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Knowledge graphs (KGs) are one of the most widely used techniques of knowledge organizations and have been extensively used
in many application fields related to artificial intelligence, for example, web search and recommendations. Entity alignment
provides a useful tool for how to integrate multilingual KGs automatically. However, most of the existing studies evaluated ignore
the abundant information of entity attributes except for entity relationships. 'is paper sets out to investigate cross-lingual entity
alignment and proposes an iterative cotraining approach (CAREA) to train a pair of independent models. 'e two models can
extract the attribute and the relation features of multilingual KGs, respectively. In each iteration, the two models alternate to
predict a new set of potentially aligned entity pairs. Besides, this method further filters through the dynamic threshold value to
enhance the two models’ supervision. Experimental results on three real-world datasets demonstrate the effectiveness and
superiority of the proposed method. 'e CAREA model improves the performance with at least an absolute increase of 3.9%
across all experiment datasets. 'e code is available at https://github.com/ChenBaiyang/CAREA.

1. Introduction

Knowledge graphs (KGs) that possess machine-readable
representations of factual knowledge are becoming the basis
for many applications such as web search (Google and Bing),
recommendations (Amazon and eBay), and social networks
(Facebook and Linkedin). Multilingual KGs (e.g., DBpedia
[1], YAGO [2], and ConceptNet [3]) are constructed in
separate languages from various data sources and contain a
wealth of complementary facts. 'e bridging of language
gaps and the improvement of user experience from
downstream cross-language applications benefit a lot from
the entity equivalent in multilingual KGs. Hence, aligning
the entities in multilingual KGs has recently attracted an
increasing amount of research attention and is called the
problem of cross-lingual entity alignment.

Most existing entity alignment methods entirely rely on
the graph structures, while the abundant attribute infor-
mation in KGs remains unexplored. 'e attributes of an
entity represented by different languages often share

enormous semantic information, leading to a potentially
valid view of the entities connected to multilanguage KGs.
However, it is nontrivial to capture and make use of such
information for cross-lingual entity alignment. First, attri-
bute information can be quite diverse across different KGs.
'e most likely cause of the differences is that there exist
distinct attribute concerns in the process of developing
applications. Second, the semantic association of attributes
cannot be modeled directly since the critical entity ex-
pression languages are different. Moreover, the simulta-
neous use of relationships and attributes across multilingual
KGs is a near term challenge in the area of knowledge
graphs.

Cotraining is a popular machine learning method, where
two complementary models utilize a large number of un-
labeled examples to bootstrap the performance of each other
iteratively [4, 5]. Cotraining can be readily applied to
multilingual tasks since the data in these tasks have two or
more views (i.e., a subset of features). It is also applicable to
employ cotraining to the task of entity alignment across
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multilingual KGs, as the entity attributes and graph structure
information naturally form two independent views of a KG.
In the cotraining framework, eachmodel is trained on one of
the two views, under the assumption that either view is
sufficient to make a prediction. In each iteration, the
cotraining algorithm selects high-confidence samples
ranked by each of the models to form new auto-labeled data
samples and then uses both labeled data and additional auto-
labeled data to update the other model.

'is paper introduces a cotraining based approach
CAREA to learn embeddings from two independent views of
knowledge (relationships and attributes) in multilingual
KGs. CAREA iteratively trains two-component models that
are called attribute-based model fattr and structure-based
model fstruc, respectively. fattr extracts the attribute features
according to attribute occurrence frequencies and value data
types, which also employs a Multilayer Perceptron (MLP) to
transform both KGs into a unified vector space. On the other
hand, fstruc adopts a graph attention mechanism to capture
the multirelation characteristics of KGs. During each iter-
ation of the cotraining process, both models alternately
predict a set of new potential aligned entity pairs to
strengthen the supervision of cross-lingual learning. Such
collaborative predictions gradually improve the perfor-
mance of each model. To improve the accuracy of aligned
entity prediction, we further evaluate the predicted entity
pairs through a dynamic threshold. Experimental results on
three real-world datasets demonstrate the effectiveness and
superiority of our proposed method CAREA.

'e rest of this paper is organized as follows. Section 2
summarizes the related works. Section 3 formally defines the
research question. Section 4 introduces the proposed ap-
proach. Section 5 presents the experimental results. Finally,
we conclude this work in Section 6.

