219.2882∗∗∗ 33.3670∗∗ 1659.5120∗∗∗ 18.3661
PP test − 11.2842∗∗∗ − 13.9759∗∗∗ − 16.6098∗∗∗ − 20.3007∗∗∗ − 15.4433∗∗∗ − 2.1650∗∗ − 14.1582∗∗∗
ADF − 5.3398∗∗∗ − 13.8972∗∗∗ − 7.2381∗∗∗ − 3.9125∗∗∗ − 10.8053∗∗∗ − 2.6820∗∗∗ − 14.0785∗∗

Symbols ∗, ∗∗, and ∗∗∗ denote rejections of the null hypothesis at the 10%, 5%, and 1% significance levels, respectively. +e Jarque–Bera statistic is used to test
the null hypothesis of the normal distribution. Q(20) is the Ljung-Box Q statistics with lag order of 20. ADF refers to the statistics from the augmented
Dickey–Fuller unit root tests. +e entire sample period is from January 2004 to December 2018.

Table 3: Posterior means and standard deviation of ω2
i and τ2 for exogenous predictors.

Predictor h� 1 h� 12
ω2

i τ2 ω2
i τ2

INTERCEPT 1.691E − 03 1.721E − 02 5.852 E − 02 4.832E − 03
4.552E − 03 3.507E − 02 1.455E − 02 7.005E − 03

OD_CONS 1.223E − 03 1.668E − 02 2.247E − 04 5.939E − 03
2.203E − 03 3.193E − 02 3.202E − 04 8.661E − 03

OD_STOCKS 1.558E − 03 2.320E − 02 1.132E − 03 5.094E − 03
2.308E − 03 4.347E − 02 2.140E − 03 8.442E − 03

OS_PROD 4.510 E − 03 2.039E − 02 3.591E − 04 4.553E − 03
6.680E − 03 3.548E − 02 7.997E − 04 6.569E − 03

GOLD 6.845E − 03 1.688E − 02 3.195E − 04 4.943E − 03
1.034E − 02 3.506E − 02 4.571E − 04 7.695E − 03

US_EX 1.507E − 03 1.884E − 02 6.058E − 04 4.508E − 03
2.977E − 03 3.919E − 02 1.079E − 03 8.013E − 03

SP500 1.162E − 03 2.338E − 02 1.441E − 03 5.481E − 03
2.443E − 03 5.809E − 02 1.869E − 03 8.684E − 03

GAS 9.481E − 04 1.380E − 02 6.770E − 04 4.342E − 03
1.799E − 03 2.929E − 02 1.408E − 03 8.098E − 03

VIX 2.877E − 03 2.454 E − 02 4.482E − 04 9.406 E − 03
5.570E − 03 5.135E − 02 5.983E − 04 1.401E − 02

IP 8.177E − 04 1.453E − 02 4.197E − 04 4.817E − 03
1.542E − 03 2.883E − 02 8.323E − 04 7.580E − 03

EPU 2.595E − 03 2.019E − 02 3.585E − 04 6.666 E − 03
6.928E − 03 3.991E − 02 1.467E − 03 8.442E − 03

KILIAN 2.884E − 03 1.426E − 02 1.337 E − 03 1.239 E − 02
7.256E − 03 3.152E − 02 1.705E − 03 1.370E − 02

Google 3.367E − 03 2.978 E − 02 9.316E − 04 7.450E − 03
6.438E − 03 5.414E − 02 9.836E − 04 9.335E − 03

Note. +e bold text noted indicates relatively larger value among all ω2
i and τ2, while the underlined text represents values relatively smaller ones.
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the data to decide whether the coefficients are time-varying and
by how much they vary and restricts the TVP regression
models coefficients wandering too widely which can obtain a
better forecast performance. Secondly, in allusion of the
misspecification problem, LASSO priors can automatically
discover the lack of time variation in coefficients and shrinking
the coefficients of unnecessary variables to zero, which improve
the prediction accuracy and solve misspecification efficiently.
+irdly, hierarchical shrinkage in time-varying series facilitates
researchers’ start with a very flexible model with a relatively
short dataset; the model results allow researchers and practi-
tioners identify the most powerful predictors more efficiently
then make the right investment decisions.

