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In this paper, we study the blow-up phenomenon for a nonlinear reaction-diffusion system with time-dependent coefficients
under nonlinear boundary conditions. Using the technique of a first-order differential inequality and the Sobolev inequalities, we
can get the energy expression which satisfies the differential inequality.)e lower bound for the blow-up time could be obtained if
blow-up does really occur in high dimensions.

1. Introduction

During the past decades, the blow-up phenomena for the
solutions to the parabolic problems have been widely
concerned. It is important in practice that how to determine
the bound of the blow-up time t∗ of the solutions about the
parabolic equations and systems. )eir applications are
included in physics, chemistry, astronomy, biology, and
population dynamics [1, 2]. Actually, when the blow-up
occurs at t∗, it is difficult to get the exact value of t∗. We
mainly focus on estimating its bounds. At present, the
studies on the blow-up phenomena of parabolic problems
mainly focus on homogeneous Dirichlet boundary condition
and homogeneous Neumann and Robin boundary condi-
tions [3–12]. )ere are also some works under nonlinear
boundary conditions [13–15]. Most of these articles are
focused on R3. )ere are only a few papers dealing with a
lower bound for the blow-up time in high dimensions (see
[16–18]). Recently, some scholars have started to investigate
the blow-up problems with time-dependent coefficients
[19–21]. In paper [21], the authors considered the following
nonlinear reaction-diffusion system with time-dependent
coefficients:

ut � △u + k1(t)u
p
v

q
, (x, t) ∈ Ω × 0, t

∗
( ,

vt � △v + k2(t)v
r
u

s
, (x, t) ∈ Ω × 0, t

∗
( ,

u(x, t) � v(x, t) � 0, (x, t) ∈ zΩ × 0, t
∗

( ,

u(x, 0) � u0(x), v(x, 0) � v0(x), x ∈ Ω.

(1)

)e authors obtained the lower and upper bounds for
the blow-up time when the blow-up occurred. In this
paper, we further consider the blow-up phenomena
for the following system with time-dependent coeffi-
cients under nonlinear boundary conditions in high
dimensions:

ut � Δum
+ k1(t)u

p
v

q
,

vt � Δvl
+ k2(t)v

r
u

s
,

·(x, t) ∈ Ω × 0, t
∗

( ,

zu

zn
� g1(u),

zv

zn
� g2(v),

(x, t) ∈ zΩ × 0, t
∗

( ,

u(x, 0) � u0 (x)≥ 0, v(x, 0) � v0(x)≥ 0, x ∈ Ω.

(2)
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We assume that gi(ζ) are continuous, and α, β, p, q, r,

s, a1, a2, m, l, σ, and ζ satisfy

g1(ζ)≤ a1ζ
α
, g2(ζ)≤ a2ζ

β
,

ζ > 0, α> 1,

β> 1, p> 1, q> 0, r> 1, s> 0, a1 > 0, a2 > 0,

max
σ(p + q − 1)

σ − q
−
2σ
n

+ 1, 1 <m<
σ(p + q) − q

σ − q
,

max
σ(r + s − 1)

σ − s
−
2σ
n

+ 1, 1 < l<
σ(r + s) − s

σ − s
,

(3)

where σ is a positive constant to be defined later.
Our goal in this paper is to obtain a lower bound for the

blow-up time of the solutions to systems (2) and (3) in Rn for
any n> 3. )e nonlinear terms Δum and Δvl and the
boundary conditions are difficult to tackle. We cannot get
the result by following the method proposed in [21], so we
must use a newmethod to overcome these difficulties. To the
best of our knowledge, no results exist in that direction, and
we think our result is new and interesting.

In the further discussions, we will use the following
Hölder inequality:


Ω

w
x1+x2dx≤ 

Ω
w

x1/n1dx 
1/n1


Ω

w
x2/n2dx 

1/n2
, (4)

where w is a nonnegative function and x1, x2, n1, and n2 are
positive constants satisfying (1/n1) + (1/n2) � 1.

We also need the following Sobolev inequality [22]:


Ω

u
(σ+m− 1)n/(n− 2)dx≤C

2n/(n− 2)2(n/(n− 2))− 1

· 
Ω

u
σ+m− 1dx 

n/(n− 2)

+ 
Ω
∇u(σ+m− 1)/2




2
dx 

n/(n− 2)

 ,

(5)


Ω

v
(σ+l− 1)n/(n− 2)dx≤C

2n/(n− 2)2(n/(n− 2))− 1

· 
Ω

v
σ+l− 1dx 

n/(n− 2)

+ 
Ω
∇v(σ+l− 1)/2




2
dx 

n/(n− 2)

 ,

(6)

with C � C(n,Ω) which is a Sobolev embedding constant
depending on n and Ω.

