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In this paper, we first investigate the stochastic representation of the modified advection-dispersion equation, which is proved to
be a subordinated stochastic process. Taking advantage of this result, we get the analytical solution and mean square displacement
for the equation. +en, applying the subordinated Brownian motion into the option pricing problem, we obtain the closed-form
pricing formula for the European option, when the underlying of the option contract is supposed to be driven by the subordinated
geometric Brownian motion. At last, we compare the obtained option pricing models with the classical Black–Scholes ones.

1. Introduction

Recently, the diffusion equations that generalize the usual
one have received considerable attention due to the
broadness of their physical applications, in particular, to the
anomalous diffusion [1]. For instance, surface growth,
transport of fluid in porous media, two-dimensional rotating
flow, laser cooling, diffusion on fractals, or even in multi-
disciplinary areas such as in analyzing the behavior of
CTAM micelles dissolved in salted water or econophysics
[2–4]. In general, anomalous diffusion may be classified by
employing the second moment 〈x2〉. When 〈x2〉∝ tc, the
value c> 1 characterizes a superdiffusive process, c< 1 a
subdiffusive one, and c � 1 a normal diffusion. In order to
describe this phenomenon clearly, one needs to introduce
the fractional Fokker–Planck equation (FFPE).+e FFPE for
anomalous diffusion are obtained as particular cases of the
Kolmogorov’s equation [5]. In [6], Dubkov used the func-
tional analysis approach to derive the FFPE directly from
Langevin equation with symmetric α-stable Lévy noise.

On one hand, several methods were introduced to get the
solution of the FFPE in [7]. However, the limitation of such
an approach is that it does not allow one to construct and
analyze sample paths of the underlying stochastic process. In
[8], the authors introduced a simple and efficient method for

computer simulation of sample paths of anomalous diffu-
sion process described by the FFPE. It reveals that sub-
diffusion is actually a combination of two independent
mechanisms: the first mechanism is the standard diffusion
represented by some Itô process X(τ), and the second
mechanism introduces the trapping events and is repre-
sented by the so-called inverse α-stable subordinator Sα(t).

+e subordinated process X(Sα(t)) combines both mech-
anisms and gives the subdiffusive dynamics. +e inverse
α-stable subordinator is defined in the following way:

Sα(t) � inf τ > 0 : Uα(τ)> t , (1)

where Uα(τ) is a strictly increasing α-stable Lévy process.
Here, the α-stability means the Uα(τ) has independent in-
crement and Uα(τ + Δτ) − Uα(τ) � Uα(Δτ) � (Δτ)1/α, in
law. And, its Laplace transform is given by
E(e− kUα(τ)) � e−τkα , 0< α< 1. Since Uα(τ) is a pure-jump
process, then, for every jump ofUα(τ), there is a corresponding
flat period of its inverse Sα(t). +ese heavy-tailed flat periods of
Sα(t) represent long waiting times in which the subdiffusive
particle gets immobilized in the trap. As $\α approaches 1, the
random time Sα(t). reduces to the normal time t. In other
words, the probability density function (PDF) of the subor-
dinated process X(Sα(t)) is the solution of the FFPE [9].
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On the contrary, in financial market, the classical
Black–Scholes model is based on the diffusion process called
geometric Brownian motion [10, 11]:

dSt � μStdt + σStdB(t), (2)

where St is the stock’s price and μ, σ are the expected average
growth for the price and the expected noise intensity (the
volatility) in the market dynamics, respectively. dS/S is
usually called price return.+emodel is a geometric random
walk with drift μ and diffusion σ. B(τ) is the standard
Brownian motion.

However, the empirical studies show that many char-
acteristic properties of markets cannot be captured by this
model [12]. For example, (1) the leptokurtic feature: in other
words, the historical data show that the return distribution
has a higher peak and heavier tails than that of the normal
one [13]. (2) Implied volatility smiled: if the Black–Scholes
model is completely correct, then the implied volatility
should be constant. In reality, it is widely recognized that the
implied volatility curve resembles a smile, meaning it is a
convex curve of the strike price.+is empirical phenomenon
is called volatility smile in option markets [14]. (3) Long
memory: more recently, a number of authors have noted the
apparent long memory property of powers of absolute
returns and also of the volatility process of high frequency
asset returns data. +is has led to the formulation of long-
memory time-dependent conditional heteroscedastic pro-
cesses such as GARCH and also of corresponding long-
memory stochastic volatility processes [15].