2. Related Work

2.1. KG Embedding. Embedding-based entity analysis ap-
proaches have demonstrated their effectiveness in modeling
the semantic information of KGs, which aim to project
entities into low-dimensional embedding spaces. 'e KG
embedding model TransE [6] interprets a relation as the
translation from an entity to another. Such KG embedding
models using the translations have shown their feasibility
and later been improved by several subsequent studies, such
as TransH [7], TransR [8], and TransD [9].

TransH and TransR update the modeling of multi-
mapping relations of TransE from one to many. TransD uses
a dynamic matrix to transfer entities and relations rather
than a fixed one. R-GCN [10] is a similar model that in-
corporates relation type information by setting a transfor-
mation matrix for each relation. Some authors consider
avoiding the use of translation approaches for KG embed-
ding, including [11–15]. 'e perfect example is shown in the
study of Nathani et al. [15], which extended the graph at-
tentionmechanism (GAT) to capture entity and relationship
features in the multihop neighbors of a given entity. Some
research below makes use of the additional information in
KGs to improve embedding performance. For example,

reverse triples and relational paths are combined in PTransE
[16]. 'e categorical attributes such as gender and hobby are
introduced in KR-EAR [17]. In addition, some works ex-
plore the type, local structure, and global patterns in KG
embedding [10, 18–20].

2.2. Entity Alignment. Entity alignment aims to automati-
cally determine whether an entity pair in different KGs refers
to the same entity in reality. Traditional entity alignment
methods take advantage of various features of KGs, such as
the semantics of OWL properties [21], compatible neighbors
and attribute values of entities [22], and the relation
structures [23].

Many recent studies have used embedding methods to
deal with the alignment problem in KGs. MTransE [24]
deploys three mechanisms, distance-based axis alignment,
translation vectors, and linear transformations to learn
multilanguage KG embeddings. An improved model
IPTransE [25] combines the advantages of TransE and
PTransE to embed a single KG. 'en, an iterative and pa-
rameter sharing step is added in IPTransE for various KGs
embedding. BootEA [26] improves on JAPE [27] by using
the bootstrapping strategy, which provides an iterative data
labeling method. Accordingly, the constructed training data
for potential entity alignment can be used to learn entity
alignment-oriented embedding. MuGNN [28] learns
alignment-oriented KG embeddings by a multichannel
mechanism that encodes KGs via KG completion and entity
pruning. NAEA [29] merges neighborhood subgraph-level
information of entities and designs a neighborhood-aware
attention representation mechanism on cross-lingual KGs.
RDGCN [30] proposes a relation-aware dual-graph con-
volutional network to leverage relations through attentive
interactions between the KG and its dual relation coun-
terpart. MRAEA [31] learns cross-lingual entity embeddings
by attending over the entity’s neighbors and the meta se-
mantics of its connecting relations.

Some literature on cross-lingual entity alignments has
highlighted the role of both KG structures and attributes.
JAPE [27] embeds the structures of different KGs into a
uniform hidden space and uses the attribute correlation of
KGs to realize the refinement of entity embedding. However,
attribute components can significantly degrade the perfor-
mance of JAPE’s structural components when attributes are
heterogeneous or have a confused association between the
attributes. Graph convolutional networks (GCNs) [32] are
also employed in the study [33] to learn embeddings from
both the structure and attribute information of entities for
cross-lingual alignment.

3. Problem Definition

In a KG, facts are mainly stored in two types of triples
< entity, attribute, value > and < entity, relation,
entity > , which are called attribute triple and relation
triple, respectively. 'is paper denotes a KG as
G � (E, R, A), where E � e1, e2, . . . , eN  is the set of
entities, R � (ei, ej)|eit, nejq ∈ hE  is the set of relations,
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and A � aei
|eit ∈ nE  represents the set of attributes in

the KG. Each attribute of an entity consists of a set of key-
value pairs.

Definition 1. Cross-lingual entity alignment: let
G(1) � (E(1), R(1), A(1)) and G(2) � (E(2), R(2), A(2)) be two
arbitrary KGs in different languages. 'e entity pairs that refer
to the same real-world object are called prealigned entities,
denoted as L � (e

(1)
i , e

(2)
j )|e

(1)
i t ∈ nE(1)q, he

(2)
j ∈ xE(2) . 'e

task of cross-lingual entity alignment is to find hidden aligned
entity pairs M � (e

(1)
i , e

(2)
j )|e

(1)
i t ∈ nE(1)q, he

(2)
j ∈ xE(2)7, C

(e
(1)
i , e

(2)
j ); ∉ L} based on the prealigned pairs L.