And the classical (or elementary) inequality is

(a + b)
w ≤ a

w
+ b

w
, (7)

where a, b, and w are positive constants, and w satisfies
0<w≤ 1.

2. Lower Bound for the Blow-Up Time

In this part, we define an auxiliary function of the form

ϕ(t) � k
δ
1(t)

Ω
u
σdx + k

χ
2(t)

Ω
v
σdx, (8)

where δ � (σ − q)(mn − n + 2σ)/2σ(p + q − 1), χ � (σ − s)

(ln − n + 2σ)/2σ(r + s − 1), and σ >max (α − 1)n, (β − 1)n,

q, s}.
We establish the following theorem:

Theorem 1. Let u(x, t) be the weak solution of problems
(1)–(3) in a bounded convex domain Ω(Ω ∈ Rn(n> 3)).
%en, the quantity ϕ(t) defined in (8) satisfies the integral
inequality

Θ t
∗

( ≥ 
∞

ϕ

1
η + ηξ1 + ηξ2 + ηξ3 + ηξ4

� S, (9)

which follows that the blow-up time t∗ is bounded below. We
have

t
∗ ≥Θ− 1

(S), (10)

where Θ, ξ1, ξ2, ξ3, and ξ4 will be defined later.

Now, we prove )eorem 1. For simplicity, assume that
the solution is classical of problems (1)–(3). )e general case
can be done by approximation. Differentiating ϕ(t), we have

ϕ′(t) � δk
δ− 1
1 (t)k1′(t)

Ω
u
σdx + σk

δ
1(t)

Ω
u
σ− 1

utdx

+ χk
χ− 1
2 (t)k2′(t)

Ω
v
σdx + σk

χ
2(t)

Ω
v
σ− 1

vtdx

≤ Lϕ(t) + σk
δ
1(t)

Ω
u
σ− 1△u

mdx + σk
δ+1
1 (t)

Ω
u
σ+p− 1

v
qdx

+ σk
χ
2(t)

Ω
v
σ− 1△v

ldx + σk
χ+1
2 (t)

Ω
v
σ+r− 1

u
sdx,

(11)

where L � max δ|k1′(t)|/k1(t), χ|k2′(t)|/k2(t) .
For the second term on the right side of (11), we apply the

divergence theorem, the L1 trace embedding, and (3) to get
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Ω

u
σ− 1△u

mdx � 
zΩ

u
σ− 1zum

zn
dA − 

Ω
∇uσ− 1

· ∇umdx

≤m
zΩ

u
σ+m− 2zu

zn
dA − m(σ − 1)

Ω
u
σ+m− 3

|∇u|
2dx

≤ma1
zΩ

u
σ+m+α− 2dA − m(σ − 1)

Ω
u
σ+m− 3

|∇u|
2dx

≤
ma1n

ρ0

Ω

u
σ+m+α− 2dx +

ma1(σ + m + α − 2)d

ρ0

Ω

u
σ+m+α− 3

|∇u|dx

−
4m(σ − 1)

(σ + m − 1)2

Ω
∇uσ+m− 1/2




2
dx,

(12)

where ρ0: � minzΩ|x · n
→

|, n
→ is the outward normal vector

of zΩ and d: � maxzΩ|x|.
For the second term on the right side of (12), using (11),

we obtain


Ω

u
σ+m+α− 3

|∇u|dx≤
1
2ε1


Ω

u
σ+m+2α− 3dx +

2ε1
(σ + m − 1)2

· 
Ω
∇u(σ+m− 1)/2




2
dx,

(13)

where ε1 is a positive constant which will be defined later.
Using (4), we have


Ω

u
σ+m+α− 2dx≤ 

Ω
u
σ+m+2α− 3dx 

x10


Ω

u
σdx 

x20

≤ x10
Ω

u
σ+m+2α− 3dx + x20

Ω
u
σdx,

(14)

where x10 � (m + α − 2)/(m + 2α − 3) and x20 � (α − 1)/
(m + 2α − 3).

