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In this paper, we study the blow-up phenomenon for a nonlinear reaction-diffusion system with time-dependent coefficients
under nonlinear boundary conditions. Using the technique of a first-order differential inequality and the Sobolev inequalities, we
can get the energy expression which satisfies the differential inequality. The lower bound for the blow-up time could be obtained if

blow-up does really occur in high dimensions.

1. Introduction

During the past decades, the blow-up phenomena for the
solutions to the parabolic problems have been widely
concerned. It is important in practice that how to determine
the bound of the blow-up time ¢* of the solutions about the
parabolic equations and systems. Their applications are
included in physics, chemistry, astronomy, biology, and
population dynamics [1, 2]. Actually, when the blow-up
occurs at t*, it is difficult to get the exact value of t*. We
mainly focus on estimating its bounds. At present, the
studies on the blow-up phenomena of parabolic problems
mainly focus on homogeneous Dirichlet boundary condition
and homogeneous Neumann and Robin boundary condi-
tions [3-12]. There are also some works under nonlinear
boundary conditions [13-15]. Most of these articles are
focused on R’. There are only a few papers dealing with a
lower bound for the blow-up time in high dimensions (see
[16-18]). Recently, some scholars have started to investigate
the blow-up problems with time-dependent coeflicients
[19-21]. In paper [21], the authors considered the following
nonlinear reaction-diffusion system with time-dependent
coefficients:

u, = Au+k (Oufv, (x,t) € Ax(0,t7),

vy = Av+k, (VU (x,1) € Ax(0,t7),
u(x,t)=v(x,t)=0, (x1t)€o0Q x(0,t"),
u(x,0) = uy(x), v(x,0) = v,(x), x € Q.

(1)

The authors obtained the lower and upper bounds for
the blow-up time when the blow-up occurred. In this
paper, we further consider the blow-up phenomena
for the following system with time-dependent coefhi-
cients under nonlinear boundary conditions in high
dimensions:

u, = Au™ + k, (H)uPvi,
v, = AV + ke (VU
(x,t) € Ax(0,t7),

ou (2)

ov
5= 9 (u), 5,= 92 ),

(x,t) €0Q  x(0,t7),

u(x,0) =uy (x)=0, v(x,0) = vy (x) =0, x € Q.


mailto:26-062@gduf.edu.cn
https://orcid.org/0000-0002-3095-1486
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7480676

We assume that g, ({) are continuous, and a,f3, p,q, 1,
s,ay,d,,m,1, 0, and ( satisfy

g (O <a % 9,0 <al’,
(>0, a>1,

p>1,p>1,9>0,r>1,5s>0,a,>0, a,>0,

maxiw_z_aﬁ,l%ww,
0—q n |

o(r+s-1) 20 o(r+s)—s
maxi—————+ L1t <l<—n—" )
o-s n o-5s

(3)

where o is a positive constant to be defined later.

Our goal in this paper is to obtain a lower bound for the
blow-up time of the solutions to systems (2) and (3) in R” for
any n>3. The nonlinear terms Au™ and AV and the
boundary conditions are difficult to tackle. We cannot get
the result by following the method proposed in [21], so we
must use a new method to overcome these difficulties. To the
best of our knowledge, no results exist in that direction, and
we think our result is new and interesting.

In the further discussions, we will use the following
Holder inequality:

1/n, 1/n,
J wx‘”deS(J- wxl/nldx> (J wxz/nzdx) , (4
Q Q Q

where w is a nonnegative function and x,, x,, n;, and n, are
positive constants satisfying (1/n;) + (1/n,) = 1.
We also need the following Sobolev inequality [22]:

J u(a+m—1)n/(n—2)deC2n/(n—2)2(n/(n—2))—1
Q

n/ (n-2) 2 n/ (n-2)
. [(J ua+m—1dx> +<J |Vu(o+m71)/2' dx) ],
Q Q

(5)
J V(a+l—1)n/(n—2)dxSCZn/(n—Z)Z(n/(n—Z))—l
Q

n/ (n-2) 2 n/ (n-2)
[(J v‘”l_ldx) +(J |Vv(”+l_l)/2| dx) ],
Q Q

(6)
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with C = C(n, Q) which is a Sobolev embedding constant
depending on n and Q.
And the classical (or elementary) inequality is

(a+b)¥<a” +b", (7)

where a, b, and w are positive constants, and w satisfies
O<w<l.