To investigate whether forecast performance varies over
time, we present Figure 1, which uses the model with LASSO
prior to both constant coefficients and time-varying pa-
rameters (TVPs) with forecasting horizon h� 1 (similar
patterns are found with the other computation results).

From (a) and (b) in Figure 1, it can be seen that the constant
and stochastic volatility versions of the model forecast roughly
as well as each other; however, many conflicts occur during the
time of the shale oil revolution in 2014. MAFE, MSFE, and
MLPL will have a similar pattern for most of the time, but
inconsistent during periods of oil price intense volatility. What
is happening is that the heteroskedastic version includes too
much increase in volatility which began with the shale oil
revolution since MLPL measures the whole distribution pre-
diction performance. +is has little impact on the point
forecasts MAFE and MSFE which do not differ by much
between the constant and stochastic versions of the model.

5. Robustness Checks

5.1. Robustness to Different Models’ Specification. Firstly, we
conduct the robustness check by changing the variable set;
the out-of-sample performance of AR, multivariate, and
UCSV models are shown in the following tables.

Tables 7–9 indicate that, like the full model, smaller
MAFE and MSFE and larger MLPL are also observed in
LASSO on constant coefficients and LASSO on both con-
stant and TVPs in AR, multivariate, and UCSV models.
+ese results suggest that hierarchical shrinkage method can
also outperform other competing models even with changes
in the model structures.

5.2. Robustness Check by Alternative Estimation Window.
In this section, we change the estimation window from
the recursive rolling window to the rolling window; the
results are shown in Table 10. LASSO on constant coeffi-
cients and TVPs and LASSO only on constant results are
qualitatively similar in both rolling window and recursive
rolling window.

Further, we change three in-sample window sizes sug-
gested by [6, 46, 47] to check the robustness of hierarchical
shrinkage models. In 40%, 50%, and 60% different out-of-
sample evaluation periods, the results show that models with
LASSO shrinkage exhibit lowerMAFE andMSFE and higher

Table 4: Posterior means and standard deviation of ω2
i and τ2 for

lags.

Lags h� 1 h� 12
ω2

i τ2 ω2
i τ2

1 4.292 E − 03 2.350E − 02 4.613E − 04 5.335E − 03
8.873E − 03 4.947E − 02 1.124E − 03 7.308E − 03

2 1.407E − 03 1.517E − 02 7.182E − 04 4.762E − 03
4.063E − 03 2.832E − 02 9.439E − 04 6.510E − 03

3 1.484E − 03 1.716E − 02 6.976E − 04 8.312E − 03
3.116E − 03 3.761E − 02 1.287E − 03 1.249E − 02

4 1.040E − 03 1.587E − 02 4.530E − 04 4.833E − 03
2.353E − 03 3.271E − 02 9.666E − 04 7.340E − 03

5 1.268E − 03 1.499E − 02 9.913E − 04 4.767E − 03
3.672E − 03 3.030E − 02 1.152E − 03 7.669E − 03

6 9.445E − 04 1.849E − 02 7.573E − 04 4.690E − 03
1.875E − 03 3.977E − 02 1.374E − 03 7.282E − 03

7 1.563E − 03 2.183 E − 02 3.827E − 04 4.349E − 03
3.164E − 03 4.417E − 02 6.040E − 04 6.625E − 03

8 1.746E − 03 2.010E − 02 6.014E − 04 5.303E − 03
3.673E − 03 3.964E − 02 1.525E − 03 8.904E − 03

9 1.387E − 03 1.336E − 02 3.603E − 04 4.652E − 03
2.672E − 03 2.807E − 02 6.767E − 04 6.961E − 03

10 1.591E − 03 1.191E − 02 8.393E − 04 5.798E − 03
2.848E − 03 2.392E − 02 1.430E − 03 1.116E − 02

11 4.017E − 03 1.635E − 02 5.315E − 04 5.441E − 03
7.294E − 03 3.271E − 02 1.024E − 03 7.460E − 03

12 1.307E − 03 1.288E − 02 1.031 E − 03 5.542E − 03
2.731E − 03 2.699E − 02 1.667E − 03 7.646E − 03

Note.+e bold text noted indicates relatively larger value among all ω2
i and

τ2, while the underlined text represents values relatively smaller ones.

