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In this paper, we consider a class of boundary value problems of nonlinear fractional differential equation with integral boundary
conditions. By applying the monotone iterative method and some inequalities associated with Green’s function, we obtain the
existence of minimal and maximal positive solutions and establish two iterative sequences for approximating the solutions to the
above problem. It is worth mentioning that these iterative sequences start off with zero function or linear function, which is useful
and feasible for computational purpose. An example is also included to illustrate the main result of this paper.

1. Introduction

Fractional calculus has widespread applications in many
fields of science and engineering, for example, viscoelas-
ticity, continuum mechanics, bioengineering, rheology,
electrical networks, control theory of dynamical systems,
and optics and signal processing [1, 2].

In the past decades, the existence of solutions or positive
solutions for boundary value problems (BVPs for short) of
nonlinear fractional differential equations attracted con-
siderable attention from many authors, see [3–19] and the
references therein.

Recently, the monotone iterative method has been ap-
plied to study BVPs of nonlinear fractional differential
equations. For example, in [20], Cui et al. discussed the BVP

D
q
0+u( (t) + f(t, u(t)) � 0, t ∈ (0, 1),

u(0) � u′(0) � 0, u(1) � 0,

⎧⎨

⎩ (1)

where 2< q≤ 3 and D
q
0+ denotes the standard Rie-

mann–Liouville fractional derivative of order q. -e authors
obtained the existence of maximal and minimal solutions
and the uniqueness result for BVP (1). In 2014, Sun and Zhao
[21] investigated the following BVP with integral boundary
conditions:

D
q
0u( (t) + q(t)f(t, u(t)) � 0, t ∈ (0, 1),

u(0) � u′(0) � 0, u(1) � 
1

0
g(s)u(s)ds,

⎧⎪⎪⎨

⎪⎪⎩

(2)

where 2< q≤ 3 and D
q
0+ is the standard Riemann–Liouville

fractional derivative of order q. By means of the monotone
iterative method, they proved the existence of a positive
solution and established an iterative sequence for approx-
imating the solution to BVP (2). For relevant results, one can
refer to [22–25].

Motivated by the aforementioned works, in this paper,
we consider the following BVP of nonlinear fractional
differential equation with integral boundary conditions:

CD
q

0+u (t) + f(t, u(t)) � 0, t ∈ [0, 1],

u″(0) � 0,

αu(0) − βu′(0) � 
1

0
h1(s)u(s)ds,

cu(1) + δ CD
σ
0+u (1) � 

1

0
h2(s)u(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where CD
q

0+ and
CD

σ
0+ denote the standard Caputo fractional

derivatives of order q and order σ, respectively. -roughout
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this paper, we always assume that 2< q≤ 3, 0< σ ≤ 1 and
α, β, c, and δ are nonnegative constants satisfying 0< ρ ≔
(α + β)c + (αδ/Γ(2 − σ))< β[c + (δΓ(q)/Γ(q − σ))], and f:

[0, 1] × [0, +∞)⟶ [0, +∞) and hi (i � 1, 2): [0, 1]⟶
[0, +∞) are continuous.

-e main tool used is the following theorem [26].

Theorem 1. Let K be a normal cone of a Banach space E and
υ0 ≾ω0. Suppose that

(a1): T: [υ0,ω0]⟶ E is completely continuous
(a2): T is monotone increasing on [υ0,ω0]

(a3): υ0 is a lower solution of T, that is, υ0 ≾Tυ0
(a4): ω0 is an upper solution of T, that is, Tω0 ≾ω0

/en, the iterative sequences

υn � Tυn−1,

ωn � Tωn−1, n � 1, 2, 3, . . . ,
(4)

satisfy

υ0 ≾ υ1 ≾ · · · ≾ υn ≾ · · · ≾ωn ≾ · · · ≾ω1 ≾ω0, (5)

and converge to, respectively, υ and ω ∈ [υ0,ω0], which are
fixed points of T.

2. Preliminaries

First, we present the definitions of Riemann–Liouville
fractional integral and fractional derivative and Caputo
fractional derivative on a finite interval of the real line, which
may be found in [1].

In this section, we always assume that
N � 1, 2, 3, . . .{ }, μ, ]> 0 and [μ] denotes the integer part of μ.