4. Proposed Approach

4.1. Overview. 'e details of the proposed model CAREA
taken in this section are based on the cotraining algorithm.
Its framework is shown in Figure 1.

We construct two independent models: attribute-based
model fattr and relation-based model fstruc. 'e advantage
of the cotraining algorithm is that it reinforces the perfor-
mance of the two models in the process of iterations. Both
models are retrained with the prealigned entity pairs L and
predict the new pairs of potential aligned entities at each
iteration. Subsequently, dynamic thresholds are used to filter
the anticipated results further. 'e method merges the
remaining entity pairs into L for the next iteration until
convergence.

4.2. Attribute-BasedModel. In our scenario, the attributes of
an entity consist of a number of key-value pairs, for example,
< name:Michael> , where “name” is the attribute key, and
“Michael” is the attribute value. For simplicity, a key-value
pair is also called an attribute.

4.2.1. Attribute Extension. A critical problem of attribute
representation is that some actual attributes may not be
observed since they are not explicitly built or captured by the
crawlers. 'erefore, we first extend the attributes of both
KGs by using the prealigned entity pairs. Typically, given a
couple of aligned entities, if one entity has an attribute in a
KG, the other KG’s corresponding entity also has this at-
tribute. Based on such an observation, we can add a key-
value pair to one entity in a KG if its counterpart in the other
KG has this key-value pair. Formally, the attributes of an
entity ei are denoted by aei

� p1, p2, . . . , pj, . . . , where
pj � < keyj: valuej > is a key-value pair. For each entity ei

in KG 1, its attribute a(1)
ei

can be extended to a(1)
ei

by

a
(1)
ei

� a
(1)
ei
∪ pk | pk ∈ e

(2)
j , pk ∉ e

(1)
i , e

(1)
i , e

(2)
j  ∈ L .

(1)

Similarly, its counterpart a(2)
ej

in KG 2 can be extended
into a(2)

ej
.

4.2.2. Attribute Feature Representation. In multilingual
KGs, the attributes are in different languages and cannot be
directly compared. However, our observation shows the
following:

(1) 'e occurrence frequencies of equivalent attribute
pairs, that is, attribute keys, in multilingual KGs are
approximately similar. For example, an entity rep-
resenting a person in different KGs often has some
equivalent attributes such as name, date of birth, and
nationality. Although the texts that describe these
attributes are multilingual, their frequency in dif-
ferent KGs is similar to the ratio of person entities to
all KG entities.

(2) 'e values of an equivalent attribute pair in different
KGs has the same data type. For example, both the
English word “Michael” and the Chinese word “Mai
Ke” are strings, and both “3.14” and “3.14159” are
floating numbers.

Hence, this study represents the attributes of an entity by
its attribute key frequencies and attribute value types. 'e
description of entity attribute features can be illustrated
briefly by a concrete example shown in Figure 2.

First, the attribute triples in each KG are merged into a
set of key-value pairs, where the keys and values are then
used to represent the frequency and the type features, re-
spectively. 'e frequency Fpj

of an attribute pj is a floating
number ranging from 0 to 1, calculated as follows:

Fpj
�
Countpj

|E|
, (2)

where Countpj
is the occurrence number of attribute pj in a

KG and |E| is the total number of entities in the KG. In this
example, the frequencies of entity “Michael”’s nationality
and birthdate are 0.2162 and 0.3351, respectively.

Second, we divide the frequency range (i.e., the interval
of [0, 1]) into a sequence of small real intervals. Its frequency
interval number can represent an attribute. In this paper, a
proportional sequence is applied to split the frequency
range. 'e interval for an attribute pj can be computed by

Intervalpj
� log(1+q)

Fpj

Fmin i

, (3)

where q is the proportionality constant, and we fix q � 0.001
in this paper. Fmin i is the least frequency of occurrence of an
attribute in a KG. For example, “Nationality” and “Guo Ji” in
Figure 2 are both in interval 2, although their frequencies are
different. 'e parameter setting makes the interval more
robust to small changes caused by noise, especially when
more different frequency attributes are merged into one
interval.

