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(is paper is concerned with the modelling and prediction of random delays in networked control systems. (e stochastic dis-
tribution of the random delay in the current sampling period is assumed to be affected by the network state in the current sampling
period as well as the random delay in the previous sampling period. Based on this assumption, the double-chain hidden Markov
model (DCHMM) is proposed in this paper to model the delays. (ere are two Markov chains in this model. One is the hidden
Markov chain which consists of the network states and the other is the observable Markov chain which consists of the delays.
Moreover, the delays are also affected by the hidden network states, which constructs the DCHMM-based delay model. (e
initialization and optimization problems of themodel parameters are solved by using the segmental K-mean clustering algorithm and
the expectation maximization algorithm, respectively. Based on the model, the prediction of the controller-to-actuator (CA) delay in
the current sampling period is obtained. (e prediction can be used to design a controller to compensate the CA delay in the future
research. Some comparative experiments are carried out to demonstrate the effectiveness and superiority of the proposed method.

1. Introduction

In traditional control systems, system nodes (such as sen-
sors, controllers, and actuators) are usually connected by the
port to port wiring, which may cause many problems such as
the difficult wiring and maintenance and the low flexibility
and reliability. Such drawbacks appear in many automation
systems due to the increasing complexity of controlled
plants. With the advent and development of networks,
traditional point-to-point control systems are being resha-
ped and redefined, which gives birth to networked control
systems (NCSs) wherein feedback control loops are closed
through communication networks [1]. (e utilization of a
multipurpose shared network to connect spatially distrib-
uted components endows control systems with several ad-
vantages such as decreased volume of wiring, low
installation and maintenance costs, increased system flexi-
bility, and high reliability [2]. Nowadays, NCSs have been
extensively applied in many practical systems such as un-
manned marine vehicles [3], intelligent manufacture [4],

transportation network [5], and haptics collaboration over
the Internet [6].

Compared with traditional control systems, the inte-
gration of communication network in the control loops
leads to network-induced delays, data dropouts, packet
disorder, and congestion. Among them, the network-in-
duced delay is the most significant phenomenon that de-
grades the system performance or even destabilizes the
control systems. See [3] for an example of dealing with
random delays in networked unmanned marine vehicles.
(erefore, it is very necessary and urgent to investigate the
random delays while implementing networked control. (is
is the initial research motivation of this paper. Over the past
decade, considerable attention has been paid to the studying
of NCSs with delays, and many significant results have been
reported in the literature (see [7, 8] and references therein).

Based on the networked structure for the UMV (Figure 1
in [3]), we can draw a typical structure of NCS as shown in
Figure 2. (e sensor-to-controller delay (called SC delay) in
the k th sampling period (denoted as τsc

k ) is exposed when
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the sensor measurement is transmitted from the sensor to
the controller. Similarly, the controller-to-actuator delay
(called CA delay) in the k th sampling period (denoted as
τcak ) is exposed when the control law is transmitted from the
controller to the actuator. Regardless of the type of network
(wired or wireless communication network), the perfor-
mance of NCSs is always affected by these delays, which can
be constant or time-varying according to their distribution
characteristics. To compensate the delays, it is often nec-
essary to establish the mathematical model of delays first.
(e last two decades have witnessed the flourishing evo-
lution of this area in NCSs.

(e constant delay occurs in NCSs when a buffer is used
on the controller (or actuator) side, and the data in the buffer
are read periodically by the controller (or actuator) [9]. For
this case, the delay is simply modelled as a constant. As a
result, the NCSs can be transformed into deterministic
systems, and some conventional deterministic control
methodologies have been applied to NCSs in [10, 11].
Nevertheless, the buffer makes the delay artificially increased
because the data packet can be used only at some fixed time
instant although it has already arrived for a while. (e main
limitation of the constant delay model leads to much design
conservatism, or, even worse, the system stability margin
decreases so much that the system becomes unstable.

On the other hand, the controller and actuator in NCSs
are usually event-driven, which results in the time-varying
delay in NCSs. For this case, two divisions can be found in
the literature, i.e., the deterministically varying delay and the
stochastically varying delay. In the former division, the
variation of delays is not known a priori, but the instan-
taneous value is available to designers in real time. In the
latter division, the variation of the delays is associated with
some statistical descriptions: either the case of the current

delay being independent of the previous ones or the case of
some correlation existing between the current delay and the
previous ones.

For the deterministically varying delay, there are three
main approaches to analyze the NCSs although the statistics
of time-varying delay is not available.(e first approach is to
transform the network-induced delay into the input delay,
and then the recent advances on the delay system approaches
can be applied for the analysis and control of NCSs [12, 13].
(e second approach is to treat the network-induced delay
as a variation parameter of the system, and, more specifi-
cally, it is usually called as the exponential uncertainty
[14, 15].(en, the stability and stabilization problems can be
solved based on the robust control approach. (e third
approach is to introduce a new working mode of the ac-
tuator, by which the delay can take finite values only, and
ultimately the NCS is modelled as a discrete-time switched
system with a finite number of subsystems [16, 17].(emain
difference between them is that different approaches result
in a different system model. (e first one models the NCS as
a delay system, the second one models the NCS as a pa-
rameter-varying system, and the third one models the NCS
as a discrete-time switched system.

For the stochastically varying case, the statistics of delays
are available for system design, and the stochastic system
approach can be applied. To model the random delays, two
methods are widely used: one is the independent identically
distributed (i.i.d.) model and the other is the Markov chain
model. (e i.i.d. model is similar to the modelling of stochastic
sampling problem, i.e., the delay is partitioned into multiple
different time-varying delays and each delay has a certain
bound. (en, a delay distribution-based analysis and synthesis
approach can be applied for the NCSs with nonuniform dis-
tribution characteristics of delays [18, 19]. (e same delay
distribution-based approach has been extended to fuzzy NCSs
in [20, 21]. Different from the i.i.d. model, the Markov chain
model is proposed under the assumption that the delay is
correlated and the transition of different delays has Markovian
property. For the past few years, a lot of effort has been put on
the research about Markov chain-based analysis and synthesis
methods for random delays in NCSs. (ese methods can be
generally divided into two categories: one considering only SC
delays [22] (or CA delays [23]) and the other considering both
SC delays and CA delays [24, 25]. In [24, 26], the SC delay and
the CA delay were lumped together as a single delay, and then
were modelled as a single Markov chain. In [25, 27], the SC
delay and the CA delay were modelled as two different Markov
chains. Under theMarkov chain-based delaymodel, the NCS is
oftenmodelled as aMarkovian jump linear system (MJLS), and
then many control methodologies (e.g., robust control, pre-
dictive control, and fuzzy control) can be used to analyze and
synthesize the NCSs with random delays.