Definition 1. -eRiemann–Liouville fractional integral I
μ
0+u

of order μ on [0, 1] is defined by

I
μ
0+u( (t) :�

1
Γ(μ)


t

0

u(s)ds

(t − s)1−μ. (6)

Definition 2. -e Riemann–Liouville fractional derivative
D

μ
0+u of order μ on [0, 1] is defined by

D
μ
0+u( (t) :�

d
dt

 

n

I
n−μ
0+ u( (t)

�
1
Γ(n − μ)

d
dt

 

n


t

0

u(s)ds

(t − s)(μ−n+1)
,

(7)

where n � [μ] + 1.

Definition 3. Let D
μ
0+[u(s)](t) ≡ (D

μ
0+u)(t) be the Rie-

mann–Liouville fractional derivative of order μ. -en, the

Caputo fractional derivative CD
μ
0+u of order μ on [0, 1] is

defined by

C
D

μ
0+u (t) ≔ D

μ
0+ u(s) − 

n−1

k�0

u(k)(0)

k!
s

k⎡⎣ ⎤⎦⎛⎝ ⎞⎠(t), (8)

where

n �
[μ] + 1, μ ∉ N,

μ, μ ∈ N.
 (9)

Lemma 1 (see [2]). Let ]> μ. /en, the equation
(CD

μ
0+I]0+u)(t) � (I

]−μ
0+ u)(t), t ∈ [0, 1] is satisfied for

u ∈ C[0, 1].

Lemma 2 (see [1]). Let n be given by (9). /en, the following
relations hold:

(1) For k ∈ 0, 1, 2, . . . , n − 1{ }, CD
μ
0+tk � 0.

(2) If ]> n, then CD
μ
0+t]− 1 � (Γ(])/Γ(] − μ))t]− μ− 1.

For convenience, we denote

Pi �
1
ρ


1

0
(αs + β)hi(s)ds,

Qi �
1

ρΓ(2 − σ)

1

0
[cΓ(2 − σ)(1 − s) + δ]hi(s)ds, i � 1, 2.

(10)

Lemma 3. Let (1 − Q1)(1 − P2)≠P1Q2. /en, for any
y ∈ C[0, 1], the BVP

CD
q
0+u( (t) + y(t) � 0, t ∈ [0, 1],

u″(0) � 0,

αu(0) − βu′(0) � 
1

0
h1(s)u(s)ds,

cu(1) + δ CDσ
0+u( (1) � 

1

0
h2(s)u(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

has a unique solution

u(t) � 
1

0
H(t, s)y(s)ds, t ∈ [0, 1]. (12)

Here,

H(t, s) � G(t, s) + 
2

i�1
ϕi(t) 

1

0
G(τ, s)hi(τ)dτ,

(t, s) ∈ [0, 1] ×[0, 1],

(13)

where
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G(t, s) �
αt + β
ρ

c(1 − s)q− 1

Γ(q)
+
δ(1 − s)q− σ− 1

Γ(q − σ)
  −

(t − s)q− 1

Γ(q)
, 0≤ s≤ t≤ 1,

0, 0≤ t≤ s≤ 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ1(t) �
Γ(2 − σ)Q2(αt + β) + 1 − P2( [cΓ(2 − σ)(1 − t) + δ]

ρΓ(2 − σ) 1 − Q1(  1 − P2(  − P1Q2 
, t ∈ [0, 1],

ϕ2(t) �
Γ(2 − σ) 1 − Q1( (αt + β) + P1[cΓ(2 − σ)(1 − t) + δ]

ρΓ(2 − σ) 1 − Q1(  1 − P2(  − P1Q2 
, t ∈ [0, 1].

(14)

Proof. In view of the equation in (11), -eorem 3.24 [1], and
u″(0) � 0, we have

u(t) � − I
q
0+y( (t) + u(0) + u′(0)t, t ∈ [0, 1]. (15)

By (15), Lemma 1, and Lemma 2, we obtain

C
D

σ
0+u (t) � − I

q−σ
0+ y( (t) +

u′(0)

Γ(2 − σ)
t
1− σ

, t ∈ [0, 1].