In order to capture these financial characteristics,
Bonanno [16, 17] applied a modified nonlinear Heston
model to analyze the dynamics of stock prices with sto-
chastic volatility. Magdziarz applied the time-changed
Brownian motion into the option pricing problem [18–20].
+e correlated continuous time random walk is also
employed to describe the stock price, and the option pricing
formula is obtained in [21]. In [22, 23], Aguilar showed that
the price of an European call option, whose underlying asset
price is driven by the space-time fractional diffusion, can be
expressed in terms of rapidly convergent double-series.

Based on the previous scholars’ research studies, in this
paper, we first use the stochastic representation method to
study the modified advection-dispersion equation and find
the subordinated Brownian motion model which can cap-
ture the financial characteristics well. +en, we apply the
subordinated geometric Brownian motion into the option
pricing problem and deduce the option pricing formula.

+is paper is organized as follows. In Section 2, we derive
a subordinated process and prove that the PDF of this
process is rightly the solution of the modified advection-
dispersion equation, where the parent process is a classical
diffusion process and the subordinator is the inverse of a
Lévy motion with drift. Two special cases are also introduced
to help understand the process clearly. +e mean-squared
moment of the equation is also discussed in this section.
Taking advantage of the stochastic representationmethod, in
Section 3, we apply this model to option pricing problem. In
Section 4, we present our conclusions.

2. Stochastic Representation

+e main aim of this section is to find the stochastic rep-
resentation for the following differential equation:

m
zC(x, t)

zt
+ β

zC(x, t)

zt
∗f(t) � −

z

zx
vC(x, t)

+ D
z2

zx2 C(x, t),

(3)

which was originally proposed by Schumer et al. [24] to
describe the mobile/immobile (MIM) solute transport
phenomenon. +e original MIM model builds upon the fact
that, in many natural porous media, tracers may temporarily
be stopped at immobile sites, which may be disseminated in
the solid matrix. +e model was indeed developed by hy-
drologists, often facing situations where only the “mobile”
phase is accessible to field measurements. +e simplest form
of the model assumes first-order kinetics for exchanges
between mobile and immobile phases. Solving the kinetic
equation ruling the immobile concentration allows the
determination of the total density of tracer in the form of a
single equation. +e equation appears as a modified ad-
vection-dispersion equation (ADE), involving a convolution
with f(t), besides the regular time derivative on the left-
hand side. +e convolution in equation (3) leads to memory
effects. Here, f(t) can be any continuous function, and
C(x, t) is the total density of tracer, including mobile and
immobile phases.

Let Dτ be an increasing Lévy motion with Laplace
transform Ee− kDτ � e− τψ(k). Aτ is the increasing Lévy mo-
tion with drift, Aτ � mτ + Dτ (m> 0). Let Et be the inverse
time of Aτ , defined as

Et � inf τ > 0 : Aτ > t , (4)

f(k) denotes the Laplace transform of the function f(t).
+en, we have the following theorem.

Theorem 1. 'e PDF of the subordinated process
Yt � X(Et) is the stochastic representation of the modified
advection-dispersion equation (equation (3)) for ψ(k) �

βkf(k), where the parent process X(τ) is defined as

dX(τ) � v dτ +
���
2D

√
dB(τ). (5)

Here Et is independent of B(τ).

