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In this article, we study the global dynamical behavior of a two-strain SIS model with a periodic infection rate. ,e positivity and
boundedness of solutions are established, and the competitive exclusion conditions are given for the model.,e conditions for the
global stability of the disease-free equilibrium and persistence of the model are obtained. ,e conditions of coexistence in this
model are also found. Finally, the conditions of uniqueness of the solution are proved.

1. Introduction

Since the first work [1] about the mathematical epidemic
model published, there were plenty of results of infectious
diseases in modeling and dynamics. ,ese epidemic models
usually include two important parameters, the infection rate
and recovery rate. Many of the epidemic models focus on the
disease eradication and persistence. Among these models,
some are applied successfully on infectious disease forecast
and control [2–6]. In the analysis of the epidemic model, it is
found that infectious diseases often fluctuate over time and
exhibit periodic behavior [7–9]. ,is fluctuation is also ob-
served in the real data [10, 11]. ,e influenza data from CDC
[10] show that the number of influenza cases per week os-
cillates with a period between two peaks of one year and
measles data [11] illustrate the period of two years. ,e pe-
riodic behavior of the incidence of many infectious diseases is
caused by the influence of temperature and humidity on virus
[12, 13]. In [14, 15], the authors introduced the epidemic
models that had periodic coefficients to illustrate the peri-
odical phenomenon. An epidemic SIS model with a periodic
infection rate was first considered by Hethcote [15]. Fur-
thermore, Dietz [14] considered SIR and SEIR models with a
periodic infection rate.

,e causative agents of many diseases are represented
by multiple genetically distinct variants. Early autono-
mous multistrain models suggested that competitive ex-
clusion is the only possible result of the competition of
many strains [16]. However, these models disregard many
mechanisms such as coinfection [17], mutation [18], cross
immunity [19], and periodicity [20], which were proposed
as possible mechanisms that could support diversity of
causative agents. Castillo-Chavez et al. [21] established a
sexually transmitted disease model with two competing
strains and found the conditions of coexistence equilib-
rium and its global stability. ,e interesting work finished
by Nuño et al. [19] considered a two-strain influenza
model with cross immunity, and their simulation results
showed that there might be up to four coexistence
equilibria for their model. Another result about multiple-
strain model was finished by Martcheva [20]. In this work,
the author introduced a nonautonomous multistrain
epidemic model without susceptible individuals and
found the coexistence and persistence conditions of this
model. All of these results also show that the analysis of
multiple-strain model can extend our knowledge about
the mechanism of the multiple-strain coexistence and
competitive exclusion.

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 7541861, 10 pages
https://doi.org/10.1155/2020/7541861

mailto:zhouyc@xjtu.edu.cn
https://orcid.org/0000-0002-2472-4121
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7541861


In this paper, we investigate a two-strain SIS model with
a periodic infection rate

dS

dt
� λ −

β1(t)SI1

1 + S
−
β2(t)SI2

1 + S
+ c1I1 + c2I2 − dS,

dI1

dt
�

β1(t)S

1 + S
− k1􏼠 􏼡I1,

dI2

dt
�

β2(t)S

1 + S
− k2􏼠 􏼡I2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where S is the number of susceptible individuals and Ii(i �

1, 2) is the number of individuals that are infected by the
disease strain i. 0< βi(t)<M(i � 1, 2) is the infection rate of
strain i, and it is a periodic function with the period T. “M”
here is the upper bound of βi(t)(i � 1, 2). d> 0 is the death
rate of susceptible individuals. ki � ci + d + αi > 0, where
ci > 0 is the recovery rate of the infected individuals of strain
i, i � 1, 2. di >d> 0 is the death rate of the infected indi-
viduals of strain i, and αi > 0 is the disease introduced death
rate.

One of the most important concepts about the dynamics
of epidemic models is the basic reproductive number R0,
which represents the expected number of secondary cases
produced by a typical infected individual in a fully sus-
ceptible population [22, 23]. According to the definition, it is
easy to conclude that an epidemic will never occur when
R0 < 1, and instead it will occur if R0 > 1. In this manuscript,
we introduce two basic reproductive numbers R1

0 and R2
0 for

our two-strain model and use these two values as the
thresholds to analyze the dynamic behaviors of model (1).

,is paper is organized as follows: In Section 2, we
analyze the positivity and boundedness of model (1), as well
as the global stability of the disease-free equilibrium. ,e
competitive exclusion conditions are also gained in this
section. In Section 3, we study the coexistence and stability
of T-periodic positive solution of this model. In Section 4,
the conditions of uniqueness of the solution are found.
Finally, the numerical simulations are done to illustrate our
results.

2. The Global Stability of the Disease-Free
Equilibrium and the Competitive Exclusion

We first give the positivity and boundedness of model (1).

Theorem 1. Solutions of model (1) with positive initial
conditions are positive and bounded.

Proof. Assume that the initial condition is
(S(0), I1(0), I2(0)) with S(0)≥ 0, I1(0)≥ 0, I2(0)≥ 0, then
we have

I1(t) � exp 􏽚
t

0

β1(τ)S(τ)

1 + S(τ)
− k1􏼠 􏼡dτ􏼠 􏼡I1(0)≥ 0,

I2(t) � exp 􏽚
t

0

β2(τ)S(τ)

1 + S(τ)
− k2􏼠 􏼡dτ􏼠 􏼡I2(0)≥ 0.

(2)

,e solutions I1(t) and I2(t) are nonnegative, and they
are positive when I1(0)≠ 0 and I2(0)≠ 0.