'e value type of an attribute is its data type. Following
previous work [27], this study distinguishes four kinds of
data types, that is, Integer, Double, DateTime, and String.
We encode the value type by a one-hot vector with the same
dimension to the number of data types. For example, 'e
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codes for the attribute value “America” and “1958-08-29” are
[0, 0, 0, 1] and [0, 0, 1, 0], respectively.

As explained in the above two steps, it is clear that the
primary ideal of attribute feature representation is to inte-
grate the representations of the frequency and the type of an
attribute pj. We combine the two representations into a
sparse matrix as shown in Figure 2. Each row in the matrix
denotes the value type, and the row index is the frequency
interval number. On top of that, we reshape this matrix into
a row feature vector pj

�→. In this way, the attributes aei
for an

entity ei can be formed by the sum of its every attribute
vectors pj

�→ as

aei

�→
� 

pj∈aei

pj

�→
.

(4)

To reduce noise, we use an indicator function I(·) to
transform the attribute vector of an entity into the following
binary representation:

I(x) �
1, if x≠ 0,

0, otherwise.
 (5)

'e binary representation is averaged by the entity’s
neighbors as

aei
′

→
�

1
N

e
i





ek∈Ne

i

I aek

�→
 , (6)

where Ne
i denotes the neighboring entities of ei. 'en, a

three-layer MLP transforms the attribute vectors of the two
KGs into a uniform vector space, making the equivalent
entities in different KGs close to each other.'eMLP output
is considered as the embedding of an entity, which is rep-
resented as hattr

ei
. We use ReLU as an activation function in

this paper. Batch normalization and dropout are added to
increase performance. 'e details of the objective function
are introduced in Section 4.4.

4.3. Relationship-Based Model. In KGs, there are various
types of relations describing the role of entity associations
that are crucial to aligning entities across KGs. Many pre-
vious works represent a relation by a transformation of the
relationship connected entities. However, these methods
bring the relationship too close to the entity [31]. 'erefore,
it will be difficult to capture the features of multiple rela-
tionships. Hence, this paper represents the entities and
relations separately. 'eir combinations are adopted as the
inputs to a graphical attention network (GAT) [34]. As a

Attribute 
key
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Frequency 
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value Value type Value 

encoding

Nationality 0.2162 2 America String [0,0,0,1]

birthDate 0.3351 4 1958-08-
29 DateTime [0,0,1,0]

0.2155 2 String [0,0,0,1]

0.3348 4 1958 8
29 DateTime [0,0,1,0]

< Michael_Jackson, Nationality, 
America>

< Michael_Jackson, birthDate, 
1958-08-29>

…

1958 8 29
…

Attribute triples for ei in KG(1)

Attribute triples for ej in KG(2)

0

...

...
...

... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

0 0 1

0 0 1 0

0 0 0 1

0 0 1 0

…,0,0,0,1,…,…

…,…,0,0,1,0,…

…,0,0,0,1,…,…

…,…,0,0,1,0,…

(c)(b)(a) (d)

p1:

p2:

p3:

p4:

Figure 2: An example of entity attributes representation: (a) attribute triples in each KG aremerged into a set of key-value pairs, (b) attribute
keys and values are used to represent the frequency feature and type feature, respectively, (c) the frequency and type information are
integrated into a sparse matrix, and (d) each attribute pair forms a feature vector.
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Figure 1: 'e overview of CAREA framework.
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result, the two KGs are embedded into a unified vector space
so that the equivalent entities in different KGs are close to
each other. 'is study treats relations as undirected; that is,
(ei, ej) is equivalent to (ej, ei).

'e idea of GAT is to calculate each entity’s hidden
representations in two KGs by focusing on their entity
neighbors. GAT follows a self-attention strategy in its
learning process. First, the embedding hei

∈ Rd×1 of each
entity ei and its connected relation hrj

∈ Rd×1 are randomly
initialized. 'is study sets the embedding dimension of
entities and relations as the same d. Second, we average the
entity ei with its neighbors. 'en, the entity embedding and
the averaged embedding of entity connections are concat-
enated as the input to the GAT network as

h
in
ei

�
1

N
e
i


 + 1


ej∈Ne

i ∪ ei

hej

1
N

r
i





rj∈Nr

i

hrj

�����������

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, (7)

where Ne
i represents ei’s neighboring entities, Nr

i represents
the set of relations that are outward from ei, and notation ‖

represents the concatenate operation. 'e attention coeffi-
cients can be calculated by

eij � a
T

h
in
ei

h
in
ej

������ , (8)

where eij indicates the weighted importance of neighboring
ej to ei and a ∈ R2 d×1 is the shared attention weight vector.