Table 5: Posterior means and standard deviation of ω2
i and τ2 for

monthly dummies.

Dummies h� 1 h� 12
ω2

i τ2 ω2
i τ2

1 1.137 E − 02 3.553 E − 02 1.498E − 03 5.688E − 03
2.505E − 02 7.022E − 02 2.571E − 03 1.037E − 02

2 1.972E − 03 1.617E − 02 1.490E − 03 6.749E − 03
6.910E − 03 3.400E − 02 3.898E − 03 1.077E − 02

3 1.996E − 03 1.851E − 02 6.993E − 04 5.422E − 03
5.533E − 03 4.477E − 02 1.383E − 03 8.975E − 03

4 1.788E − 03 1.732E − 02 8.008E − 04 5.116E − 03
5.006E − 03 3.710E − 02 1.551E − 03 7.011E − 03

5 1.322E − 03 1.895E − 02 1.404E − 03 5.145E − 03
3.293E-03 4.164E − 02 2.564E − 03 7.389E − 03

6 7.115E − 03 1.769E − 02 1.425E − 03 6.803E − 03
1.534E − 02 3.484E − 02 2.453E − 03 9.165E − 03

7 2.157E − 03 1.658E − 02 7.892E − 04 5.889E − 03
5.331E − 03 3.614E − 02 1.423E − 03 9.500E − 03

8 1.415E − 03 1.627E − 02 3.182E − 03 5.242E − 03
3.236E − 03 3.636E − 02 7.964E − 03 8.526E − 03

9 3.228E − 03 1.909E − 02 1.314E − 03 6.328E − 03
8.431E − 03 3.732E − 02 3.359E − 03 9.615E − 03

10 2.274E − 03 1.932E − 02 6.981E − 04 5.538E − 03
5.342E − 03 4.034E − 02 1.450E − 03 8.144E − 03

11 4.155E − 03 1.898E − 02 1.020E − 03 5.402E − 03
9.748E − 03 5.034E − 02 1.884E − 03 7.023E − 03

Note.+e bold text noted indicates relatively larger value among all ω2
i and

τ2, while the underlined text represents values relatively smaller ones.
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MLPL in most cases, suggesting the out-of-sample results of
the hierarchical shrinkage are robust to different compu-
tation algorithms and sample sizes.

5.3. Robustness to Alternative Dependent Variable.
Table 11 reports the main out-of-sample forecasting results
of another prevailing proxy of crude oil prices, WTI. +e
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Figure 1: Forecasting performance measurement of models with LASSO prior on constant and time-varying coefficients, h� 1. (a) is the
absolute forecast errors, (b) is the forecast errors squared, and (c) is the log predictive likelihood.

Table 6: Measures of forecast performance for log return of Brent with the full models.
Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h� 1)
LASSO on constant and TVPs 0.072 0.009 2.886 0.088 0.013 2.126
LASSO only on constant coeff. 0.061 0.007 3.377 0.075 0.010 2.896
LASSO only on TVPs 0.112 0.021 1.970 0.107 0.018 1.696
TVP regression model 0.100 0.016 2.222 0.114 0.019 1.589
Constant coeff. model 0.100 0.016 2.189 0.106 0.017 1.658
Model (h� 12)
LASSO on constant and TVPs 0.373 0.223 0.545 0.407 0.265 0.414
LASSO only on constant coeff. 0.389 0.224 0.468 0.463 0.340 0.325
LASSO only on TVPs 0.678 0.809 0.308 0.710 0.842 0.232
TVP regression model 0.648 0.707 0.295 0.709 0.833 0.226
Constant coeff. model 0.658 0.717 0.289 0.689 0.809 0.227
Note. +e value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.
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Table 7: Measures of forecast performance for log return of Brent with autoregression (AR) models.
Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h� 1)
LASSO on constant and TVPs 0.067 0.008 2.825 0.089 0.014 1.969
LASSO only on constant coeff. 0.061 0.007 3.209 0.079 0.010 2.722
LASSO only on TVPs 0.098 0.015 1.989 0.104 0.016 1.822
TVP regression model 0.090 0.013 2.299 0.100 0.015 1.960
Constant coeff. model 0.091 0.013 2.275 0.097 0.014 1.996
Model (h� 12)
LASSO on constant and TVPs 0.293 0.163 0.673 0.480 0.385 0.359
LASSO only on constant coeff. 0.337 0.207 0.502 0.462 0.321 0.313
LASSO only on TVPs 0.549 0.485 0.358 0.637 0.684 0.299
TVP regression model 0.557 0.523 0.337 0.586 0.533 0.281
Constant coeff. model 0.557 0.520 0.337 0.576 0.506 0.275
Note. +e value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.