(e stochastic distribution of current delay is governed by
the previous delay in the Markov chain-based delay model.
However, some other researchers believe that the stochasticity
of current delay should be due in large part to some stochastic
network factors (e.g., network load, node competition, and
network congestion) which can be described as an abstract
random variable named network state. As a result, hidden
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Figure 1: Refined diagram of Figure 2 with some other data.
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Markov models (HMMs) have been successfully used to model
random delays of NCSs [28, 29]. In the HMM-based delay
model, the stochastic distribution of current delay is only
governed by the current network state. (is is the main dif-
ference between the HMM-based delay model and theMarkov
chain-based delay model. Along with each packet transmission
over the network, the network state will jump from one mode
to another following a Markov chain. (e network state de-
termines the distribution of random delays. (is kind of re-
lationship between the network state and the random delay is
referred to as an HMM. According to the delay characteristics,
there are mainly three kinds of HMMs to model the random
delays of NCSs: discrete-time HMM (DTHMM) [28, 30],
continuous-time HMM (CTHMM) [29, 31], and semi-
continuous HMM (SCHMM) [32]. Moreover, how to opti-
mally initialize the parameters of HMM-based delay models
has been discussed in [33].

Compared with theMarkov chain-based delay model which
describes the probabilistic relationship among random delays
themselves, the HMM-based delay model reveals the essential
generation mechanism of random delays and describes the
probabilistic relationship between random delays and hidden
network states. To a certain extent, the HMM-based delaymodel
is closer to the real distribution of random delays. However, the
probabilistic relationship objectively existing among random
delays themselves is neglected in the HMM-based delay model.
(erefore, to get a more accurate delay model, we prefer to
believe that the probabilistic relationship exists not only between
random delays and network states, but also between random
delays themselves, which is the main motivation of this paper.
(at is to say, the current delay is governed by the current
network state as well as the previous delay. (erefore, the so-
called double-chain hidden Markov model (denoted as
DCHMM) is introduced in this paper to model the random
delays in NCSs. (e contribution of this paper lies in the novel
modelling method (i.e., DCHMM) that considers the rela-
tionship between the randomdelay and the network state as well
as the relationship between the random delay and its previous
value.(is is the first time in the literature that both the network
status and the delay itself are considered simultaneously in the
delay modelling. Based on the model, the segmental K-mean
clustering algorithm and the expectation maximization algo-
rithm are presented to solve the initialization and optimization
problems of themodel parameters.(en, the optimizedmodel is
used to predict the CA delay and get more accurate delay
prediction result than the discrete HMM.

Generally, the CA delay can arbitrarily take values from its
acceptable interval, although only a certain discrete value is
observed during each sampling period. (is is the reason the
continuous HMM [29, 31] and semicontinuous HMM [32]
have been used to model the CA delays. In these two models,
the mixture Gaussian density functions are used to describe the
distribution of the CA delays, which improves the modelling
accuracy compared with the discrete HMM. However, at the
same time, the model parameters to be estimated are aug-
mented and then the computational complexity is increased in
these two models. (erefore, for simplicity, the CA delays are
limited to a few discrete intervals by using a scalar quantizer,
such as the uniform quantizer in [28, 34] and the K-means

clustering quantizer in [30], and then the discrete HMM can be
used to model the CA delays. Similarly, in this paper, the CA
delays will be also quantized into several finite different discrete
observations, and more specifically, the observation process
will be assumed to possess the Markovian property, which is
much different from the discrete HMM in [28, 30] where the
observations are independent of each other. (erefore, there
are twoMarkov chains to be considered in this paper, one is the
hidden network states and the other is the observable delay
observations, which are modelled as the double-chain hidden
Markov model (DCHMM). Since the DCHMM concerns the
dependency relationship objectively existing among random
CA delays, it will present higher precision of modelling and
prediction than the discrete HMM,whichwill be demonstrated
through the contrastive experiments in this paper. Neverthe-
less, the superiority of DCHMM over the continuous or
semicontinuous HMM is not so clear unless some continuous
stochastic processes other than the Markov chain are used to
describe the dependency relationship among random CA
delays, which will be investigated in our future work.

(e rest of this paper is organized as follows. (e
problem formulation is given in Section 2. (e DCHMM-
based delay model and its parameter estimation are pre-
sented in Section 3. How to predict the random CA delays
based on the DCHMM delay model is proposed in Section 4.
(e effectiveness and superiority of the proposed methods
are illustrated by experimental examples in Section 5. Fi-
nally, some concluding remarks are given in Section 6.

2. Problem Formulation

To better present the problem, the block diagram of a typical
NCS in Figure 2 is further refined in Figure 1, where some
other data (e.g., sensor measurement, control law, and
historical CA delays) are annotated. In Figure 1, the sensor is
time-driven and samples the plant every h seconds to get the
plant state (called sensor measurement and denoted by xk).
Both the controller and the actuator are event-driven, which
means that the controller calculates the control law as soon
as the sensor measurement arrives at the controller node and
the actuator acts as soon as the control law arrives at the
actuator node. If the network nodes (i.e., sensor, controller,
and actuator) are clock-synchronous (this can be imple-
mented using themethod in [35]), the timestamp technology
can be used to calculate the SC and CA delays. (e sensor
measurement is time-stamped before it is transmitted
through the backward network, and when it arrives at the
controller node, the SC delay can be calculated by comparing
the timestamp of the sensor measurement with the local time
of the controller node. Similarly, the control law is time-
stamped before it is transmitted through the forward net-
work, and when it arrives at the actuator node, the CA delay
can be calculated by comparing the timestamp of the control
law with the local time of the actuator node.

Both the SC and CA delays may degrade the system per-
formance or even destabilize the control system.(erefore, many
kinds of controllers are designed to compensate these delays.
When designing the current control law uk, the current SC delay
τsck has occurred and can be measured by using the timestamp
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technology (in this paper, the word “current” means the k th
sampling period). However, at the same time, the current CA
delay τcak has not occurred. In order to compensate the current
CA delay τcak by the control law uk, a feasible way is to predict the
current CA delay before designing the control law uk.(us, both
the predicted CA delay (denoted as 􏽥τcak ) and the measured SC
delay τsck are known to the controller and can be compensated
only if they are considered into the design of the control law uk.
In this paper, the DCHMM is proposed to model the CA delay
and obtain its current predicted value 􏽥τcak , which aims to improve
the prediction accuracy compared with the DTHMM.

(ere are several parameters (the number of hidden
states N, the number of observations M, the probability
distribution of the first hidden state π, the transition matrix
between hidden states A, and the set of transition matrices
between successive outputs given a particular hidden state
B) in the DCHMM-based CA delay model (denoted as λ,
and λ � (N, M, π,A,B)). To get the optimal estimation of
these parameters, the historical CA delays are needed as the
inputs of an iterative optimization process to train these
parameters. (erefore, a delay buffer is set at the controller
node to collect all the past CA delay data (i.e., τcak−1, . . . , τca1 )
as shown in Figure 1. As described above, the adjacent
previous CA delay τcak−1 is calculated at the actuator node and
then can be packaged into the current senormeasurement xk

to generate a single packet. (is packet will be transmitted to
the controller through the backward network. Once re-
ceiving this packet, the controller will extract the previous
CA delay data τcak−1 from this packet and put it into the delay
buffer. In this way, all the past CA delay data are collected in
the delay buffer and then can be used to optimally estimate
the parameters of the DCHMM-based CA delay model and
predict the current CA delay (􏽥τcak ). Based on the predicted
value (􏽥τcak ) and the real measured value (τsck ), some control
law can be designed to compensate both the CA delay and
the SC delay in the current sampling period. (is paper is
focused on the modelling and prediction problem, leaving
the compensation problem as the future work.