2. Lower Bound for the Blow-Up Time

In this part, we define an auxiliary function of the form
b0) =K 0| waxekie| vix, (8)
Q Q

where 6 = (6 —q)(mn—n+20)20(p+q-1), y=(6-35)
(In - n+20)/20(r +s—-1), and o>max{(a—n, (8- 1)n,
g, s}

We establish the following theorem:

Theorem 1. Let u(x,t) be the weak solution of problems
(1)-(3) in a bounded convex domain Q(Q € R"(n>3)).
Then, the quantity ¢ (t) defined in (8) satisfies the integral
inequality

. &) 1
t = bl
O )ZL TS S S 3 : ©)

which follows that the blow-up time t* is bounded below. We
have

t* >0 1(9), (10)

where ©, &, &,, &, and &, will be defined later.

Now, we prove Theorem 1. For simplicity, assume that
the solution is classical of problems (1)-(3). The general case
can be done by approximation. Differentiating ¢ (¢), we have

¢ (1) = 8K (k]| (t)J udx + ok (t)J u” udx
Q Q
! (t)kz’(t)j Vdx + okt (t)j v ly,dx
) Q
<Lo(t) + ok’ (t)J u” Au"dx + okt (t)J uTtP gk
Q Q
O+r— lusdx,

+ okd (t)J VAV dx + ol (t)j v
Q )
(11)
where L = max{dlk; (£)|/k, (), x|k, (£)|/k, (t)}.
For the second term on the right side of (11), we apply the
divergence theorem, the L' trace embedding, and (3) to get
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o—1 m o— laum o—1 m

ju Au dxzj u —dA—JVu -Vu"dx
Q 0Q on QO
_,0u _
SmJ w2 44 (o - 1)J U3 |V
00 on Q

Smalj u”IA — (o — I)J w3 V)P dx (12)

20Q Q

Po

ma,n _ ma, (c+m+a—2)d _
< 1 J u0+m+tx de + 1 u0+m+o¢ 3|Vu|dx
Q Q

Po

_ J‘Q'VMUJW'F 1/2|2dx,

4m(o—-1)
(0 +m— 1)
where p,: = mingg|x - 77|, 7 is the outward normal vector

of 0Q and d: = maxyq|x|.
For the second term on the right side of (12), using (11),
we obtain

+m+a—3 1 +m+2a-3
J yotme IVuIde—J T dx 4+
Q 2¢ Ja

2¢,
(c+m— 1)

. JQ|Vu(o+m— 1)/2|2dx,

(13)

where ¢, is a positive constant which will be defined later.
Using (4), we have

g+m+a—2 o+m+2a—3 10 o 0
u dx < < u dx> ( u dx)
Q Q Q

(14)
< xlojgua+m+2“_ dx + xZOJQu”dx,

where  x;p= (m+a—-2)/(m+2a-3)andx,, = (a — 1)/
(m+2a-3).

Choosing x,; = (m+2a—-2)(n—2)/(m—-1)n+ 20 and
Xy = ((m-1Dn+20—- (m+2a-2)(n-2))/((m-1)n+
20) and using (4), (5), and (7), we have

o+m+2a—3 (g+m—1)n/ (n—2) 1 o 2
u dx < u dx u’dx
Q Q Q

rnx _
< 11] 4O
n-2 Ja

+r1(n—2—nx11)<1+
n-2

Xy (n—2)/ (n— 2- nxn)
(J u"dx) +
Q

. J0|vu(o+m— 1)/2|2dx,

— / (n-2—
Sznxll (n nxn))

rinx,
— 55
n—2

(15)

where 7, = (C?(=22W(=2)-1)*1 and ¢, is a positive
constant which will be defined later.

For the first term on the right side of (15), using (4) and
Young’s inequality, we have

J ua+m—1de(J, ua+m+2a—3dx) IZ(J uadx) 2
Q Q Q

< le£3JQMU+m+2a— de + xzzsg((m—l)/(th—Z)) Jouodx)

(16)

where Xy, = (m—-1)/(m+2a - 3), Xy = (2a—-2)/
(m+2a—3), and ¢ is a positive constant which will be
defined later.