(16)

It follows from (15) and (16) and the boundary condi-
tions in (11) that

u(0) �
1
ρ

βc I
q
0+y( (1) + βδ I

q−σ
0+ y( (1) +

cΓ(2 − σ) + δ
Γ(2 − σ)


1

0
h1(s)u(s)ds + β

1

0
h2(s)u(s)ds ,

u′(0) �
1
ρ

αc I
q
0+y( (1) + αδ I

q−σ
0+ y( (1) − c 

1

0
h1(s)u(s)ds + α

1

0
h2(s)u(s)ds ,

(17)

which together with (15) shows that

u(t) � 
t

0

αt + β
ρ

c(1 − s)q− 1

Γ(q)
+
δ(1 − s)q− σ− 1

Γ(q − σ)
  −

(t − s)q− 1

Γ(q)
 y(s)ds

+ 
1

t

αt + β
ρ

c(1 − s)q− 1

Γ(q)
+
δ(1 − s)q− σ− 1

Γ(q − σ)
  y(s)ds

+
cΓ(2 − σ)(1 − t) + δ

ρΓ(2 − σ)

1

0
h1(s)u(s)ds +

αt + β
ρ


1

0
h2(s)u(s)ds

� 
1

0
G(t, s)y(s)ds +

cΓ(2 − σ)(1 − t) + δ
ρΓ(2 − σ)


1

0
h1(s)u(s)ds

+
αt + β
ρ


1

0
h2(s)u(s)ds, t ∈ [0, 1].

(18)

From (18), we get

1 − Q1(  
1

0
h1(s)u(s)ds − P1 

1

0
h2(s)u(s)ds � 

1

0
h1(s) 

1

0
G(s, τ)y(τ)dτds,

−Q2 
1

0
h1(s)u(s)ds + 1 − P2(  

1

0
h2(s)u(s)ds � 

1

0
h2(s) 

1

0
G(s, τ)y(τ)dτds,

(19)

and so,

Discrete Dynamics in Nature and Society 3




1

0
h1(s)u(s)ds �

1 − P2(  
1
0 h1(s) 

1
0 G(s, τ)y(τ)dτds + P1 

1
0 h2(s) 

1
0 G(s, τ)y(τ)dτds

1 − Q1(  1 − P2(  − P1Q2( 
,


1

0
h2(s)u(s)ds �

Q2 
1
0 h1(s) 

1
0 G(s, τ)y(τ)dτds + 1 − Q1(  

1
0 h2(s) 

1
0 G(s, τ)y(τ)dτds

1 − Q1(  1 − P2(  − P1Q2( 
,

(20)

which together with (18) implies that

u(t) � 
1

0
G(t, s)y(s)ds + 

2

i�1
ϕi(t) 

1

0
hi(s) 

1

0
G(s, τ)y(τ)dτds

� 
1

0
G(t, s)y(s)ds + 

2

i�1
ϕi(t) 

1

0
hi(τ) 

1

0
G(τ, s)y(s)dsdτ

� 
1

0
G(t, s)y(s)ds + 

2

i�1
ϕi(t) 

1

0
y(s) 

1

0
G(τ, s)hi(τ)dτds

� 
1

0
G(t, s) + 

2

i�1
ϕi(t) 

1

0
G(τ, s)hi(τ)dτ⎡⎣ ⎤⎦y(s)ds

� 
1

0
H(t, s)y(s)ds, t ∈ [0, 1].

(21)

In what follows, we let

g(s) �
α + β
ρ

c(1 − s)q− 1

Γ(q)
+
δ(1 − s)q− σ− 1

Γ(q − σ)
 , s ∈ [0, 1],

η(s) �
βδΓ(q) − Γ(q − σ)(ρ − βc)

(α + β)[cΓ(q − σ) + δΓ(q)]
(1 − s)

σ
, s ∈ [0, 1].

(22)
□

Lemma 4. G(t, s) satisfies the following properties:

(1) G(t, s)≤g(s), (t, s) ∈ [0, 1] × [0, 1].
(2) G(t, s)≥ η(s)g(s), (t, s) ∈ [0, 1] × [0, 1].

Proof. Since (1) is obvious, we only need to prove that (2)
holds.

First, it is clear that G(t, 1)≥ η(1)g(1) for t ∈ [0, 1].
Now, we verify that G(t, s)≥ η(s)g(s) for

(t, s) ∈ [0, 1] × [0, 1). In fact, if s≤ t, then

G(t, s)

g(s)
�

(αt + β) cΓ(q − σ)(1 − s)q− 1 + δΓ(q)(1 − s)q− σ− 1
  − ρΓ(q − σ)(t − s)q− 1

(α + β) cΓ(q − σ)(1 − s)q−1 + δΓ(q)(1 − s)q−σ−1
 

≥
βcΓ(q − σ)(1 − s)σ + βδΓ(q) − ρΓ(q − σ)(1 − s)σ

(α + β) cΓ(q − σ)(1 − s)σ + δΓ(q) 