For simplicity, the sum of the SC and CA delay is as-
sumed to be not more than one sampling period (i.e.,
τsck + τcak ≤ h) in this paper, which means that there is no data
packet dropout and disorder concerned in this paper.

3. DCHMM-Based Delay Modelling

3.1. Model Derivation. It should be noted that this paper will
focus on the discrete-time, discrete-state, and discrete-observation
DCHMM, where the state transition probability matrix and the
observation transition probability matrix for each state are as-
sumed time homogeneous. Similar to DTHMM, the forward
network states are modelled as a time-homogeneous Markov
chain with N different states that constitute a discrete finite state
set S � 1, 2, . . . , N{ }. Generally, the network state (denoted as s)
defines the whole working status of the network and is an abstract
variable that comprehensively reflects the stochastic factors (e.g.,
network load, nodes competition, and network congestion) of the
network. (e network state in the k th sampling period is rep-
resented as sk. Obviously, sk ∈ S(s) holds.Alongwith eachpacket
transmission in the forward network, the network state may

transfer from one mode to another through Markovian property
described as the following equation:

P sk+1 � j|sk � i, sk−1, . . . , s1( 􏼁

� P sk+1 � j|sk � i( 􏼁 � aij, (i, j ∈ S,∀k ∈ Z).

(1)
(e Markovian property tells us that the conditional

probability distribution of the network state in the next
sampling period (denoted as sk+1) depends only upon the
current network state sk, not on the past network states
sk−1, . . . , s1􏼈 􏼉. In equation (1), aij (∈ [0, 1]) denotes the one-
step transition probability of going from the network state i

at time k to the network state j at time k + 1 , satisfying the
constraint: aij ≥ 0 and 􏽐

N
j�1 aij � 1. (e Markovian property

of network states is illustrated in Figure 3(a). All one-step
transition probabilities construct a one-step transition
matrix A � aij􏽮 􏽯1≤ i,j≤N

as shown in Figure 3(b). For the
special case of time k � 1, aij is simplified into an initial state
probability of the first hidden network state that is defined by
πj as follows:

πj � P s1 � j( 􏼁. (2)

Obviously, πj ≥ 0 and 􏽐
N
j�1 πj � 1 hold. All possible

initial state probabilities construct an initial vector
π � πj􏽮 􏽯1≤ j≤N

.
Now, these parameters (N, π, and A) define a Markov

chain of network states. As is known, the DCHMMdescribes
a two-stage stochastic process. (e defined Markov chain is
exactly the first stage of the DCHMM-based delay model. In
the second stage, for every state at time k additionally a CA
delay τcak is generated. As mentioned before, the DCHMM
proposed in this paper has finite discrete observations and
the observations for each state construct a time-homoge-
neous Markov chain. Similar to the DTHMM [28, 30], the
observations are also obtained by quantizing the CA delays,
and then they can be used to estimate the parameters of the
DCHMM-based delay model. (e delay interval ((0, h]) is
assumed to consist of a complete set such as (0,

h) � (h0, h1)∪ (h1, h2]∪ · · · ∪ (hM−2, hM−1]∪ (hM−1, hM]

(where h0 � 0 and hM � h), and for (τk ∈ hm−1, hm]

(m � 1, . . . , M), a new observation (ok) is defined as ok � m

with an observation space O � 1, 2, . . . , M{ } and ok ∈ O

holds. After k − 1 sampling periods, one can get a set of
network states: s � s1, s2, . . . , sk−1􏼈 􏼉, a set of the CA delays:
τca � τca1 , τca2 , . . . , τcak−1􏼈 􏼉 and a corresponding set of obser-
vations: o � o1, o2, . . . , ok−1􏼈 􏼉 by quantizing the CA delays,
which lay a foundation for deriving the DCHMM-based
delay model.

Under the previously mentioned time homogeneous
assumption, the conditional probability of obtaining the
observation ok for the DCHMM is defined as follows:

b
(i)
lm � P ok � m|sk � i, sk−1, . . . , s1, ok−1 � l, ok−2, . . . , o1( 􏼁

� P ok � m|sk � i, ok−1 � l( 􏼁, (i ∈ S, l, m ∈ O,∀k ∈ Z).

(3)

In equation (3), b
(i)
lm (∈ [0, 1]) denotes the conditional

transition probability of going from the observation l at time
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k − 1 to the observation m at time k for the network state i at
time k, satisfying the constraint: b

(i)
lm ≥ 0 and 􏽐

M
m�1 b

(i)
lm � 1.

For a given state i ∈ S, let the matrix B(i) define the con-
ditional observation transition probabilities for the state i,
where the (l, m) entry of B(i) is b

(i)
lm . (at is, if the DCHMM is

currently in the state i, B(i) will be the observation transition
probability matrix used to determine the observation at the
current time point given the observation which was obtained
at the previous time point. From this, it can be seen that the
observation of the DCHMM-based delay model can be
viewed as a time inhomogeneous Markov chain, where the
transition probability matrix used for the observations is
dependent on the hidden network state of the DCHMM.

Based on the definitions in equations (1), (2), and (3), the
DCHMM-based delay model, which is usually denoted as λ,
can be completely described as follows:

(1) A finite set of network states S � 1, 2, . . . , N{ }

(2) A matrix A of state transition probabilities:

A � aij|aij � P sk � j|sk−1 � i( 􏼁􏽮 􏽯, i, j ∈ S. (4)

(3) A vector π of initial state distribution:

π � πj|πj � P s1 � j( 􏼁􏽮 􏽯, j ∈ S. (5)

(4) A set of the transition matrix between successive
observations given a particular state i (i ∈ S):

B � B(i)
􏽮 􏽯withB(i)

� b
(i)
lm􏽨 􏽩, l, m ∈ O. (6)

From the above, λ � (N, M, π,A,B) . In general, N and
M are known in advance, so λ can be rewritten as follows for
simplicity:

λ � (π,A,B). (7)

Equation (7) gives the definition of the DCHMM-based
delay model which is represented in Figure 4.

Remark 1. (e DCHMM is a generalization of both a visible
Markov chain and a hidden Markov chain. When there is only
one hidden state (N � 1), the DCHMM reduces to an ho-
mogeneous Markov chain with transition matrix B(1). On the
other hand, when there are N> 1 hidden states but each matrix
B(i) (i ∈ S) has identical rows, themodel reduces to aDTHMM.

In Figure 4, the observed process is governed by a hidden
Markov chain in which successive observations are directly
correlated through the Markov property. (e DCHMM
presented in this paper combines characteristics of both
visible and hidden models. It is called “double” since it can
be viewed as the superposition of two interlinked Markov
chains: the hidden Markov chain governing the relation
between states of a nonobservable variable (i.e., network
state) and the visible Markov chain governing (together with
the hidden state process) the relation between outputs of an

Sk – 1 Sk = i Sk + 1 = j Sk + 2

(a)
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Figure 3: Markov chain for the network states: (a) Markovian property; (b) transition matrix.
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observed variable (i.e., CA delay).(at is, the DCHMMhas a
similar stochastic framework to the HMM, but now it is
assumed that, for a given time point k, the current CA delay
τcak is not only dependent on the current hidden state sk but
also dependent (through the Markov property) on the
previous CA delay τcak−1.