Table 8: Measures of forecast performance for log return of Brent with multivariate models.
Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h� 1)
LASSO on constant and TVPs 0.061 0.007 3.350 0.077 0.011 2.696
LASSO only on constant coeff. 0.059 0.006 3.556 0.071 0.008 3.203
LASSO only on TVPs 0.069 0.009 3.022 0.081 0.011 2.383
TVP regression model 0.072 0.008 3.037 0.077 0.010 2.953
Constant coeff. model 0.072 0.008 3.029 0.076 0.010 2.874
Model (h� 12)
LASSO on constant and TVPs 0.320 0.168 0.663 0.386 0.236 0.470
LASSO only on constant coeff. 0.328 0.165 0.538 0.303 0.153 0.546
LASSO only on TVPs 0.363 0.213 0.566 0.395 0.244 0.452
TVP regression model 0.376 0.221 0.480 0.314 0.175 0.482
Constant coeff. model 0.376 0.223 0.479 0.343 0.197 0.439
Note. +e value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.

Table 9: Measures of forecast performance for log return of Brent (h� 1) with UCSV models.
Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h� 1)
LASSO on constant and TVPs 0.064 0.007 3.111 0.076 0.010 2.969
LASSO only on constant coeff. 0.060 0.007 3.229 0.066 0.007 3.474
LASSO only on TVPs 0.069 0.009 2.879 0.075 0.010 2.750
TVP regression model 0.070 0.008 2.898 0.069 0.008 3.071
Constant coeff. model 0.070 0.008 2.909 0.068 0.008 3.148
Model (h� 12)
LASSO on constant and TVPs 0.280 0.137 0.807 0.283 0.138 0.629
LASSO only on constant coeff. 0.297 0.157 0.530 0.269 0.117 0.774
LASSO only on TVPs 0.281 0.137 0.778 0.275 0.135 0.768
TVP regression model 0.298 0.160 0.511 0.276 0.121 0.706
Constant coeff. model 0.301 0.160 0.517 0.283 0.124 0.799
Note. +e value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.
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results are quite close to Brent oil, which provides further
support for the superiority of the hierarchical shrinkage
method in alternative proxy of crude oil price forecasting.

6. Conclusions

In this paper, we predict the crude oil price based on the
Bayesian hierarchical shrinkage method with a relatively
short dataset and comprehensive variables framework. +is
method avoids overfitting and misspecification problems
faced by linear regression prediction and improves the oil
price forecasting accuracy. It also takes parameters dynamic
properties into account. So, practitioners or policymakers
can easily identify the most powerful indicators and do
appropriate strategies during different periods.

+e point and distribution forecasting performance
statistics suggest that the hierarchical shrinkage models
exhibit significantly better out-of-sample forecasting per-
formance than other competing models in both homo-
skedasticity and heteroskedasticity versions. Our results are
robust to a wide range of model settings, including various

model structures, different out-of-sample sizes, alternative
estimation rolling windows, and crude oil proxies. +ere-
fore, our study provides evidence regarding which indicators
are informative and powerful to improve forecasting ac-
curacy in the oil market.

Data Availability

+e Brent and WTI crude oil price data are openly available
on the website of EIA at https://www.eia.gov/dnav/pet/
pet_pri_spt_s1_d.htm.
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