≥
βδΓ(q) − Γ(q − σ)(ρ − βc)

(α + β)[cΓ(q − σ) + δΓ(q)]
(1 − s)

σ

� η(s),

(23)

and if t≤ s, then

G(t, s)

g(s)
�

(αt + β) cΓ(q − σ)(1 − s)q− 1 + δΓ(q)(1 − s)q− σ− 1
 

(α + β) cΓ(q − σ)(1 − s)q−1 + δΓ(q)(1 − s)q−σ−1
 

≥
βcΓ(q − σ)(1 − s)σ + βδΓ(q)

(α + β) cΓ(q − σ)(1 − s)σ + δΓ(q) 

≥
βcΓ(q − σ)(1 − s)σ + βδΓ(q) − ρΓ(q − σ)(1 − s)σ

(α + β) cΓ(q − σ)(1 − s)σ + δΓ(q) 

≥
βδΓ(q) − Γ(q − σ)(ρ − βc)

(α + β)[cΓ(q − σ) + δΓ(q)]
(1 − s)

σ

� η(s).

(24)

4 Discrete Dynamics in Nature and Society



By the definition of η and the condition
0< ρ< β[c + (δΓ(q)/Γ(q − σ))], we may obtain the follow-
ing remark. □

Remark 1. η(s)≥ 0 and η(s)≢ 0 for s ∈ [0, 1].
In the remainder of this paper, we always assume that the

following condition is fulfilled:

(C1)Q1 < 1, P2 < 1, 1 − Q1(  1 − P2( >P1Q2. (25)

Now, we define

x(t) � 1 + 
2

i�1

1

0
hi(τ)dτϕi(t), t ∈ [0, 1]. (26)

Lemma 5. H(t, s) has the following property:

x(t)η(s)g(s)≤H(t, s)≤ x(t)g(s), (t, s) ∈ [0, 1] ×[0, 1].

(27)

Proof. In view of the definition of H(t, s) and Lemma 4, it is
obvious. □

3. Main Results

For convenience, we let

A �
1


1

0
g(s)ds

,

a � maxt∈[0,1]x(t).

(28)

Theorem 2. Assume that f(t, 0) ≡ 0 for t ∈ [0, 1] and the
following condition is satisfied:

(C2)f t, u1( ≤f t, u2( ≤A, 0≤ t≤ 1, 0≤ u1 ≤ u2 ≤ a.

(29)

/en, BVP (3) possesses a minimal positive solution υ and
a maximal positive solution ω.

Proof. Let E � C[0, 1] be equipped with the norm

‖u‖ � max
t∈[0,1]

|u(t)|,

K � u ∈ E: u(t)≥ 0, t ∈ [0, 1]{ }.

(30)

-en, K is a normal cone in Banach space E. Note that
this induces an order relation “≾ ” in E by defining u≾ v if
and only if v − u ∈ K.

Now, we define υ0(t) ≡ 0 andω0(t) � x(t) for t ∈ [0, 1]

and T: [υ0,ω0]⟶ K by

(Tu)(t) � 
1

0
H(t, s)f(s, u(s))ds, u ∈ υ0,ω0 , t ∈ [0, 1].

(31)

-en, it is easy to know that T: [υ0,ω0]⟶ K is
completely continuous, and fixed points of T are nonneg-
ative solutions of BVP (3). □

Step 1. We assert that T is monotone increasing on [υ0,ω0].
Let u, v ∈ [υ0,ω0] and u≾ v. -en, 0≤ u(t)≤ v(t)≤ a for

t ∈ [0, 1], which together with (C2) implies that

(Tu)(t) � 
1

0
H(t, s)f(s, u(s))ds

≤ 
1

0
H(t, s)f(s, v(s))ds

� (Tv)(t), t ∈ [0, 1].

(32)

-is shows that Tu≾Tv.

Step 2. We prove that υ0 is a lower solution of T.
For any t ∈ [0, 1], we have

Tυ0( (t) � 
1

0
H(t, s)f(s, 0)ds≥ 0 � υ0(t), (33)

which indicates that υ0 ≾Tυ0.

Step 3. We show that ω0 is an upper solution of T.
In view of Lemma 5 and (C2), we get

Tω0( (t) � 
1

0
H(t, s)f s,ω0(s)( ds

≤Ax(t) 
1

0
g(s)ds

� ω0(t), t ∈ [0, 1],

(34)

which implies that Tω0 ≾ω0.