In Figure 4, since the value of τca1 depends on the past, we
consider an initial CA delay value (τca0 ) at time 0 with no
corresponding hidden state, and its corresponding obser-
vation is o0. Based on this consideration, the set of the past
CA delays τca is redefined as τca � τca0 , τca1 , τca2 , . . . , τcak−1􏼈 􏼉 ,
and the corresponding set of the observations o is redefined
as o � o0, o1, o2, . . . , ok−1􏼈 􏼉.

Remark 2. (e dependence of the current CA delay on both
the current network state and the previous CA delay can be
explained as follows. (e CA delay process can be consid-
ered as a Markov chain, where the transition probability
matrix is dependent on the current network state occupied.
(at is, the transition probability matrix of the CA delay
process is associated with each state in the network state
space, and each time the DCHMM enters a new state, the
transition probability matrix of the CA delay process for that
network state is used to determine which observation (given
the previous CA delay) will be emitted for that time point.
(e CA delay process can thus be viewed as a time inho-
mogeneous Markov chain, where the transition probability
matrix used for the observation process is driven by the
hidden state process of the DCHMM.

One of the benefits to introduce the DCHMM-based
delay model is that the advantages of both the Markov chain
and the HMM are conserved. (at is, the system is driven by
an unobserved process, and the successive observations are
also directly correlated.

3.2. Model Estimation. In order to get the accurate pre-
diction of the current CA delay (􏽥τcak ) by using the DCHMM-
based delay model as described in equation (7), three dif-
ferent estimation problems have to be considered as follows:

Q1: the estimation of the likelihood of a sequence of
observations o0, o1, . . . , ok􏼈 􏼉 given a model λ
Q2: the estimation of the parameters π ,A andB given a
sequence of observations
Q3: (e estimation of the optimal sequence of hidden
network states given a model and a sequence of outputs

(ese three problems are similar to the problems oc-
curring in DTHMM theory and can be solved using similar
methods. Q1 is solved using a forward iterative algorithm.
Q2 is achieved with an Expectation Maximization (EM)
algorithm. Q3 is obtained through the Viterbi algorithm.

Remark 3. In this section, only the resulting formulas for
each algorithm are given. (e complete derivation is pro-
vided in Appendix A. Moreover, as presented here, the three
algorithms can lead to numerical problems since they in-
volve the calculation of infinitesimal values. A good solution
is to normalize the intermediary results at each step of the

calculation. (e practical implementation of this method is
discussed in Appendix B.

3.2.1. Likelihood of the Observation. (e likelihood of the
observation o (o � o0, o1, . . . , ok−1􏼈 􏼉) given the DCHMM-
based delay model λ is defined as follows:

L � P o0, o1, . . . , ok−1|λ( 􏼁. (8)

An iterative procedure similar to the forward procedure
developed in [32] for the estimation of the SCHMM is
proposed to get the likelihood in equation (8). A forward
variable is defined as follows:

αr(j) � P o0, . . . , or, sr � j|λ( 􏼁. (9)

For r � 1, equation (9) becomes

α1(j) � b
(j)
o0o1

πj. (10)

In the general case, for r � 2, . . . , k − 1,

αr(j) � b
(j)
or−1or

􏽘

N

i�1
aijαr−1(i), i, j ∈ S. (11)

By summing αk−1(j) over j, one can obtain the likeli-
hood of the entire sequence of observation o:

L o0, o1, . . . , ok−1( 􏼁 � 􏽘
N

j�1
P o0, o1, . . . , ok−1, sk−1 � j( 􏼁 � 􏽘

N

j�1
αk−1(j).

(12)

(e iterative computation of αr(j) is sufficient to obtain
the likelihood. Moreover, another iterative algorithm similar
to the backward procedure appearing in [32] is defined here.
It will be used later for the estimation of the parameters of
the DCHMM-based delay model. (e backward variable is
defined as follows.

βr(i) � P or+1, . . . , ok−1|or, sr � i, λ( 􏼁. (13)

For r � k − 1, we obtain

βk−1(i) � 1, (14)

and for r � 1, . . . , k − 2,

βr(i) � 􏽘

N

j�1
aijb

(j)
oror+1

βr+1(j). (15)

With this result, the likelihood in equation (12) can be
rewritten as

L o0, o1, . . . , ok−1( 􏼁 � 􏽘
N

i�1
αr(i)βr(i), r � 1, . . . , k − 1.

(16)

Equation (12) corresponds to r � k − 1.
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3.2.2. Estimation of π, A, and B. (e complete identification
of the DCHMM-based delay model requires the estimation
of three sets of probabilities: π, A, and B. We use an ex-
pectation maximization (EM) algorithm for the parameter
estimation as we have done in [32].

First, we define the joint probability of two successive
hidden network states as follows:

εr(i, j) � P sr � i, sr+1 � j|o0, . . . , ok−1( 􏼁 �
αr(i)aijb

(j)
oror+1

βr+1(j)

L o0, . . . , ok−1( 􏼁
,

i, j ∈ S, r � 1, . . . , k − 2.

(17)

(en, we define the marginal distribution of the hidden
network states as follows:

ξr(i) � P sr � i|o0, . . . , ok−1( 􏼁 � 􏽘
N

j�1
εr(i, j) �

αr(i)βr(i)

L o0, . . . , ok−1( 􏼁
, i ∈ S, r � 1, . . . , k − 2. (18)

Using εr and ξr, we can write the reestimation formula
for π, A, and B as follows:

􏽢πi � P s1 � i|o0, . . . , ok−1( 􏼁 � ξ1(i), (19)

􏽢aij � 􏽘
k−2

r�1
P sr+1 � j|sr � i, o0, . . . , ok−1( 􏼁 �

􏽐
k−2
r�1εr(i, j)

􏽐
k−2
r�1ξr(i)

,

(20)

􏽢b
(i)

lm(r) � P or � m|o0, . . . , or−1 � l, . . . , ok−1, sr � i( 􏼁

� P or � m|or−1 � l, sr � i( 􏼁 �

􏽐
k−2
r�1ξr(i)

or−1 � l, or � m

􏽐
k−2
r�1ξr(i)

or−1 � l,

.

(21)

In practice, the parameter estimation of the DCHMM-
based delay model is achieved using iteratively the forward-
backward procedure and the reestimation formulas in
(19)∼(21). Generally, after dozens of iteration, one can
obtain the optimum model parameters λ∗ (λ∗ � (π∗,
A∗,B∗), where π∗ � π ∗i􏼈 􏼉, A∗ � a∗ij􏽮 􏽯, and B∗ � b

(i)∗
lm􏽮 􏽯.

3.2.3. Optimal Sequence of Hidden States. Once we have an
estimation of the DCHMM-based delay model, we can
search the optimal sequence of hidden network states which
maximizes the following conditional probability:

P s1, . . . , sk−1|o0, o1, . . . , ok−1( 􏼁, (22)

or the joint probability

P s1, . . . , sk−1, o0, o1, . . . , ok−1( 􏼁. (23)

(is problem can be solved through an iterative dynamic
procedure called the Viterbi algorithm. For r � 1 and
j � 1, . . . , N, we define

δ1(j) � P o0, o1, s1 � j( 􏼁 � πjb
(j)
o0o1

, (24)

and for r � 2, . . . , k − 1,

δr(j) � max
i1 ,...,ir−1

P o0, . . . , or, s1 � i1, . . . , sr−1 � ir−1, sr � j( 􏼁

� max
i1 ,···,ir−1

δr−1 ir−1( 􏼁air−1j􏼢 􏼣b
(j)
or−1or

.