Different from the original GAT, there is no weight
matrix W for the input feature in equation (8). In this study,
all adjacent entities are normalized using softmax function
and LeakyReLU nonlinearity with negative input slope
α � 0.2. Such normalization makes the coefficients between
different nodes easy to compare, which can be denoted by

αij � Softmax eij  �
exp Leaky Re LU eij  

k∈Ne
i
exp Leaky Re LU eik( ( 

. (9)

Nonlinear ReLU is applied to the combination of par-
ticipating neighbors. 'e operation yields the output fea-
tures of each entity:

h
out
ei

� Re LU 
ej∈Ne

i

αijh
in
ej

⎛⎜⎜⎝ ⎞⎟⎟⎠. (10)

'e stability of the training process is prepared by
adopting a multihead mechanism. Specifically, K indepen-
dent heads of attention execute the transformation of
equation (10). 'en, the averaged features result in the
following output:

h
out
ei

� Re LU
1
K



k�K

k�1


ej∈Ne
i

αk
ijh

in
ej

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠, (11)

where k is the indicator of heads and αk
ij represents the

attention coefficient in the k-th head. 'is study also ex-
pands the attention mechanism to multihop neighboring
level information by adding more layers, thus creating a

more global-aware representation of the KG. Let
hout(0)

ei
, . . . , hout(l)

ei
be the output features of ei from 0-th

(input features) to l-th layer. We concatenate them together
to obtain the final output features hstruc

ei
of entity ei as

h
struc
ei

� h
out(0)
ei

‖, . . . , h
out(l)
ei

����� . (12)

4.4. Objective Function. As was mentioned in the previous
section, the two models both provide embeddings of the
entities for two KGs from different views. 'is section uses
the same objective function to optimize both of them.
Following the previous work [33], Manhattan Distance is
employed to be the similarity measure. 'e similarity of
ei ∈ G(1) and ej ∈ G(2) in the joint vector space can be
calculated by

s e
(1)
i , e

(2)
j  � h

(attr/struc)
ei

− h
(attr/struc)
ej



. (13)

All similar entities in G(2) should be calculated using the
same method to find the entity ei’s counterpart. 'e nearest
one is chosen as ei’s equivalent. On top of that, we adopt the
following margin-based loss function since it ensures the
balance between positive and negative samples and ensures
the lower scores for positive ones; that is,

L � 

ei,ej( ∈L

s ei, ej  − s ei − ej
′  + c 

+


+ s ei, ej  − s ei
′ − ej  + c 

+
,

(14)

where [·]+ represents max(·, 0) and c is a hyperparameter of
margin. ei

′ and ej
′ are the negative counterpart of ei and ej,

respectively. In this work, the entities in G(1) and G(2) are
randomly selected as negative counterparts. Adam [35] is
adopted to minimize the loss function.

4.5. Cotraining Algorithm. In this study, the cotraining pro-
cess of the attribute-based model fattr and relation-based
model fstruc is conducted iteratively. Two components alter-
nately take turns to train and predict new potential aligned
entity pairs at each iteration until either of the two parts no
longer obtain new pairs. Such a prediction is based on the
cosine similarity of entities in the united vector space. A new
pair sourced from a KG is suggested by searching the nearest
neighbor (NN) in the other KG. It is worth noting that, inmost
cases, the NNs are asymmetric. For example, although ei in
G(1) is the most similar entity to ej in G(2), there may be
another entity in G(2) closer to ei. 'us, the newly predicted
entity pairs should be bidirectional nearest neighbors.

4.5.1. Dynamic Similarity 7reshold. We further evaluate
the predicted potential aligned entity pairs by dynamically
adjusting the threshold in each iteration. 'at is to say, only
the entity pairs, whose cosine similarity falls within a certain
threshold τ, are populated into the aligned pair set L. As
higher similarity threshold implies higher precision, we set
higher thresholds for earlier iterations. However, it may also
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limit the capability of the model to propose a sufficient
number of aligned entity pairs. 'us, lower thresholds are
taken for later iterations. 'e design of the threshold
function is alternative. In this paper, we design a linear
threshold function as

τ(n) � α − δ(n), (15)

where α ∈ (0, 1) is the initial threshold, n ∈ 0, 1, 2, . . .{ } is the
iteration number, and δ ∈ (0, 1) is the coefficient controlling
the changing rate of each iteration. In order to control the
precision of each component model, we set different
threshold parameters for different models in our experi-
ments.'e detailed cotraining procedure of CAREA is given
in Algorithm 1.