Proof. Since the Laplace transform of Dτ is given as
Ee−kDτ � e−τψ(k) (D0 � 0), then Ee−kAτ � e−τ(k+ψ(k)) with
Aτ ≥mτ for all τ. Firstly, we establish the relation between
the PDF g(τ, t) of Et and the PDF u(t, τ) of Aτ . From the
definition of Et, we have P(Et < τ) � P(Aτ > t) [25, 26];
therefore,

g(τ, t) �
z

zτ

∞

t
u(y, τ)dy � −

z

zτ


t

mτ
u(y, τ)dy. (6)

So, the Laplace transform of g(τ, t) can be expressed as

2 Discrete Dynamics in Nature and Society



g(τ, k) � 
∞

0
e

− kt
g(τ, t)dt � −

z

zτ

∞

mτ
u(y, τ) 

∞

y
e

− ktdt dy

� −
1
k

z

zτ

∞

mτ
e

− ky
u(y, τ)dy � −

1
k

z

zτ
e

− τ(mk+ψ(k))

� m +
ψ(k)

k
 e

− τ(mk+ψ(k))
,

(7)

where we have used the property that u(t, τ) � 0 for t<mτ.
Using the total probability formula and the independence
between X(τ) and Et, we get the PDF p(x, t) of Y(t), given
by

p(x, t) � 
∞

0
f(x, τ)g(τ, t)dτ. (8)

where f(x, τ) is the PDF of the parent process X(τ). So, the
Laplace transform of the above equation yields

p(x, k) � 
∞

0
f(x, τ)g(τ, k)dτ

� m +
ψ(k)

k
  

∞

0
f(x, τ)e

− τ(mk+ψ(k))dτ.

(9)

+us, the following relation between f(x, τ) and p(x, τ)

holds

p(x, k) � m +
ψ(k)

k
 f(x, mk + ψ(k)). (10)

Since the process X(τ) is given by the Itô stochastic
differential equation (3), its PDF f(x, τ) obeys the classical
advection-dispersion equation [27]:

zf(x, τ)

zτ
� −

z

zx
v + D

z2

zx2 f(x, τ). (11)

+e Laplace transform of the above equation with re-
spect to τ yields

kf(x, k) − f(x, 0) � −
z

zx
v + D

z2

zx2 f(x, k). (12)

By changing the variable k to (mk + ψ(k)) and using the
relation (10), the above equation yields

m +
ψ(k)

k
 (kp(x, k) − p(x, 0)) � −

z

zx
v + D

z2

zx2 p(x, k).

(13)

Comparing the above equation with the Laplace trans-
form of equation (3), we get C(x, t) � p(x, t) if
ψ(k) � βkf(k), that ends our proof.

+e superiority of the stochastic representation approach
to the fractional differential equation is that it not only
provides a way to get the solution of the corresponding
equations, but also helps us to understand the physical
process by providing a description of the dynamical system
governed by the fractional differential equation. So, we can
use Monte Carlo method to simulate the stochastic process,

and then we can see how the particle moves from the figures.
In other words, if f(t) is given, we can calculate ψ(k) by
using equation (8), and then inverting the Laplace transform
in g(τ, k), the expression of g(τ, t) can be obtained.
Substituting g(τ, t) into equation (8) leads to the analytical
expression of the solution of equation (3). In order to de-
scribe these clearly, we present the following two cases. □

Case 1. f(t) � δ(t).
We can get f(k) � 1 and ψ(k) � βk. So, from equation

(7), we have g(τ, k) � (m + β)e− τ(1+β)k, and then
Et � t/(1 + β). Applying inverse Laplace transform on
g(τ, k) yields

g(τ, t) � δ
t

m + β
− τ . (14)

Substituting it into equation (10), we have

C(x, t) � f(x, t/(m + β)). (15)

Taking advantage of the relation between p(x, t) and
f(x, τ), we can get the following evaluation formula for the
mean square displacement:

〈X2
(t)〉 � 

∞

0
x
2
p(x, t)dx � 
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0
g(τ, t) 

∞

0
x
2
f(x, τ)dx dτ

� 2D 
∞

0
τg(τ, t)dτ.

(16)

+erefore,

〈X2
(t)〉∝

2D

1 + β
t. (17)

So, if f(t) � δ(t), the process is a normal diffusion.

Case 2. f(t) � t− α/Γ(1 − α).
For this case, equation (3) yields

m
zC(x, t)

zt
+ β

zαC(x, t)

ztα
� −

z

zx
vC(x, t) + D

z2

zx2 C(x, t),

(18)

where the operator (zαC(x, t))/ztα is the Caputo fractional
derivative of order α [28].