(25)

(e optimal network state at time k − 1 is then predicted
as

􏽥sk−1 � arg max
j�1,···,N

δk−1(j), (26)

and we obtain recursively for r � k − 2, . . . , 1:

􏽥sr � arg max
j�1,···,N

δr+1(j)aj􏽥sr+1
. (27)

Finally, the joint probability of the sequence of hidden
network states and the sequence of observed CA delay
outputs is equal to

P s1, . . . , sk−1, o0, o1, . . . , ok−1( 􏼁 � max
j�1,···,N

δk−1(j). (28)

As a dynamic programming method, every decision
in the computation of the δr(j) is only locally optimal in
the Viterbi algorithm. (e globally optimum of the state
sequence 􏽥s is only known after the evaluation of the
δk−1(j), i.e., after the CA delay sequence has been
considered in its entire length. (e state 􏽥sk−1 maxi-
mizing δk−1(j) denotes the end of the optimal state
sequence. (e predecessor states can be determined by
means of backtracking in (27).

4. Delay Prediction

Based on the optimal prediction of the network state 􏽥sk−1 at
time k − 1 and the optimal estimation of the parameters A
and B, the method to predict the current CA delay (􏽥τcak ) is
proposed as follows.

Step 1. Predict the optimal network state in the current
(i.e., k th) sampling period, which is denoted as 􏽥sk:

􏽥sk � argmax
j∈S

a
∗
􏽥sk−1j

. (29)

Step 2. Predict the optimal observation of the current
CA delay, which is denoted as 􏽥ok:
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􏽥ok � argmax
m∈O

b
􏽥sk( )∗

ok−1m􏼒 􏼓. (30)

Step 3. Predict the optimal CA delay in the current (i.e.,
k th) sampling period, which is denoted as 􏽥τcak :

􏽥τcak �
1
2

h􏽥ok
− h􏽥ok−1􏼒 􏼓. (31)

Remark 4. Once we get the optimal network state in the
previous sampling period (􏽥sk−1) by using (26), the probability
of different network state j (j ∈ S) in the current sampling
period can be calculated based on the Markovian property of
network states in (1), and the state that maximizes the
probability is the optimal prediction of the current network
state (􏽥sk). Based on the prediction (􏽥sk) and the previous
observation of CA delay (ok−1), the probability of different
delay observation m (m ∈ O) in the current sampling period
can be calculated according to (3), and the observation that
maximizes the probability is the optimal prediction of the
current CA delay observation (􏽥ok). For the predicted ob-
servation (􏽥ok), how to calculate the prediction of the current
CA delay depends on the delay quantization method. As
discussed in [30], there are two kinds of delay quantization
methods to obtain the observations of historical CA delays,
namely, uniform quantization and K-means clustering
quantization. For the uniform quantization, the prediction of
the current CA delay (􏽥τcak ) is set to the midpoint of the
subinterval which the current observation (􏽥ok) falls in. Based
on the definition of the complete subintervals, the subinterval
which the observation 􏽥ok falls in is (h􏽥ok−1, h􏽥ok

], and then the
prediction of the current CA delay is given in (31). For the
K-means clustering quantization, the prediction of the cur-
rent CA delay (􏽥τcak ) is set to the centroid of the cluster which
the current observation (􏽥ok) falls in, and the corresponding
calculating method is given as following step 3.

Step 4. Predict the optimal CA delay in the current (i.e.,
k th) sampling period, which is denoted as 􏽥τcak :

􏽥τcak � c􏽥ok
. (32)

In (32), c􏽥ok
is the centroid of the cluster which the current

observation (􏽥ok) falls in. (e detailed K-means clustering
quantization method and the definition of the cluster cen-
troid have been given in [30]. Actually, we have proved that
the K-means clustering quantization is better than the
uniform quantization in improving the prediction accuracy
of CA delays. (erefore, we will only use equation (32) to
predict the current CA delay in the experiments of this
paper.

5. Illustrative Example

Some comparative experiments are carried out in this sec-
tion to demonstrate the effectiveness and superiority of the
methods proposed in this paper. For the sake of comparison,
the experimental context is designed as the same as that in

[32], and the CA delay values shown in Figure 4 of [32] are
used again here to derive the DCHMM-based delay model
and validate the prediction of CA delays. For the conve-
nience of reading, Figure 4 of [32] is redrawn as follows. In
Figure 5, the first 200 CA delay values (from 1 to 200 on the
x-coordinate) are used for the parameter estimation of the
DCHMM-based delay model, and the last 200 CA delay
values (from 201 to 400 on the x-coordinate) are used to
evaluate the predictive effect based on the model. (e main
difference between the experiments in this paper and that in
[32] is that this paper not only considers the relationship
between the CA delays and the network states but also
considers the relationship between the adjacent CA delays.
(at is to say, the distribution of the current CA delay in this
paper is not only dependent on the current network states
but also related to the previous CA delay.

Firstly, we need to initialize the DCHMM-based delay
model λ0 (λ0 � (N, M, π0,A0,B0)). By using the optimal
stabilization methods in [33], we can obtain that the op-
timal initial values of N and M are 4 and 6, respectively,
which means that there are four different network states
(i.e., S � 1, 2, 3, 4{ }), and the delay interval ((0, h]) can be
divided into six complete subinterval (i.e., M � 6, and
O � 1, 2, 3, 4, 5, 6{ }). (e vector of initial state distribution
(π0) and the matrix of state transition probabilities (A0)

can be almost uniformly initialized as follows, since they
have little effect on the DCHMM-based delay model:

π0 � 0.25 0.25 0.25 0.25􏼂 􏼃,

A
0

�

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(33)

Compared with π0 and A0, the initial value of the ob-
servation matrix (B0) is very crucial to the parameter

3
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1

0
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D
el

ay
 (m

s)

Time (x0.1s)

Real CA delays

Figure 5: Real CA delay values.
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estimation of the DCHMM-based delay model. (e uniform
initialization method is no longer suitable for obtaining the
optimal initial value of the observation matrix (B0). In this
section, the segmental K-means clustering algorithm pro-
posed in [33] is used to optimally initialize the observation
matrix (B0) as follows based on the first 200 CA delay values
in Figure 5. With N � 4 and M � 6, we can rewrite the entry
of the observation matrix B as follows according to equation
(3):

i ∈ S � 1, 2, 3, 4{ }with i ∈ S � 1, 2, 3, 4{ }, l, m ∈ O � 1, 2, 3, 4, 5, 6{ }.

(34)

Obviously, the matrixB is a three-dimensional matrix, in
which i denotes the layer of the matrix, l denotes the row of
each layer, and m denotes the column of each layer. (e
detailed structure of the matrix B is given in Figure 6. (ere
are 4 layers in the matrix B, and every layer has 36 elements,
which makes the matrix B have a total of 144 elements. In
Figure 6, the black number corresponds to the number of
layers, the red number to the number of rows, and the blue
number to the number of columns. For simplicity, the
matrix elements of the second and third layers are omitted
here since they are easy to figure out.