Step 4. We claim that BVP (3) possesses a minimal positive
solution υ and a maximal positive solution ω.

In fact, if we construct sequences υn 
∞
n�0 and ωn 

∞
n�0 as

in the following,

υn � Tυn−1,

ωn � Tωn−1, n � 1, 2, 3, . . . ,
(35)

then it follows from -eorem 1 that

υ0 ≾ υ1 ≾ · · · ≾ υn ≾ · · · ≾ωn ≾ · · · ≾ω1 ≾ω0, (36)

and υn 
∞
n�0 and ωn 

∞
n�0 converge to, respectively, υ and

ω ∈ [υ0,ω0], which are nonnegative solutions of BVP (3).
In view of Lemma 5, Remark 1, the definitions of x(t)

and g(s), and the assumption f(t, 0) ≡ 0 for t ∈ [0, 1], we
get

Tυ0( (t) � 
1

0
H(t, s)f(s, 0)ds

≥x(t) 
1

0
η(s)g(s)f(s, 0)ds

> 0, t ∈ [0, 1],

(37)

and so,

0< Tυ0( (t)≤ (Tυ)(t) � υ(t)≤ω(t), t ∈ [0, 1], (38)

which shows that υ and ω are positive solutions of the BVP
(3).
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Moreover, if u ∈ [υ0,ω0] is a positive solution of the BVP
(3), then it follows from the fact T is monotone increasing on
[υ0,ω0] that υ≾ u≾ω. -is indicates that υ and ω are
minimal and maximal positive solutions of the BVP (3),
respectively.

Example 1. Consider the following BVP:

CD
(5/2)
0+ u (t) +

��
π

√

3
u
2
(t)

14741
13456

sin(πt)  � 0, t ∈ [0, 1],

u″(0) � 0,

u(0) − 3u′(0) � 
1

0
su(s)ds,

2u(1) + u′(1) �
1
2


1

0
su(s)ds.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

Since q � (5/2), σ � α � δ � 1, β � 3, and c � 2, a sim-
ple calculation shows that

0< ρ � (α + β)c +
αδ
Γ(2 − σ)

� 9< β c +
δΓ(q)

Γ(q − σ)
 

�
21
2

, A �
15

��
π

√

16
.

(40)

Moreover, in view of h1(s) � s and h2(s) � s/2 for
s ∈ [0, 1], we get

P1 �
11
54

,

P2 �
11
108

,

Q1 �
5
54

,

Q2 �
5
108

,

(41)

which indicates that (C1) is fulfilled. At the same time, we
also obtain that

a � maxt∈[0,1]x(t) �
38
29

. (42)

Now, if we let f(t, u) � (
��
π

√
/3)[u2+

(14741/13456)sin(πt)], (t, u) ∈ [0, 1] × [0, +∞), then it is
easy to know that f: [0, 1] × [0, +∞)⟶ [0, +∞) is con-
tinuous, f(t, 0)≢ 0 for t ∈ [0, 1], and (C2) is fulfilled.
-erefore, it follows from -eorem 2 that BVP (39) pos-
sesses a minimal positive solution υ and a maximal positive
solution ω. In addition, the two iterative schemes are as
follows:

υ0(t) ≡ 0, t ∈ [0, 1],

υn+1(t) � 
1

0

32t − 96
3045

(−s)
(7/2)

+ (t − s)
(5/2)

s  +
16t2 − 48t

609
(t − s)

(5/2)
+
48t + 320

783
(1 − s)

(3/2)
+
12t + 80
261

(1 − s)
(1/2)

  υ2n(s)

+
14741
13456

sin(πs)ds −
4
9


t

0
(t − s)

(3/2) υ2n(s) +
14741
13456

sin(πs) ds, t ∈ [0, 1], n � 0, 1, 2, . . . ;

ω0(t) �
−3t + 38

29
, t ∈ [0, 1],

ωn+1(t) � 
1

0

32t − 96
3045

(−s)
(7/2)

+ (t − s)
(5/2)

s  +
16t2 − 48t

609
(t − s)

(5/2)
+
48t + 320

783
(1 − s)

(3/2)
+
12t + 80
261

(1 − s)
(1/2)

  ω2
n(s)

+
14741
13456

sin(πs)ds −
4
9


t

0
(t − s)

(3/2) ω2
n(s) +

14741
13456

sin(πs) ds, t ∈ [0, 1], n � 0, 1, 2, . . . .

(43)
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