Choosing x11 � (m + 2α − 2)(n − 2)/(m − 1)n + 2σ and
x21 � ((m − 1)n + 2σ − (m + 2α − 2)(n − 2))/((m − 1)n +

2σ) and using (4), (5), and (7), we have


Ω

u
σ+m+2α− 3dx≤ 

Ω
u

(σ+m− 1)n/(n− 2)dx 
x11


Ω

u
σdx 

x21

≤
r1nx11

n − 2

Ω

u
σ+m− 1dx

+
r1 n − 2 − nx11( 

n − 2
1 + ε− nx11/ n− 2− nx11( )

2 

· 
Ω

u
σdx 

x21(n− 2)/ n− 2− nx11( )
+

r1nx11

n − 2
ε2

· 
Ω
∇u(σ+m− 1)/2




2
dx,

(15)

where r1 � (C2n/(n− 2)2(n/(n− 2))− 1)x11 and ε2 is a positive
constant which will be defined later.

For the first term on the right side of (15), using (4) and
Young’s inequality, we have


Ω

u
σ+m− 1dx≤ 

Ω
u
σ+m+2α− 3dx 

x12


Ω

u
σdx 

x22

≤x12ε3
Ω

u
σ+m+2α− 3dx + x22ε

− ((m− 1)/(2α− 2))
3 

Ω
u
σdx,

(16)

where x12 � (m − 1)/(m + 2α − 3), x22 � (2α − 2)/
(m + 2α − 3), and ε3 is a positive constant which will be
defined later.

Combining (15) and (16), if we choose suitable ε3 such
that r1nx11x12ε3/(n − 2) � 1/2, we have


Ω

u
σ+m+2α− 3dx≤ r2

Ω
u
σdx + r3 

Ω
u
σdx 

x21(n− 2)( )/ n− 2− nx11( )

+ r4
Ω
∇u(σ+m− 1)/2




2
dx,

(17)

where r2 � (2r1nx11/(n − 2))x22ε
− ((m− 1)/(2α− 2))
3 , r3 � 2r1(n −

2 − nx11)/(n − 2)(1 + ε− (nx11/(n− 2− nx11))
2 ), and r4 � (2r1nx11/

(n − 2))ε2.
Combining (12), (13), (14), and (17), we have


Ω

u
σ− 1△u

mdx≤ r5r2 +
ma1nx20

ρ0
 

Ω
u
σdx + r5r3

· 
Ω

u
σdx 

x21(n− 2)/ n− 2− nx11( )

+ r6
Ω
∇u(σ+m− 1)/2




2
dx,

(18)

where r5 � (ma1nx10/ρ0) + (ma1(σ + m + α − 2)d/2ε1ρ0)
and r6 � (ma1(σ + m + α − 2)d/ρ0) · (2ε1/(σ + m − 1)2) −

(4m(σ − 1)/(σ + m − 1)2).
Similarly, for the fourth term on the right side of (11),

using the divergence theorem and (3), we have
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Ω

v
σ− 1△v

ldx � 
zΩ

v
σ− 1zvl

zn
dA − 

Ω
∇vσ− 1

· ∇vldx

≤
la2n

ρ0

Ω

v
σ+l+β− 2dx +

la2(σ + l + β − 2)d

ρ0

· 
Ω

v
σ+l+β− 3

|∇v|dx

−
4l(σ − 1)

(σ + l − 1)2

Ω
∇v(σ+v− 1)/2




2
dx.

(19)

For the second term on the right side of (19), using (4),
we obtain


Ω

v
σ+l+β− 3

|∇v|dx≤
1
2ε4


Ω

v
σ+l+2β− 3dx +

2ε4
(σ + l − 1)2


Ω

· ∇v(σ+l− 1)/2



2
dx,

(20)

where ε4 is a positive constant which will be defined later.
Similarly, we have


Ω

v
σ+l+β− 2dx≤ 

Ω
v
σ+l+2β− 3dx 

y10


Ω

v
σdx 

y20

≤y10
Ω

v
σ+l+2β− 3dx + y20

Ω
v
σdx,

(21)

where y10 � (l + β − 2)/(l + 2β − 3) and y20 � (β − 1)/
(l + 2β − 3).

Choosing y11 � ((l + 2β − 2)(n − 2))/((l − 1)n + 2σ) and
y21 � ((l − 1)n + 2σ − (l + 2β − 3)(n − 2))/((l − 1)n + 2σ)

and using (4), (6), and (7), we have


Ω

v
σ+l+2β− 3dx≤ 

Ω
v

(σ+l− 1)n/(n− 2)dx 
y11


Ω

v
σdx 

y21

≤
r7ny11

n − 2

Ω

v
σ+l− 1dx

+
r7 n − 2 − ny11( 

n − 2
1 + ε− ny11/ n− 2− ny11( )

5 

· 
Ω

v
σdx 

y21(n− 2)/ n− 2− ny11( )
+

r7ny11

n − 2
ε5

· 
Ω
∇v(σ+l− 1)/2




2
dx,

(22)

where r7 � (C2n/(n− 2)2(n/(n− 2))− 1)y11 and ε5 is a positive
constant which will be defined later.