Based on the definition in equation (3), all the elements
of the matrix B satisfy the following constraint relation. Each
element is greater than or equal to 0 and less than or equal to
1, and the sum of each row in each layer is equal to 1:

0≤ b
(i)
lm ≤ 1, 􏽘

6

m�1
b

(i)
lm � 1. (35)

Based on the first 200 CA delay values in Figure 5, the
optimal initial values (B0) of the observation matrix can be
obtained as shown in Figure 7 by using the segmental
K-means clustering algorithm proposed in [33].

In general, the network status is good and the large
numeric elements have relatively small row and column
numbers in Figure 7. In order to illustrate this point, we

transform layer 1 in Figure 7 into Figure 8 that is a matrix
plot with M rows and M columns. In the same way, the
other three layers (layer 2 to 4) in Figure 7 can be trans-
formed into their corresponding matrix plots, and the
transformed result is omitted here for simplicity. In the
matrix plot of Figure 8, each element is a colored dial. (e
color value (referring to the right color bar) and the size of
the colored sector in one rectangle block (i, j) (1≤ i, j≤M)

are determined by the initial value corresponding to the
same (i, j) entry of layer 1 in Figure 7. In Figure 8, the region
on the left shows the relatively large color values as well as
the size of the colored sectors, while the region on the right
shows the relatively small color values as well as the size of
the colored sectors. Figure 8 illustrates, from another per-
spective, that the network always shifts to the state with short
delay and presents a good status.

Secondly, we can use the EM algorithm to train the
DCHMM-based delay model based on the initialized model λ0
and the first 200 delay values in Figure 5. During this ex-
periment, the maximum iterative number of the training
procedure is set to 40 and the threshold ε to terminate the
procedure is set to 5 × 10− 4. Under these conditions, it is found
that the training procedure can always converge after dozens of
iterations. At the end of this procedure, the optimized pa-
rameters (π∗,A∗,B∗) of the DCHMM-based delay model are
obtained as follows. Considering that the matrix B∗ contains
too many elements (144 in total), which makes it unrepre-
sentable, we present it in the form of a one-dimensional curve
as shown in Figure 9 where every 36 coordinates on the
horizontal axis corresponds to one layer of B∗:

π∗ � 0.1377 0.3956 0.3012 0.1655􏼂 􏼃,

A∗ �

0.6308 0.1317 0.1292 0.1083

0.2116 0.5719 0.1125 0.1040

0.1125 0.1726 0.5122 0.2027

0.1047 0.2108 0.2014 0.4831

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(36)
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Figure 6: (e detailed structure of the observation matrix.
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(irdly, we can use the Viterbi algorithm to get the
optimal previous network state and then predict the current
CA delay through three steps. (e first step uses equation
(29) to estimate the optimal current network state. (e
second step uses equation (30) to estimate the optimal
observation of the current CA delay. (e third step uses
equation (32) to predict the current CA delay. Taking the
three steps, the predicted values of CA delays can be ob-
tained. For example, during the 201st period, the predicted

value is 0.8591ms that is close to the real value 0.8432ms in
Figure 5, and the relative error is 1.89%. By recursively
executing the three steps in the following periods, we can get
other predicted CA delay values from the 202nd to the 400th
period as shown in Figure 10.

To judge the predictive precision of the DCHMM-based
delay model, the mean-squared error (MSE) is defined as
follows in this experiment:

MSE �
1
200

􏽘

400

r�201
􏽥τcar − τcar( 􏼁

2
. (37)

Row

Column
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Figure 7: (e optimal initial values of the observation matrix.
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According to the predicted values in Figure 10 and the
real values in Figure 5, we can calculate that the MSE is
0.0032 by using equation (37), which is denoted as
MSEDCHMM (i.e., MSEDCHMM � 0.0032). Generally, such
prediction accuracy has been very high and is acceptable in
NCS.

To illustrate the superiority of the DCHMM-based delay
model over the DTHMM-based delay model in the pre-
diction accuracy, we carry out again the experiment under
the DTHMM-based delay model in [33]. Without consid-
ering the dependence between adjacent CA delays, the
observation matrix B0 degenerates into a two-dimensional
matrix, in which the rows represent the network states and
the columns represent the intervals of CA delays. Under the
same experiment condition, the predicted value is 0.8706ms
during the 201st period for the DTHMM-based delay model,
and the relative error is 3.25% (>1.89% for the DCHMM-
based delay model). (erefore, the DCHMM-based delay
model proposed in this paper gives a better prediction of the
CA delay during the 201st period than the DTHMM-based
delay model. Moreover, by the end of this experiment, we
got that the MSE for the DTHMM-based delay model is
0.0043 (>0.0032 � MSEDCHMM), which is denoted as
MSEDTHMM (i.e., MSEDTHMM � 0.0043). Obviously, we have
MSEDTHMM >MSEDCHMM, which demonstrates the superi-
ority of the DCHMM-based delay model over the DTHMM-
based delay model in the prediction of CA delays.

Besides, we try to compare the DCHMM-based delay
model over the SCHMM-based delay model proposed in
[32] and get some interesting results. In the experiment of
[33], the predicted value is 0.8615ms during the 201st
period for the SCHMM-based delay model, and the rel-
ative error is 2.17% (>1.89% for the DCHMM-based delay
model). However, we cannot simply assume that the
DCHMM-based delay model is superior to the SCHMM-
based delay model. Actually, by the end of the experiment,
the MSE for the SCHMM-based delay model is 0.0029

(<0.0032 � MSEDCHMM), which is denoted here as
MSESCHMM (i.e., MSESCHMM � 0.0029). It is easy to find
that MSESCHMM <MSEDCHMM <MSEDTHMM. So, from this
point of view, the DCHMM-based delay model is not
superior to the SCHMM-based delay model in the pre-
diction of CA delays. (is is mainly because that the delays
are treated as discrete values and quantized into some
limited subintervals in the DCHMM-based delay model. If
the delays are treated as continuous values and can take
any value in its allowable interval or if the dependency
relationship among random CA delays is taken into ac-
count in the SCHMM-based delay model, the derived
DCHMM-based delay model will give more accurate
prediction and show the superiority over the SCHMM-
based delay model, which will be demonstrated in our
future work.

6. Conclusions

In networked control systems, random delays are the main
cause that degrades the system performance and even
causes the system instability. A feasible method to com-
pensate the random delays is to take the random delays into
the design of the controller. Considering the CA delay has
not occurred when the controller is designed, we need to
predict the CA delay before designing the controller. To get
a high-precision prediction value, it is necessary to es-
tablish a high-precision delay model first. Different from
the existing modelling methods, this paper considers the
dependency between the network states and the CA delays
as well as the interdependence between the CA delays. (e
dependency between the network states and the CA delays
is modelled as a hidden Markov model, and the interde-
pendence between the CA delays is modelled as a Markov
chain. As a result, the double-chain hidden Markov model
(DCHMM) is proposed in this paper to model the random
CA delays for the first time in the networked control
systems. As the name implies, there are two Markov chains
in this model. One is the hidden Markov chain which
consists of the network states, and the other is the ob-
servable Markov chain which consists of the random CA
delays. Moreover, the random CA delays are also affected
by the hidden network states, which constructs the
DCHMM-based delay model. (e DCHMM-based delay
model is highly consistent with the distribution of the real
network delays. (erefore, the DCHMM, compared with
the DTHMM, gets much closer to the real network, which
renders the DCHMM-based delay model with higher ac-
curacy than the DTHMM-based delay model. However, it
is worth noting that the DCHMM is more complex than the
DTHMM in model parameter estimation and will consume
more computing time. As a result, the DCHMM has a
relatively poor real-time performance when directly ap-
plied to actual systems. A feasible solution is to determine
the parameter reestimation frequency according to the
prediction accuracy. A threshold is defined as in [32], and
the event-triggering mechanism proposed in [36, 37] can be

3
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Predicted CA delays

Figure 10: Predicted CA delay values.
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used to trigger the parameter reestimation when the pre-
diction error exceeds the threshold.