5. Experiments

5.1. Datasets. 'is section applies a popular public dataset
DBP-15K [27] for entity alignment to evaluate the perfor-
mance of the approach CAREA. DBP-15K contains three
cross-lingual subsets built from DBpedia: DBPZH−EN,
DBPJA−EN, and DBPFR−EN. Each of the three subsets contains
two KGs in different languages, for example, DBPFR−EN for
French and English. 'eir statistics are displayed in Table 1.

5.2. Experiment Settings. Following the previous work [29],
we adopt two evaluation metrics: (1) Hits@ k: the propor-
tion of correctly aligned entities ranked in the top k. (2)
Mean Reciprocal Rank (MRR): the average of the reciprocal
ranks of results. Higher Hits@ k and MRR scores indicate
better alignment performance. 'e two metrics can be
calculated as follows:

score(x) �

1, if pos(x)≤ k,

0, otherwise,

⎧⎪⎨

⎪⎩

Hits(x) �
1

|T|


x∈T
score(x),

MRR(x) �
1

|T|


x∈T

1
pos(x)

,

(16)

where pos(·) is the position of tested entity pair in the
returned list, T is the set of tested entity pairs, and Hits@ 1
and Hits@ 10 are adopted in our experiments.

'is research is compared with other baselines by the
same evaluation metrics and the dataset’s splitting method.
'e experiment randomly splits 30% of the prealigned entity
pairs as training data, while the rest 70% for testing. 'e
average score of both alignment directions (e.g., ZH⟶ EN
vs. EN⟶ ZH) is reported by considering the asymmetric
of the nearest relation across KGs. Each experiment instance
is run five times independently. 'eir average performances
are considered as the final results. 'e same settings for
experiment models are applied unless otherwise stated. 'e
hidden dimensions for attributes, entities, and relations are
the same: d � 100. 'e margin parameter c, dropout rate,

and learning rate of Adam are 3, 0.3, and 0.005, respectively.
For the relation-based model fstruc, we fix the number of
attention heads K � 2 and GAT layer’s depth l � 2. For the
cotraining process, we take the results of CAREA’s third
iteration as its final performance. On the other hand, the
threshold coefficients for both model components are the
same as δ � 0.05. 'e initial thresholds α for fattr and astruc
are empirically set to 0.95 and 0.9, respectively.

5.3. Baselines. To demonstrate the advantage of our method,
we compared it with the following baselines:

(i) MtransE [24]: MtransE is a structure-based model
for multilingual KG embeddings, to provide a
simple and automated solution. 'e model char-
acterizes monolingual relations and deploys three
different techniques to represent cross-lingual
transitions, namely, axis calibration, translation
vectors, and linear transformations.

(ii) JAPE [27]: JAPE is an attribute-preserving em-
bedding model that incorporates the relation and
attribute embeddings for entity alignment.

(iii) GCN-Align [33]: GCN-Align employs GCNs to
learn embeddings from both the structure and at-
tribute information of entities for cross-lingual KG
alignment.

(iv) BootEA [26]: BootEA adopts a bootstrapping
strategy, which iteratively labels potential entity
alignments as training data and leverages it for
learning alignment-oriented embeddings.

(v) MuGNN [28]: MuGNN learns alignment-oriented
KG embeddings by robustly encoding two KGs via
KG completion and entities pruning.

(vi) NAEA [29]: NAEA incorporates neighborhood
subgraph-level information of entities and designs a
neighborhood-aware attentional representation
mechanism on multilingual KGs.

'e performances of the above baselines come from the
reported results in their papers. We also evaluate the ef-
fectiveness of the component models of our approach, in-
cluding the following:

(i) Attribute-based model: the model, denoted as
CAREA-a, ignores structure embedding compo-
nents to assess the effect of the attribute embedding.
In other words, the attribute features are only used to
align entities without a cotraining strategy.