Following the same procedure shown in Case 1, we can
get Ee− kDτ � e− τkα , so Dτ � β1/αUα(τ) is a strictly increasing
α-stable Lévy motion. As we know, the PDF of inverse time
α-stable Lévy motion Sα(t) can be expressed in the form of a

Fox function, i.e., 1/τH1 0
1 1 τ/tα (1, α)

(1, 1)


  (see [29]). By

using the relation between Et and Dτ , after some calcula-
tions, we can get

g(τ, t) �
1
τ

+
αm

(t − mτ)α
 H

1 0
1 1

β1/ατ
(t − mτ)α

(1, α)

(1, 1)



⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(19)
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where Hm n
p q x

(a(1), A(1)), . . . , (a(p), A(p))

(b(1), B(1)), . . . , (b(q), B(q))


  is the Fox

function [30].+e solution can be simulated by Monte Carlo
method (see Figure 1).

In order to calculate the mean square displacement, we
can first compute its Laplace transform. By using the Laplace
transform of g(τ, t) equation (7), and then inverting the
Laplace transform, we have

〈X2
(t)〉∝

2Dt

m
E1−α,2

−βt1− α

m
 , (20)

where Eα,β(x) � 
∞
k�0 xk/(Γ(αk + β)) is the Mittag-Leffler

function [31]. Here, we have used the equality:


∞

0
e

−pt
t
αk+β−1

E
(k)
α,β ±at

α
( dt �

k!pα− β

pα ∓ a( 
k+1. (21)

From equation (20), we can know if m≠ 0, the model
resembles a normal diffusion for t⟶ 0+, and since
0< α< 1, the model resembles a subdiffusion for t⟶∞.
+is result can be obtained in another way, to see this, note
that Uα(τ) � τ1/αUα(1) in distribution and τ1/α grows faster
than mτ for 0< α< 1, so the stable subordinator dominates
as τ⟶∞ and the drift dominates as τ⟶ 0+. From the
definition of Uα(τ) and Sα(t), we also should note that
τ⟶ 0+ and τ⟶∞ are equivalent to t⟶ 0+ and
t⟶∞, respectively. By the way, as we know, the gener-
alized Einstein relation is defined by 〈X2(t)〉F�0 � const ×

〈X(t)〉F≠0 [32]. From equations (8) and (16), we should
notice that if the Einstein relation for the parent process
X(τ) holds, then it also holds for the subordinated process.

3. Application to Option Pricing Problem

In this section, we aim to evaluate the price of an European
option when the underlying of the option contract is sup-
posed to be driven by a subordinated geometric Brownian
motion St � X(Et) , where the parent process X(τ) is given
as

dX(τ) � μX(τ)dτ + σX(τ)dB(τ), (22)

and the subordinator Et is the inverse time of Aτ . Since
Uα(τ) is 1/α-similar, its inverse time Sα(t) is α-similar. +e
self-similarity is a quite important property in financial
market. In order to employ this feature, we choose
Aτ � τ + Uα(τ). Here, Et is also independent of B(τ).

In fact, from Section 2, we can get the PDF p(x, t) of log-
price of this underlying should satisfy the following FFPE:

z

zt
p(x, t) +

zα

ztα
p(x, t) � − μ −

σ2

2
 

z

zx
+
σ2

2
z2

zx2 p(x, t),

(23)

with initial condition p(x, 0) � δ(x). Here, the fractional
derivative is also the Caputo type. In [33], Ren et al. have
proved that the detailed structure of the solution p(x, t)

depends generally on the special shape of the underlying
geometry. However, the interesting part of p(x, t) has the
asymptotic behavior logp(x, t) ∼ Cξu, where ξ ≡ x/tα/2≫ 1;

here, u � 1/(1 − α/2), i.e., the solution p(x, t) for (22) fol-
lows a stretched Gaussian distribution, which has heavy tail
and high peak, in contrast to a normal distribution. Heavy
tail and high peak phenomenon is common in the financial
historical data [34].