(e expectation maximization algorithm is presented
to obtain the optimal estimation of the model parameters
after they are initialized by using the K-mean clustering
algorithm. (e Viterbi algorithm is presented to obtain
the optimal estimation of the network states, and then the
prediction of the CA delay in the current sampling period
is obtained. Finally, some comparative experiments are
carried out to demonstrate the superiority of the
DCHMM-based delay model over the DTHMM-based
delay model. Nevertheless, the random CA delays con-
sidered in this paper are discrete, and the DCHMM-based
delay model is derived through quantizing the delays. If
the CA delays are treated as continuous values and can
take any value in its allowable interval or if the depen-
dency relationship among random CA delays is taken into
account in the SCHMM-based delay model, the derived
DCHMM-based delay model will give more accurate

prediction and show the superiority over the SCHMM-
based delay model. In our future research, the predicted
CA delay will be used to design the controller in the
current sampling period to compensate the imminent real
CA delay. Furthermore, we will investigate the adaption of
these methods to other systems such as the cyber-physical
systems and the multiagent systems.

Appendix

A. Derivation of the Algorithm

In this appendix, we provide the complete derivation of the
algorithms of Section 3.

A.1. Likelihoodof theObservedCADelay Sequence. For r � 1,
equation (9) becomes

α1(j) � P o0, o1, s1 � j( 􏼁 � P o1|o0, s1 � j( 􏼁P o0, s1 � j( 􏼁 � b
(j)
o0o1

P o0, s1 � j( 􏼁. (A.1)

Since o0 and s1 are independent and the value of o0 is
known, we have

α1(j) � b
(j)
o0o1

P o0( 􏼁P s1 � j( 􏼁 � b
(j)
o0o1

P s1 � j( 􏼁 � b
(j)
o0o1

πj.

(A.2)

For r> 1, equation (11) becomes

αr(j) � P o0, . . . , or, sr � j( 􏼁

� P or|o0, . . . , or−1, sr � j( 􏼁P o0, . . . , or−1, sr � j( 􏼁

� P or|or−1, sr � j( 􏼁 􏽘

N

i�1
P o0, . . . , or−1, sr−1 � i, sr � j( 􏼁

� b
(j)
or−1or

􏽘

N

i�1
P sr � j|o0, . . . , or−1, sr−1 � i( 􏼁P o0, . . . , or−1, sr−1 � i( 􏼁

� b
(j)
or−1or

􏽘

N

i�1
P sr � j|sr−1 � i( 􏼁P o0, . . . , or−1, sr−1 � i( 􏼁

� b
(j)
or−1or

􏽘

N

i�1
aijαr−1(i).

(A.3)

For βr, r � 1, . . . , k − 2, we have
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βr(i) � P or+1, . . . , ok−1|or, sr � i( 􏼁

�
P or, or+1, . . . , ok−1, sr � i( 􏼁

P or, sr � i( 􏼁

�
1

P or, sr � i( 􏼁
􏽘

N

j�1
P or, or+1, . . . , ok−1, sr � i, sr+1 � j( 􏼁

�
1

P or, sr � i( 􏼁
􏽘

N

j�1
P or, sr � i( 􏼁P sr+1 � j||or, sr � i( 􏼁P or+1|or, sr � i, sr+1 � j( 􏼁 · P or+2, . . . , ok−1|or, or+1, sr � i, sr+1 � j( 􏼁

� 􏽘
N

j�1
P sr+1 � j|sr � i( 􏼁P or+1|or, sr+1 � j( 􏼁P or+2, . . . , ok−1|or, or+1, sr � i, sr+1 � j( 􏼁

� 􏽘
N

j�1
aijb

(j)
oror+1

βr+1(j).

(A.4)

A.2. Estimation of π, A, and B. Equation (17) for the cal-
culation of εr(i, j) is

εr(i, j) � P sr � i, sr+1 � j|o0, . . . , ok−1( 􏼁

�
1

P o0, . . . , ok−1( 􏼁
P o0, . . . , ok−1, sr � i, sr+1 � j( 􏼁

�
1

P o0, . . . , ok−1( 􏼁
P o0, . . . , or, sr � i( 􏼁P sr+1 � j||o0, . . . , or, sr � i( 􏼁

· P or+1|o0, . . . , or, sr � i, sr+1 � j( 􏼁P or+2, . . . , ok−1|o0, . . . , or+1, sr � i, sr+1 � j( 􏼁

�
1

P o0, . . . , ok−1( 􏼁
P o0, . . . , or, sr � i( 􏼁P sr+1 � j|sr � i( 􏼁

· P or+1|or, sr+1 � j( 􏼁P or+2, . . . , ok−1|or+1, sr+1 � j( 􏼁

�
αr(i)aijb

(j)
oror+1

βr+1(j)

L o0, . . . , ok−1( 􏼁
.

(A.5)

and, for ξr(i), we have

ξr(i) � P sr � i|o0, . . . , ok−1( 􏼁

�
P o0, . . . , ok−1, sr � i( 􏼁

P o0, . . . , ok−1( 􏼁

�
P o0, · · · , or, sr � i( 􏼁P or+1, . . . , ok−1|o0, . . . , or, sr � i( 􏼁

P o0, · · · , ok−1( 􏼁

�
P o0, . . . , or, sr � i( 􏼁P or+1, . . . , ok−1|or, sr � i( 􏼁

P o0, . . . , ok−1( 􏼁

�
αr(i)βr(i)

L o0, . . . , ok−1( 􏼁
.

(A.6)

(en, we can get the reestimation formula:

􏽢aij � 􏽘
k−2

r�1
P sr+1 � j|sr � i, o0, . . . , ok−1( 􏼁

�
􏽐

k−2
r�1P sr � i, sr+1 � j, o0, . . . , ok−1( 􏼁

􏽐
k−2
r�1P sr � i, o0, . . . , ok−1( 􏼁

�
􏽐

k−2
r�1P sr � i, sr+1 � j|o0, . . . , ok−1( 􏼁P o0, . . . , ok−1( 􏼁

􏽐
k−2
r�1P sr � i|o0, . . . , ok−1( 􏼁P o0, . . . , ok−1( 􏼁

�
􏽐

k−2
r�1P sr � i, sr+1 � j|o0, . . . , ok−1( 􏼁

􏽐
k−2
r�1P sr � i|o0, . . . , ok−1( 􏼁

�
􏽐

k−2
r�1εr(i, j)

􏽐
k−2
r�1ξr(i)

,
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􏽢b
(i)

lm(r) � P or � m|o0, . . . , or−2, or−1 � l, or+1, . . . , ok−1, sr � i( 􏼁

�
P o0, . . . , or−2, or−1 � l, or � m, or+1, . . . , ok−1, sr � i( 􏼁

P o0, . . . , or−2, or−1 � l, or+1, . . . , ok−1, sr � i( 􏼁

�

􏽐
k−2
r�1ξr(i)

or−1 � l, or � m

􏽐
k−2
r�1ξr(i)

or−1 � l,

.