(ii) Structure-based model: we also estimate the com-
ponent’s performance of network structure em-
bedding, which ignores the attribute features except
for the structure ones to align entities. 'e model is
similarly denoted as CAREA-s.

5.4. Experiment Results

5.4.1. Overall Performance. All the comparison methods can
be treated under two groups according to feature categories.
One is purely based on KG structures, including MTransE,
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BootEA, MuGNN, NAEA, and CAREA-s. 'e other le-
verages both entity attributes and relations for entity
alignment, including JAPE, GCN-Align, and CAREA. Ta-
ble 2 summarizes the overall results of all comparedmethods
on the three datasets.

In the structure-based group, our model CAREA-s
performs better than MTransE by at least 27.3% in terms of
Hits@ 1 on three datasets, which also resulted in a greater
score than MuGNN by at least 8.4%.'e comparison results
have demonstrated the effectiveness of our structure-based
approach. Further tests in other group revealed that CAREA
outperforms JAPE and GCN-Align by at least 28.6% across
all datasets on Hits@ 1. 'e result demonstrates our
approach’s superiority by leveraging both entity attributes
and KG structures for entity alignment. Finally, CAREA
ranked the best over all the competing approaches across all
datasets. For example, the performance of CAREA is better
than NAEA and BootEA by at least 3.9% and 6.0% in terms
of Hits@ 1, respectively.

Another proposed component model CAREA-a is
excluded from the above comparisons since it is the only
one that relies solely on attribute information to align
entities. It achieves lower scores. For example, when
CAREA-a were stimulated with Hits@ 1 and Hits@ 10 on
DBPZH−EN, lower scores of 22.1% and 51.8% were re-
ported. 'is is mainly because of the heterogeneity across
multilingual KGs or the KGs may not be explicitly con-
structed or captured by the crawlers. Although CAREA-a
does not perform as well as that of structure-based ap-
proaches, it provides another view for entity alignment
and improves the performance of our method in the KG
alignment task.

5.4.2. Effects of Cotraining Algorithm. 'is part confirms the
achievements of the approach CAREA by presenting each
iteration of the cotraining process. 'e result is shown in

Figure 3. Its trend reveals that there has been a gradually
similar increase in terms of all evaluation metrics, which is
verified on all the three datasets of our two-component
models. 'e iterative cotraining algorithm significantly
improves the performance, with at least an absolute in-
crease of 10.5% Hits@ 1 across all experiment datasets.
Both the attribute fattr model and the structure model
fstruc get enhanced from each iteration. After 3 to 4 it-
erations, the component model performance becomes
stable.

5.4.3. Parameter Sensitivity Analysis. 'is part investigates
the parameter sensitivity of the proposed CAREA on
three primary parameters: (1) the proportion of the
prealigned entity pairs, (2) the feature dimension d, and
(3) the margin parameter c of the proposed objective
function.

Sensitivity to data proportions. We run CAREA by
the training proportions from 10% to 50% with a
step size of 10%. Figure 4 illustrates the change of
Hits@ k concerning different proportions. 'e
shown results on all the datasets become better with
the proportion increase following our expectations.
'e amount of data is a significant factor that more
training data can provide more extended informa-
tion to overlay the cross-lingual KGs. Figure 4 shows
that CAREA performed encouragingly when using
only 10% of the aligned entities as training data. For
example, Hits@1 and Hits@ 10 on DBPZH−ENare
56.2% and 82.4%, respectively. 'erefore, CAREA is
expected to be well adapted to annotate constrained
scenarios.
Sensitivity to the feature dimension d: Figure 5 depicts
the sensitivity of the model performance on different
feature dimensions.'emodel performance of CAREA

Input: Two KGs to be aligned G(1) and G(2), a set L of prealigned entity pairs, and the parameters α1, α2, δ1, δ2 of threshold
function.
Output: 'e parameters of fattr and fstruc.