For the first term on the right side of (22), using (4), we
have


Ω

v
σ+l− 1dx≤ 

Ω
v
σ+l+2β− 3dx 

y12


Ω

v
σdx 

y22

≤y12ε6
Ω

v
σ+l+2β− 3dx + y22ε

− ((l− 1)/(2β− 2))

6 
Ω

v
σdx,

(23)

where y12 � (l − 1)/(l + 2β − 3), y22 � (2β − 2)/(l + 2β − 3),
and ε6 is a positive constant which will be defined later.

Combining (22) and (23), if we choose suitable ε6 such
that r7ny11y12ε6/(n − 2) � 1/2, we have


Ω

v
σ+l+2β− 3dx≤ r8

Ω
v
σdx + r9 

Ω
v
σdx 

y21(n− 2)/ n− 2− ny11( )

+ r10
Ω
∇v(σ+l− 1)/2




2
dx,

(24)

where r8 � (2r7ny11y22/(n − 2))ε− ((l− 1)/(2β− 2))
6 , r9 � (2r7(n −

2 − ny11)/(n − 2))(1+ ε− (ny11/(n− 2− ny11))
5 ), andr10 � (2r7ny11/

(n − 2))ε5.
Combining (19)–(21) and (24), we have


Ω

v
σ− 1△v

ldx≤ r11r8 +
la2ny20

ρ0
 

Ω
v
σdx + r11r9

· 
Ω

v
σdx 

y21(n− 2)/ n− 2− ny11( )

+ r12
Ω
∇v(σ+l− 1)/2




2
dx,

(25)

where r11 � (la2ny10/ρ0) + (la2(σ + l + β − 2)d/2ε4ρ0) and
r12 � (la2(σ + l + β − 2)d/ρ0) · (2ε4/(σ + l − 1)2) − (4l(σ −

1)/(σ + l − 1)2).

For the third term on the right side of (11), using Hölder
inequality and Young’s inequality, we have

σk
δ+1
1 (t)

Ω
u
σ+p− 1

v
qdx≤ σk

δ+1
1 (t) 

Ω
u

(σ+p− 1)σ/(σ− q)dx 
(σ− q)/σ

· 
Ω

v
σdx 

q/σ

≤ (σ − q)k
δ+1
1 (t)

Ω
u

(σ+p− 1)σ/(σ− q)dx

+ qk
δ+1
1 (t)

Ω
v
σdx.

(26)

For the first term on the right side of (26), using (4), (5),
and (7) and taking care of the given condition
δ � ((σ − q)(mn − n + 2σ))/(2σ(p + q − 1)), we have
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k
δ+1
1 (t)

Ω
u

(σ+p− 1)σ/(σ− q)dx≤ k
δ+1
1 (t) 

Ω
u

(σ+m− 1)n/(n− 2)dx 
x13


Ω

u
σdx 

x23

≤ k
δ+1
1 (t) C

2n/(n− 2)2(n/(n− 2))− 1
 

x13

Ω

u
σ+m− 1dx 

x13n/(n− 2)



+ 
Ω
∇u(σ+m− 1)/2




2
dx 

x13n/(n− 2)

 
Ω

u
σdx 

x23

� λ1k
δ+1
1 (t) 

Ω
u
σ+m− 1dx 

x13n/(n− 2)


Ω

u
σdx 

x23

+ λ1k
δ+1
1 (t) 

Ω
∇u(σ+m− 1)/2




2
dx 

x13n/(n− 2)


Ω

u
σdx 

x23

≤
λ1x13n

n − 2
k
δ+1
1 (t)

Ω
u
σ+m− 1dx +

λ1 n − 2 − nx13( 

n − 2
k
1− 2x13δ/ n− 2− nx13( )( )
1 + ε− nx13δ/ n− 2− nx13( )( )

7 ·

· k
δ
1(t)

Ω
u
σdx 

x23(n− 2)/ n− 2− nx13( )
+
λ1x13nε7

n − 2
k
δ
1(t)