From equation (23), we know the PDF p(x, t) follows
the fractional diffusion equation, where the Caputo frac-
tional operator is given as

0D
α
t f(t) �

1
Γ(1 − α)


t

0
(t − s)

− αdf(s)

ds
ds, 0< α< 1.

(24)

+e definition shows the Caputo fractional operator is a
convolution integral, which implies B(Sα(t)) is a long-
memory process. However, there is substantial evidence that
long-memory processes describe rather well financial data
such as forward premiums, interest rate differentials, and
inflation rates. Perhaps, the most dramatic empirical success
of long-memory processes has been in recent work on
modeling the volatility of asset prices and power transfor-
mations of returns [15].

In summary, the stochastic differential equation X(Et)

presents many important financial properties, such as self-
similarity, leptokurtic feature, and long memory. So, we
assert this model characterizes the price of underlying well.

Let r(t) be the return of the underlying from time 0 to
time t. +en, we have

r(t) � μEt + σB Et( , in law. (25)

From the discussion, in the Section 2, we know the PDF
of the returns is leptokurtosis and fat-tailed, given as

q(x, t) � 
∞

0

1
�����
2πσ2τ

√ e
(x− μτ)2/σ2τ( )g(τ, t)dτ, (26)

where g(τ, t) is showed in equation (19) with m � 1 and
β � 1. By using the stochastic representation, we can also get
the statistical signatures of the stock price returns, such as
the mean value, variance, and approximated solution (see
equation (20) and Figure 1).
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Figure 1: +e probability density function C(x, t) with differentm
and α. Here, v � 0, D � 0.5, β � 1, and t � 1.
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Now, let us pass on our main problem. Let C(t, St) be the
value at time t of an European option on the above un-
derlying with expiration data T and exercise price K and the
boundary condition C(T, ST) � (ST − K)+.

Theorem 2. Assume that the underlying is driven by the
subordinated geometric Brownian motion St � X(Et), then
the European call option C(t, St) can be given as

C t, St(  � StN d1(  − Ke
− rT

N d2( , (27)

where the function N(x) is the cumulative probability dis-
tribution function for standard normal distribution, and

d1 �
ln St/K + r(T − t) + σ2/2 T − t + Tα − tα( )/Γ(α + 1)( )

σ
�����������������������
(T − t) + Tα − tα( )/Γ(α + 1)

 ,

d2 � d1 − σ

����������������

(T − t) +
Tα − tα( )

Γ(α + 1)



.

(28)

Proof. We assume that the riskless bond price dynamics
satisfies

ΔΠt � rΠtΔt, (29)

where r is the riskless interest rate. From Taylor’s formula,
we have

ΔC t, St(  �
zC

zt
Δt +

zC

zS
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ΔS
S

  +
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z2C

zS2
ΔS
S

 
2

+ o
ΔS
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2

 .

(30)

Since the B(τ) is independent of Et, we get

E
ΔS
S

 
2

  � E μΔEt + σΔB Et( ( 
2

 

� σ2E ΔEt  + o(Δt)

� 1 +
tα− 1

Γ(α)
 σ2Δt + o(Δt),

(31)

where we have used the property of Sα(t), i.e., Sα(t) is a
α-similar process andE[Sn

α(t)] � tnαΓ(n + 1)/Γ(nα + 1) [35].
Noting that it is possible to hedge the risk of a portfolio, like
the Black–Scholes case [10, 11], we assume that the value of
the riskless bond can be exactly replicated by following “self-
financing” investment strategy, involving the underlying and
an option on this underlying

Πt � C t, St(  −
zC

zS
St, (32)

So,

ΔΠt � ΔC t, St(  −
zC

zS
ΔSt. (33)

by substituting equations (30)–(33) into (29), we have

zC

zt
+ rS

zC

zS
+
1
2

σ2S2
z2C

zS2
� rC, (34)

where σ2(t) � (1 + tα− 1/Γ(α))σ2. So, the solution of (34)
with boundary condition C(T, ST) � (ST − K)+ can be given
as

C t, St(  � StN d1(  − Ke
− rT

N d2( , (35)

where the function N(x) is the cumulative probability
distribution function for standard normal distribution, and

d1 � ln
St

K
+ r(T − t) +

1
2


T

t

σ2(s)ds,

d2 � d1 −

���������


T

t

σ2(s)ds



.