(1) Initial iteration number n � 0;
(2) repeat
(3) Reinitialize fattr and fstruc;
(4) Train fstruc based on L;
(5) S←NN(fstruc, G(1), G(2))∩NN(fstruc, G(2), G(1));
(6) τ1 � α1 − δ∗1n

(7) S′ � (ei, ej)|similarityt(ei, ej)n< qτ1h,( ei, ej)x ∈ 7S ;
(8) L← L∪ S

(9) Train fattr based on L;
(10) S←NN(fattr, G(1), G(2))∩NN(fattr, G(2), G(1));
(11) τ2 � α2 − δ∗2n;
(12) S′ � (ei, ej)|similarityt(ei, ej)n< qτ2h,( ei, ej)x ∈ 7S ;
(13) L←L ∪ S

(14) n ← n + 1
(15) until S′ � ϕ;

ALGORITHM 1: Cotraining of CAREA.
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keeps stable with the data dimension increases in all
datasets. It is proved that a high-dimensional feature
space is helpful to preserve entity information and
improve the entity alignment performance. A larger
dimension necessarily consumes more computing re-
sources. Hence, we chose d � 100 to weigh efficiency
against effectiveness.

Sensitivity to the margin c: the model performance
produced by setting different margin parameter c

(from 1 to 4) of the objective function is shown in
Figure 6. 'e performances become steady when c≥ 2
with at most 2.5% range from all datasets. 'erefore,
CAREA can keep stable when c varies within a rea-
sonable range.

Table 1: 'e statistics of the datasets used in the experiment.

Datasets #Entities #Relations Attributes Attr. triples Rel. triples

DBPZH−EN
Chinese 19,388 2,830 8,113 153,929 379,684
English 19,572 2,317 7,173 237,674 567,755

DBPJA−EN
Japanese 19,814 2,043 5,882 164,373 354,619
English 19,780 2,096 6,066 233,319 497,230

DBPFR−EN
French 19,661 1,379 4,547 192,191 528,665
English 19,993 2,209 6,422 278,590 576,543
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Figure 3: Hits@1 performances of the two-component models in each iteration. (a) DBPZH-EN. (b) DBPJA-EN. (c) DBPFR-EN.
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Figure 4: Hits@ k on entity alignment with respect to the proportion of training data. (a) DBPZH-EN. (b) DBPJA-EN. (c) DBPFR-EN.
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Figure 5: CAREA performance with respect to the feature dimension d. (a) DBPZH-EN. (b) DBPJA-EN. (c) DBPFR-EN.
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Figure 6: CAREA performance with respect to the margin parameter c. (a) DBPZH-EN. (b) DBPJA-EN. (c) DBPFR-EN.

Table 2: Comparison with the baseline methods.

Method
DBPZH−EN DBPJA−EN DBPFR−EN

Hits@ 1 Hits@ 10 MRR Hits@ 1 Hits@ 10 MRR Hits@ 1 Hits@ 10 MRR
MTransE 30.8% 61.4% 0.364 27.9% 57.5% 0.349 24.4% 55.6% 0.335

JAPE 41.2% 74.5% 0.490 36.3% 68.5% 0.476 32.4% 66.7% 0.430

GCN-Align 41.3% 74.4% 0.549 39.9% 74.5% 0.546 37.3% 74.5% 0.532

MuGNN 49.4% 84.4% 0.611 50.1% 85.7% 0.621 49.5% 87.0% 0.621

BootEA 62.9% 84.8% 0.703 62.2% 85.4% 0.701 65.3% 87.4% 0.731

NAEA 65.0% 86.7% 0.720 64.1% 87.3% 0.718 67.3% 89.4% 0.752

CAREA-a 22.1% 51.8% 0.320 18.4% 46.4% 0.277 16.9% 45.4% 0.264

CAREA-s 58.2% 87.5% 0.685 58.5% 87.8% 0.689 60.5% 90.5% 0.711

CAREA 69.8% 90.6% 0.772 68.9% 90.4% 0.766 71.3% 92.5% 0.789
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6. Conclusion and Future Work

'e purpose of the present research was to investigate the
cross-lingual entity alignment problem in KGs.'is study has
constructed a cotraining based approach CAREA to learn
entity embeddings from two independent views of knowledge
(relationships and attributes). CAREA is innovatively con-
structed as a two-componentmodelfattr andfstruc, which can
extract the attribute and the relation information, respec-
tively. In each iteration, both models alternately take turns of
the train-and-predict process, which gradually improves each
model’s performance. Experiments on three popular datasets
confirm the effectiveness and superiority of CAREA on the
entity alignment task. 'e insights of model construction
gained from this study may be of assistance to complex
multilanguage and cross-domain knowledge organization
and analysis. Future work seeks to extend the CAREAmethod
to other applications, such as link prediction, information
extraction, and entity classification.
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