Ω
∇u(σ+m− 1)/2




2
dx,

(27)

where λ1 � (C2n/(n− 2)2(n/(n− 2))− 1)x13 , x13 � (σ(p + q − 1)

(n − 2))/((σ − q)(mn − n + 2σ)), and x23 � ((σ − q)(mn −

n + 2σ) − σ(p + q − 1)(n − 2))/ ((σ − q)(mn − n + 2σ)).
For the first term on the right side of (27), using (4) and

Young’s inequality, we get


Ω

u
σ+m− 1dx≤x14ε7

Ω
u

(σ+p− 1)σ/(σ− q)
+ x24ε

− x14/x24( )
7 

Ω
u
σdx,

(28)

where x14 � ((m − 1)(σ − q))/(σ(σ + q − 1)), x24 � (σ(σ +

q − 1) − (m − 1)(σ − q))/(σ(σ + q − 1)), and ε7 is a positive
constant which will be defined later.

Combining (27) and (28), if we choose suitable ε7 such
that (λ1nx13x14ε7)/(n − 2) � 1/2, we have

(σ − q)k
δ+1
1 (t)

Ω
u

(σ+p− 1)σ/(σ− q)dx≤K1(t)k
δ
1(t)

Ω
u
σdx

+ K2(t) k
δ
1(t)

Ω
u
σdx 

x23(n− 2)/ n− 2− nx13( )

+ λ2k
δ
1(t)

Ω
∇u(σ+m− 1)/2




2
dx,

(29)

where K1(t) � (2(σ − q)λ1nx13x24/(n − 2))ε− (x14/x24)
7 k1(t),

K2(t) � (2(σ − q)λ1(n − 2 − nx13)/

(n − 2))(k
1− (2x13δ/(n− 2− nx13))
1 (t) + ε− (nx13/(n− 2− nx13))

7 ), and λ2 �

2(σ − q)λ1nx13ε7/(n − 2).
Combining (26) and (29), we obtain

σk
δ+1
1 (t)

Ω
u
σ+p− 1

v
qdx≤K1(t)k

δ
1(t)

Ω
u
σdx

+ K2(t) k
δ
1(t)

Ω
u
σdx 

x23(n− 2)/ n− 2− nx13( )

+ λ2k
δ
1(t)

Ω
∇u(σ+m− 1)/2




2
dx

+ qk
δ+1
1 (t)

Ω
v
σdx.

(30)

By the same way, for the fifth term on the right side of
(11), using (4), we have

σk
χ+1
2 (t)

Ω
v
σ+r− 1

u
sdx≤ (σ − s)k

χ+1
2 (t)

Ω
v

(σ+r− 1)σ/(σ− s)dx

+ sk
χ+1
2 (t)

Ω
u
σdx.

(31)

For the first term on the right side of (31), using (4), (6),
and (7) and taking care of the given condition
χ � ((σ − s)(ln − n + 2σ))/(2σ(r + s − 1)), we have

k
χ+1
2 (t)

Ω
v

(σ+r− 1)σ/(σ− s)dx≤ k
χ+1
2 (t) 

Ω
v

(σ+l− 1)n/(n− 2)dx 
y13


Ω

v
σdx 

y23

≤
λ3y13n

n − 2
k
χ+1
2 (t)

Ω
v
σ+l− 1dx +

λ3 n − 2 − ny13( 

n − 2
k
1− 2y13χ/ n− 2− ny13( )( )
2 (t) + ε− ny13χ/n− 2− ny13( )

8 ·

· k
χ
2(t)

Ω
v
σdx 

y23(n− 2)/ n− 2− ny13( )
+
λ3y13nε8

n − 2
k
χ
2(t)

Ω
∇v(σ+l− 1)/2




2
dx,

(32)
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where λ3 � (C2n/(n− 2)2(n/(n− 2))− 1)y13 , y13 � (σ(r + s − 1)

(n − 2))/((σ − s)(ln − n +2σ)), y23 � ((σ − s)(ln − n +2σ) −

σ(r + s − 1) (n − 2))/((σ − s)(ln − n +2σ)), and ε8 is a positive
constant which will be defined later.

For the first term on the right side of (32), using (4), we
get


Ω

v
σ+l− 1dx≤y14ε9

Ω
v

(σ+r− 1)σ/(σ− s)
+ y24ε

− y14/y24( )
9 

Ω
v
σdx,

(33)

where y14 � ((l − 1)(σ − s))/(σ(σ + s − 1)), y24 � (σ(σ +

s − 1) − (l − 1)(σ − s))/(σ(σ + s − 1)), and ε9 is a positive
constant which will be defined later.