(36)

Substituting σ2(t) into the above equation ends the
proof.

Noting that this option pricing formula is quite similar to
the one obtained in [36], where the price of the underlying is
supposed to be driven by a geometric fractional Brownian
motion. We should also notice that all the results obtained
here are consistent with that obtained by the classical
Black–Scholes formula when α � 0.

By comparing this formula with the classical
Black–Scholes pricing formula for different α in Figure 2, we
find the call option price increases with the increase of α,
which is due to the heavy-tailed assets return. Under this
situation, the risk is redistributed, which results in an ad-
justment of the option price. In the real world, the option is
an insurance product, which is used to hedge the risk of the
underlying assets. +e return of the underlying assets is
supposed to be heavy tailed, which means the underlying
assets is more risky. +e risk also increases with the increase
of α, that leads to the smaller the parameter α is, the higher
the option price will be.

+e differences between this option pricing formula and
the classical Black–Scholes model for different expiration
times are presented in Figure 3. One can observe that the
price differences become smaller as the maturity time in-
creases. +at is caused by the fact that the α-stable term
dominates in the short time and the drift term dominates in
the long time. +is behavior can be observed in situations
when we face some kind of unexpected or sudden change of
regime, such as a black day on the market, the bankruptcy of
a company trading on the market, and a natural disaster
[37]. In short time, people are willing to spend more money
to protect their assets.

+e empirical analysis on SPDR S&P500 ETF call option
(SPY) is introduced to verify our results. +e option written
on this index is actively traded European-style contracts. We
choose the data April 5, 2019, as the quotation date and April
12, 2019, as the expiration date. At that moment, the index of
S&P500 ETF is 288.57, and the risk-free rate is 2.5%, (source:
yahoo.com). We use the Parkinson’s formula [38] to esti-
mate the parameter σ, given as σ � (1/4n ln 2){


n
i�0 (Sih − Sil)

2}1/2, where Sih and Sil are the highest and
lowest prices of the same day, respectively. We get the
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parameter σ � 0.153985. In Table 1, we provide observable
market bid (offered) prices for SPDR S&P500 ETF call
options with different exercise (strike) prices. In Figure 4, we
plot the prices obtained in Table 1. We find the option price

obtained by our model is higher than the classical
Black–Scholes price and closer to the real price, which
verifies our results. □

4. Conclusions

In this paper, we employ a modified advection-dispersion
equation, including the first-order derivative with respect to
time and its convolution integral with a function on the left-
hand side. +e stochastic representation of this equation is
proved to be a subordinated process. Its subordinator is the
inverse of a Lévy process, whose characteristic function is
dependent on the function presented in the convolution.+e
solution, mean square displacement and Einstein relation of
this equation are all discussed for two special cases. We find
they are greatly dependent on those of the corresponding
standard advection-dispersion equation. +en, we apply this
model to option pricing problem. +e evaluation formula of
a European option is obtained when the underlying of the
option contract is supposed to be driven by a subordinated
geometric Brownian motion. +e differences between the
obtained results and the classical ones are also given. Finally,
we expect that the results obtained here may be useful to the
discussion of the anomalous diffusion systems and complex
financial market.
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Table 1: Price for SPDR S&P500 ETF call option.

K Real price α-BS (α � 0.1) BS price
286 3.89 3.4576 3.2458
287 3.14 2.7863 2.5489
288 2.44 2.1955 1.9432
289 1.9 1.6888 1.4346
290 1.45 1.2664 1.0232
291 1.02 0.9245 0.7035
292 0.69 0.6562 0.4655
293 0.48 0.4524 0.2959
294 0.3 0.3027 0.1804
295 0.2 0.1963 0.1054
296 0.11 0.1234 0.059
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Figure 4: Comparison between the real call option prices with the
one obtained by different models under different strike prices K.
Here, BS price stands for the price obtained by the classical
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formula (26) with α � 0.1.
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