Combining (15) and (16), if we choose suitable ¢; such
that r,nx,,x,,&/ (n—2) = 1/2, we have

(xz1 (n—Z))/ (n— 2—nx”)
J U 4y < rzj u’dx + Q(J u”dx)
Q Q o

2
+r4j |Vu('”m*1)/2' dx,
Q
(17)
where r, = (2r nx,,/ (n - 2))x,,6; "V D) 2 2 (n-
2—nxy)/(n-2)(1+ sg(”"“’(”’z’”"“”), and r, = (2r;nx,;/

(n—2))e,.
Combining (12), (13), (14), and (17), we have

1 ma,nx
J WA dx < rsry + —22 || wldx + sy
Q Po Q

X,y (n=2)/ (n— 2— nxu)
. (J uadx) (18)
Q

+ r6J0|Vu(‘”m* 1)/Z'de,

where 15 = (ma;nx,/py) + (ma, (0 + m+ a —2)d/2¢,p,)
and rg = (ma, (c+m+a—2)dlp,) - (2&,/(c+m—1)%) -
(4m (o - 1)/ (o +m—-1)%).

Similarly, for the fourth term on the right side of (11),
using the divergence theorem and (3), we have



0 !
J VlAVdx = J w1 44— J vl vildx
Q 20 on Q

Sla_znj Va+l+ﬁ_2dx+la2(a+l+ﬁ—2)d
Po JO Po

. J Vu+l+[3—3|vv|dx
Q

_ 4l(e-1) J |Vv("w’1)/2‘2dx
(c+1-1)7*)a '
(19)

For the second term on the right side of (19), using (4),
we obtain

J VP vy dx < 1 J V23 4 % 5 J
Q 2¢, Ja (c+1-1)Ja
| (o+1-1)/2|?
- |Vy ' dx,
(20)

where ¢, is a positive constant which will be defined later.
Similarly, we have

j 1}¢7+l+‘8—2dxs (J. Va+l+2ﬁ—3dx>y10(J ngx)yzo
Q o Q
Sylojgvﬁmﬁ#dx + yZOJQdex,

where y,,= (I+8-2)/(1+28-3)
(I+2B-3).

Choosing y,; = (I +2f-2)(n-2))/((I - 1)n + 20) and
Y= ((I-Dn+20-(+2-3)(n-2)/((I-1)n+20)
and using (4), (6), and (7), we have

J Va+l+2ﬁ—3dxs<1 ot l)n/(n—z)dx>yll<J v”dx)yn
Q Q Q

r-n _
<7 }’11J NI
n-2 Ja

(21)

and  y,, = (B-1)/

+ Ty (n -2 _2”}’11) <1 + 8;”}’11/("*2*70’11))
n—

ya1 (1=2)/ (n=2-ny,;) r-n
(J vodx> +-1=1 )’1185
Q n-2

) J |Vv(‘”” 1)/2'2dx
Q >
(22)

where r, = (C¥/(=22W@=2)-1)Y1 and e, is a positive
constant which will be defined later.

For the first term on the right side of (22), using (4), we
have
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J Vo+l—1dxS (J VU+I+2ﬁ_3dx>ylz<J Vadx)yzz
Q Q Q

<yt j Qvo+l+2ﬁ—3 dx + yzzsg«l_l)/(zﬁ_z)) j Qvn dx,

(23)

where y, = (I-1)/(I+2-3), y5, = 26-2)/ (1 +2-3),
and &, is a positive constant which will be defined later.

Combining (22) and (23), if we choose suitable ¢; such
that r,ny,, y,&/ (n —2) = 1/2, we have

Va1 (n=2)/ ("* 2- ”)’11)
J VR gy < rSJ vdx + @(J v”dx)
0 Q o

12
+r10-[ |Vv(°+l l)/2| dx,
a

(24)
where rg = (2r7ny11y22/(n—2))£;((l_l)/(2ﬁ_2)), ro= (2r; (n—
2—ny11)/(n—2))(1+e;("y“/("727”y“))), andr,y= (2ryny,,/

(n—2))es.
Combining (19)-(21) and (24), we have

- la,n
J VAV dx < ( g+ —2 20 J' Vidx + 17
Q Po Q

. <j Vadx>)’21 (n-2)/ (n— 2- ”J’ll) (25)
Q

12
+rlzj 'Vv(”+l 1)/2| dx,
Q

where 7y, = (la,ny,o/p,) + (lay (o +1+ p —2)d/2¢,p,) and
rp = (ay (o +1+ B =2)dlpy) - (2e,/ (o +1-1)*) - (4l (0 -
D/ (o +1-1)%).