Combining (32) and (33), if we choose suitable ε9 such
that λ2ny13y14ε9/(n − 2) � 1/2, we have

(σ − s)k
χ+1
2 (t)

Ω
v

(σ+r− 1)σ/(σ− s)dx≤K3(t)k
χ
2(t)

Ω
v
σdx

+ K4(t) k
χ
2(t)

Ω
v
σdx 

y23(n− 2)/ n− 2− ny13( )

+ λ4k
χ
2(t)

Ω
∇v(σ+l− 1)/2




2
dx,

(34)

where K3(t) � ((2(σ − s)λ3ny13y24)/(n − 2))ε− (y14/y24)
9

k2(t), K4(t) � ((2(σ − s)λ3(n − 2 − ny13))/(n − 2))

(k
1− (2y13δ/(n− 2− ny13))
2 (t) + ε− (ny13/(n− 2− ny13))

9 ), and λ4 � (2(σ − s)

λ3ny13ε9)/(n − 2).
Combining (31) and (34), we obtain

σk
χ+1
2 (t)

Ω
v
σ+r− 1

u
sdx≤K3(t)k

χ
2(t)

Ω
v
σdx + K4(t)

· k
χ
2(t)

Ω
v
σdx 

y23(n− 2)/ n− 2− ny13( )

+ λ4k
χ
2(t)

Ω
∇v(σ+l− 1)/2




2
dx + sk

χ+1
2 (t)

Ω
u
σdx.

(35)

Combining (11), (18), (25), (30), and (35), we have

ϕ′(t)≤ L + K1 + K2(t) + K3(t)( ϕ(t) + K4(t) k
δ
1(t)

Ω
u
σdx 

x21(n− 2)/ n− 2− nx11( )

+ K5(t) k
χ
2(t)

Ω
v
σdx 

y21(n− 2)/ n− 2− ny11( )
+ r6σ + λ2( k

δ
1(t)

Ω
∇u(σ+m− 1)/2




2
dx

+ r12σ + λ4( k
χ
2(t)

Ω
∇v(σ+l− 1)/2




2
dx + K2(t) k

δ
1(t)

Ω
u
σdx 

x23(n− 2)/ n− 2− nx13( )

+ K4(t) k
χ
2(t)

Ω
v
σdx 

y23(n− 2)/ n− 2− ny13( )
,

(36)

where K1 � max σr5r2 + ma1nx20ρ− 1
0 , σr11r8 + la2ny20ρ− 1

0 ,

K2(t) � K1(t) + K3(t), K3(t) � max qkδ+1
1 (t)k

− χ
2 (t), sk

χ+1
2

(t)k− δ
1 (t)}, K4(t) � r5r3σk

− (2x11δ/(n− 2− nx11))
1 (t), and K5(t) �

r11r9σk
− (2y11δ/(n− 2− ny11))
2 (t).

If we choose suitable ε1, ε4, ε7, and ε9 such that
r6σ + λ2 ≤ 0, r12σ + λ4 ≤ 0, we can rewrite (36) as

ϕ′(t)≤ K6(t)ϕ(t) + K4(t)(ϕ(t))
ξ1 + K5(t)(ϕ(t))

ξ2

+ K2(t)(ϕ(t))
ξ3 + K4(t)(ϕ(t))

ξ4 ,
(37)

where ξ1 � 1 + (2x11/(n − 2 − nx11)), ξ2 � 1+ (2y11/(n − 2−

ny11)), ξ3 � 1 + (2x13/(n − 2 − nx13)), ξ4 � 1 + (2y13/
(n − 2 − ny13)), and K6 � L + K1 + K2(t) + K3(t).

Let

Θ t
∗

(  � 
t∗

0
K(τ)dτ, (38)

where K(t) � K6(t) + K4(t) + K5(t) + K2(t) + K4(t).
Integrating (37) from 0 to t∗, we have

Θ t
∗

( ≥ 
∞

ϕ(0)

1
η + ηξ1 + ηξ2 + ηξ3 + ηξ4

dη � S. (39)

Considering ξi > 1 (i � 1, 2, 3, 4), the integration of the
right side of (39) exists. It is clear that Θ(t∗) is an increasing
function. So, we can get

t
∗ ≥Θ− 1

(S), (40)

where Θ− 1 is the inverse function of Θ.
)e proof of )eorem 1 is complete.
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