(A.7)

A.3. Optimal sequence of hidden network states. Equation
(24) can be obtained as

δ1(j) � P o0, o1, s1 � j( 􏼁

� P o0, s1 � j( 􏼁P o1|o0, s1 � j( 􏼁

� P s1 � j( 􏼁P o1|o0, s1 � j( 􏼁

� πjb
(j)
o0o1

,

(A.8)

and, for r � 2, . . . , k − 1 and j � 1, . . . , N,

δr(j) � max
i1 ,···,ir−1

P o0, . . . , or, s1 � i1, . . . , sr−1 � ir−1, sr � j( 􏼁

� max
i1 ,···,ir−1

P o0, . . . , or−1, s1 � i1, . . . , sr−1 � ir−1( 􏼁

· P sr � j|o0, . . . , or−1, s1 � i1, . . . , sr−1 � ir−1( 􏼁

· P or|o0, . . . , or−1, s1 � i1, . . . , sr−1 � ir−1, sr � j( 􏼁

� max
i1 ,···,ir−1

P o0, . . . , or−1, s1 � i1, . . . , sr−1 � ir−1( 􏼁

P sr � j|sr−1 � ir−1( 􏼁P or|or−1, sr � j( 􏼁

� max
i1 ,···,ir−1

δr−1 ir−1( 􏼁air−1j􏼢 􏼣b
(j)
or−1or

.

(A.9)

B. Practical Computation of the Algorithms

Some algorithms in this paper may lead to numerical errors.
A good solution is to normalize the intermediary results at
each step of the calculation. A computable version of these
algorithms is provided in this appendix.

B.1. Computation of the Forward Procedure. (e forward
variable αr(j) may easily take values too small to be handled

by a computer. To avoid this problem, one solution is to
normalize αr(j) at each step r.

For r � 1 and j � 1, . . . , N, we define

􏽥α1(j) �
b

(j)
o0o1

πj

α1
, (B.1)

where α1 � 􏽐
N
j�1 b

(j)
o0o1πj/N is the average value of the α1(j).

(en, for r � 2, . . . , k − 1, we have

􏽥αr(j) �
b

(j)
or−1or

􏽐
N
i�1 aij􏽥αr−1(i)

αr

, (B.2)

where αr � b
(j)
or−1or

􏽐
N
i�1 aij􏽥αr−1(i)/N is the average value of

the αr(j).
As a result, the log-likelihood of the sequence of ob-

served CA delays can be obtained as follows:

log L o0, o1, · · · , ok−1( 􏼁􏼈 􏼉 � log 􏽘
N

j�1
􏽥αk−1(j)} + 􏽘

k−1

r�1
log αr( 􏼁.

⎧⎪⎨

⎪⎩

(B.3)

B.2. Computation of the Backward Procedure. (e compu-
tation of the backward procedure leads to the same kind of
problems as the forward procedure and requires the same
type of solution.

For r � k − 1 and i � 1, . . . , N, we define 􏽥βk−1(i) � 1 and
βk−1(i) � 1. (en, for r � k − 2, . . . , 1, we have

􏽥βr(i) �
􏽐

N
j�1 b

(j)
oror+1

􏽥βr+1(j)aij

βr

, (B.4)

where βr � 􏽐
N
j�1 b

(j)
oror+1

􏽥βr+1(j)aij/N is the average value of
the βr(i).

(erefore, the log-likelihood of the sequence of observed
CA delays can be rewritten as follows:

log L o0, o1, . . . , ok−1( 􏼁􏼈 􏼉 � log 􏽘
N

i�1
􏽥αr(i)􏽥βr(i)} + 􏽘

r

t�1
log αt( 􏼁 + 􏽘

k−1

t�r

log βt􏼐 􏼑.
⎧⎨

⎩

(B.5)

B.3. Computation of εr(i, j) and ξr(i). Based on the scaled
version 􏽥αr and 􏽥βr of αr and βr, the computation of εr(i, j)

and ξr(i) is achieved as follows.
For r � 1, . . . , k − 2,

εr(i, j) � exp log 􏽥αr(i)( 􏼁 + 􏽘
r

t�1
log αt( 􏼁 + log aij􏼐 􏼑 + log b

(j)
oror+1

􏼐 􏼑 +log 􏽥βr(i)􏼐 􏼑 + 􏽘
k−2

t�r

log βt􏼐 􏼑 − log L o0, o1, . . . , ok−1( 􏼁( 􏼁,
⎧⎨

⎩

⎧⎨

⎩

(B.6)

and, for r � 1, . . . , k − 1,
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ξr(i) � exp log 􏽥αr(i)( 􏼁 + 􏽘
r

t�1
log αt( 􏼁 + log 􏽥βr(i)􏼐 􏼑 + 􏽘

k−1

t�r

log βt􏼐 􏼑 − log L o0, o1, . . . , ok−1( 􏼁( 􏼁.
⎧⎨

⎩

⎧⎨

⎩ (B.7)

For r � 1, . . . .k − 2, the relation (18) holds. (e reesti-
mation of π, A, and B is obtained through formulas (19),
(20), and (21):

B.4. Computation of theOptimal Sequence of HiddenNetwork
States. In order to avoid numerical errors, it is necessary to
scale the quantity δ used in the Viterbi algorithm.

For r � 1 and j � 1, . . . , N, we define

􏽥δ1(j) �
πjb

(j)
o0o1

δ1
, (B.8)

where

δ1 �
􏽐

N
i�1 π(i)b

(j)
o0o1

N
. (B.9)

For r � 2, . . . , k − 1 and j � 1, . . . , N, we compute
iteratively:

􏽥δr(j) �
maxi1 ,···,ir−1

δr−1 ir−1( 􏼁air−1j􏽨 􏽩b
(j)
or−1or

δr

,

δr �
􏽐

N
j�1 maxi1 ,···,ir−1

δr−1 ir−1( 􏼁air−1j􏽨 􏽩b
(j)
or−1or

N
.

(B.10)

(e optimal hidden state at time k − 1 is then

􏽢sk−1 � arg max
j�1,···,N

􏽥δk−1(j), (B.11)

and we obtain recursively for r � k − 2, . . . , 1,

􏽢sr � arg max
j�1,···,N

􏽥δr+1(j)a
j􏽢sr+1

. (B.12)

Finally, the joint probability of the sequence of hidden
network states and the sequence of observed CA delay
outputs is equal to

P s1, . . . , sk−1, o0, o1, . . . , ok−1( 􏼁 � max
j�1,···,N

􏽥δk−1(j)􏼢 􏼣 􏽙

k−1

r�1
δr.

(B.13)
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