For the third term on the right side of (11), using Holder
inequality and Young’s inequality, we have

(0-q)lo
ok (t)J u” P dx < ok (t)(] ylorp=Dollo q)dx)
Q Q

(f, 7"

<(o- q)ktlm (t)J (P10l (0-) g
Q

+qk‘f+1(t)J Vdx.
Q
(26)

For the first term on the right side of (26), using (4), (5),
and (7) and taking care of the given condition
8= ((0-q) (mn—n+20))/(20(p+q-1)), we have
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k(l?+1 (t)J- u(a+p—1)a/(a—q)dx < k(]?+1 (t)(J (o+m—1)n/ (n— Z)dx
Q Q

Skf+1(t)( 2n/(n 2)2 n/ (n-2))— 1 x13[

. /2 x13n/ n-2)
+<J |Vu(a+m 4 ] de
Q

_ Alktlhl (t)<J- ua+m—ldx
Q

x31/ (n— 2

xy3n/ (n-2) X33
+/\1k?+1 (t)(J 'Vu(0'+14171)/2|2dx) (J uo'dx>
Q Q

A xsn _
< 113 kf+1 (t)J u(H-Wl 1dx+
n—2 Q

X3 (n—2)/(n—2—nx13) A
_ (ka (t)j' uadx) L M*isher (t)J' 'Vu(“mfl)/zrdx,
1 1
Q n-2 Q

where A, = (C?/(n=2)(n/(n-2))- x3=(a(p+qg-1)
(n-2))/((6—q)(mn—n+20)), and x,; = ((0 —q) (mn—
n+20)-o(p+q-1)(n-2)) (6 —q)(mn-n+20)).
For the first term on the right side of (27), using (4) and
Young’s inequality, we get
48;(x14/x24)J u’dx,
Q

J W dx < x e, J’ ylorp-Dollo-a)
Q Q
(28)

s,

where xyu=((m-1)(c-q)/(c(c+g-1)), x4 = (c(0+
-1)-(m-1)(6-¢q)/(c(c+qg-1)), and ¢, is a positive
constant which will be defined later.
Combining (27) and (28), if we choose suitable &, such
that (A nx3x,46,)/ (n—2) = 1/2, we have

(0 - k! (t)jgu(“l" Dol0-D g < K, (1)k° (t)Jngdx

5 - Xy3 (n=2)/ (n— 2- nxU)
+ K, (O k(1) u'dx
Q

£ ,K0 (t)J [vas o 02,
Q
(29)

where K, (t) = (2(0 — @A \nx 3%,/ (n - 2))8;(’(“/"2“)k1 (1),
K,(t) = 2(c — @A (n—2 —nxy3)/

5
J de
Q
xnn/(n— 2)
ot+m—1
u
I
de :
Q
M (1’1 -2- nx13) < 1-(2x)36/ (n-2-nx,3)) —(nx36/ (n—2—nx13))>
Az 2-me) (4 ‘e :
n-—2
(27)

(n _ 2)) (ki*(2x135/(”*2*”x13)) (t) + e;("xls/(”*Z*”xls)))) and /\2 —
2(0 = @QAnx 38,/ (n - 2).
Combining (26) and (29), we obtain

okf“(t)j u‘”P*‘VdegKl(t)kf(t)J u’dx
Q Q

5 - Xp3 (1= 2)/(n—2— nxU)
+ K, () k()| udx
Q

k0| [vu 0 ax
Q
+qk‘f“(t)J Vdx
Q
(30)

By the same way, for the fifth term on the right side of
(11), using (4), we have

Uk{rl (t)J' o1 s < (0 - s)kL (t)J (+r=1)a/ (0=9) 4,

+ sk)z(+ (t)JQude
(31)

For the first term on the right side of (31), using (4), (6),
and (7) and taking care of the given condition

x= ((c-s)(In-n+20))/ (20(r +s—-1)), we have

Y13 Va3
ké“ (t)J V((H—r—l)o/(a—s)dx < k)2(+1 (t)<J' V(0+l—1)n/(n—2)dx> <J v”dx)
Q Q Q

A3yian e J-
= n-2 k)zc )

g+l- ld +A (” -2 - ny13) <k; (293¢ (n2-ny13)) ) +¢ (”)’nX/” —2- ”}’13)) (32)

n-2

. kx (t) V"dx a3 (n=2)/ (n*27 n}’13) N A3y131’l€8k\/ (t) |VV(U+Z71)/2|2dx
2 Q n-2 2 Q ’



where A, = (CH(=2p0/ =21y = (g(r+s-1)
(n=2))/((c—-s)(In-n+20)), yy;3=(0c-s)(In-n+20)-
o(r+s—1) (n-2))/ ((6-s)(In-n+20)), and & is a positive
constant which will be defined later.

For the first term on the right side of (32), using (4), we
get

J Va+l— ldx < )’14%] 1)(zerrf 1)o/ (o—s) + y248;(y14/y24)J v”dx,
Q Q Q
(33)

where y, = ((I-1)(0c-3s))/(c(o+s-1)), y,u=(c(o+
s—=1)—(I-1)(c-9))(c(c+s—1)), and & is a positive
constant which will be defined later.

Combining (32) and (33), if we choose suitable &, such
that A, ny 3 y,48/ (n —2) = 1/2, we have

CED (t)J p(THr D) g < K (K (t)J v dx
Q Q

+ Ky (t)<k’2( (t)JQV”deB (n=2)/ (n-2-ny,3)

AR (t)j |72,
Q
(34)

o ()< (L+ R, + K, (0) + Ky (0)p() + K, (t)(k‘f (t)J-Qu‘de

LR, (t)(k); (t)JQv”dx

+ (r120' + /\4)]{)2( (t)J |VV(G+Z7 1)/2|2d?€ +K, (l‘)(k‘lS (t)J u’dx
Q Q

+ K, (0K (t)JQvadx>

where K, = max{orsr, + ma,nxyp,t, ory rg + laznyzopal}l,
K, (t) = K, (t) + K5 (1), K;(t) = max{gk$*! (£)k," (t), ski”
Ok (O}, Ry (1) = rgrsok; P00 (1) and R (1) =
rur9o_k;(2yu8/(n—2—ny“)) (t)

If we choose suitable ¢, ¢, &, and & such that
760 +1,<0,7,0+ A, <0, we can rewrite (36) as

¢ (1) <Ky (1) (1) + Ky (1) (6 (1) + K5 () (4 (1))

(37)
+ Ky (1) (9 (D)7 + K, (8) (¢ (D)™,
where &, =1+ (2x,,/(n—2—-nxp)), & = 1+ 2y, /(n—2—
ny;)), & =1+ Q2x;/(n-2-nxy), & =1+ 2y;/
(n-2-nyy;)), and K, = L+ K, + K, (£) + K5 (¢).
Let

£*

o) = JO K (r)dr, (38)

where K (t) = K (t) + K, (t) + K5 (t) + K, (t) + K, (¢).
Integrating (37) from 0 to t*, we have

)J’n (n=2)/ (”— 2- ”)’11)
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where K3 ()= ((2(o - 5)A3ny13y24)/ (n- 2))6;(}’14/;"24)
ky (1), K, ()= ((2(0-9)As (n=2-ny3))/ (n—2))
(k§*(2Y135/(n*2*”J’13)) (1) +S;(ny13/(n—2—ny13))), and /\4 — (2(0-s)
Asnyyse9)/ (n=2).

Combining (31) and (34), we obtain

ok (t)J v””‘lusdxsK3(t)k§(t)J vdx + K, (t)
Q Q
23 (n=2)/ (n—2-ny;
.(kg(t)JQv"dx)y P
K (t)J 702 g gl (t)j W dx.
Q Q
(35)
Combining (11), (18), (25), (30), and (35), we have

)x21 (n-2)/ (n— 2- nxn)

2

Va3 (n=2)/ (n— 2— ny13)

+(ro + 1)k (t)J |Vu(‘”"” V2% qx
Q
>x23 (n-2)/ (n— 2— nx13) (36)
o(t")= J =S. 39
) SO e (39)

Considering &> 1 (i = 1,2,3,4), the integration of the
right side of (39) exists. It is clear that @ (+*) is an increasing
function. So, we can get

t" >0 1(9), (40)

where ®7! is the inverse function of ©.
The proof of Theorem 1 is complete.
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