Next, we prove the positivity of S(t) with positive initial
values. Assuming the contrary and letting t0 > 0 be the first
time such that S(t0) � 0, by the first equation of model (1),
we have

dS(t)

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�t0

� λ + c1I1 t0( 􏼁 + c2I2 t0( 􏼁> 0, (3)

which implies S(t)< 0 for t ∈ (t0 − ε, t0) and sufficient small
ε> 0. ,is contradicts that t0 is the first time such that
S(t0) � 0. It follows that S(t)> 0 for t> 0.

Next, we prove the boundedness. Let N(t) � S(t)+

I1(t) + I2(t) and α, we have
dN(t)

dt
� λ − dN(t) − α1I1(t) − α2I2(t)≤ λ − dN(t). (4)

If the initial condition 0≤N(0)≤ (λ/d) holds, then by
the comparison theorem

N(t)≤
λ
d

−
λ
d

− N(0)􏼠 􏼡e
−dt ≤

λ
d

. (5)

,is inequality shows that the solution of model (1) is
bounded.

,is completes the proof. □

Remark 1. In the rest of this paper, we assume that
(S(0), I1(0), I2(0)) ∈ D, where D � (S, I1, I2) | S≥􏼈 0, I1 ≥ 0,

I2 ≥ 0, 0≤ S + I1 + I2 ≤ (λ/d)}.
Model (1) has a disease-free equilibrium

E0 � ((λ/d), 0, 0) � (SE, 0, 0). So, we define the basic re-
productive number of strain i as Ri

0 � μi(SE)/ki, where
μi(SE) � 1/T 􏽒

T

0 (βi(t)SE/1 + SEdt), (i � 1, 2). ,en, we have
the following theorem.

Theorem 2. For model (1), if R1
0 < 1 and R2

0 < 1, then the
disease-free equilibrium E0 is globally asymptotically stable.

Proof. ,e solution of model (1) satisfies

Ii(t) � Ii(0) exp 􏽚
t

0

βi(τ)S(τ)

1 + S(τ)
− ki􏼠 􏼡dτ􏼠 􏼡, i � 1, 2.

(6)

For any given t≥ 0, there exists an integer number n and
a real number s such that t � nT + s, where 0≤ s<T and
n≥ 0. ,e inequality S(t)≤N(t)≤ (λ/d) implies that
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Ii(t)≤ Ii(0) exp 􏽚
nT

0

βi(τ)SE

1 + SE

− ki􏼠 􏼡dτ􏼠 􏼡exp 􏽚
nT+s

nT

βi(τ)SE

1 + SE

− ki􏼠 􏼡dτ􏼠 􏼡

� Ii(0) exp ki R
i
0 − 1􏼐 􏼑n􏼐 􏼑 exp

SE

1 + SE

􏽚
s

0
βi(τ)dτ − ki􏼠 􏼡,

(7)

which implies that limt⟶∞Ii(t) � 0; that is, for any ε> 0,
there exists a Ti > 0, such that Ii(t)< ε. Let T0 � max(T1, T2)

and β0 � max0≤t≤T β1(t) + β2(t)􏼈 􏼉. If t>T0, the first equation
of (1) satisfies

dS

dt
≥ λ − β0ε − dS. (8)

,e comparison theorem implies that

S(t)≥
λ − β0ε

d
−

λ − β0ε
d

− S(0)􏼠 􏼡e
− dt

. (9)

Since S(t)≤N(t)≤ λ/d, we have limt⟶∞S(t) � (λ/d).
,e limits limt⟶∞S(t) � (λ/d) and limt⟶∞Ii(t) �

0(i � 1, 2) show that E0 is globally attractive.
,e Jacobin matrix at the disease-free equilibrium E0 �

(SE, 0, 0) is

J �

−d c1 −
β1(t)SE

1 + SE

c2 −
β2(t)SE

1 + SE

0
β1(t)SE

1 + SE

− k1 0

0 0
β2(t)SE

1 + SE

− k2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

,e three characteristic multipliers are

e
− Td

,

e
􏽒

T

0
β1(t)SE/1+SE( )− k1( )dt

,

e
􏽒

T

0
β2(t)SE/1+SE( )− k2( )dt

.

(11)

,e condition Ri
0 < 1(i � 1, 2) implies that if

e
􏽒

T

0
((βi(t)SE/1+SE)− ki)dt < 1(i � 1, 2), then we claim that the

disease-free equilibrium is globally asymptotically
stable. □

We give the competitive exclusion conditions of
model (1).

Theorem 3. (i) If (β1(t)/β2(t))< (k1/k2) hold, then all so-
lutions of model (1) with (S(0), I1(0), I2(0)) ∈ D satisfies
limt⟶∞I1(t) � 0. (ii) If (β1(t)/β2(t))> (k1/k2) hold, then
all solutions of model (1) with (S(0), I1(0), I2(0)) ∈ D sat-
isfies limt⟶∞I2(t) � 0.

Proof. To prove statement (i), we let m � (k1/k2) and
consider the function

V S, I1, I2( 􏼁 � I1I
−m
2 . (12)

We have
dV S, I1, I2( 􏼁

dt
� β1(t) − mβ2(t)( 􏼁

S

1 + S
V S, I1, I2( 􏼁. (13)

,e condition (β1(t)/β2(t))<m implies that

β1(t) − mβ2(t)( 􏼁
S(t)

1 + S(t)
< 0, (14)

which follows

I1(t)I2(t)
− m

� I1 t0( 􏼁I2 t0( 􏼁
− m exp 􏽚

t

0
β1(τ)((􏼠

− mβ2(τ)􏼁
S(τ)

1 + S(τ)
􏼡dτ􏼡.

(15)

Let

D0 � S, I1, I2( 􏼁
􏼌􏼌􏼌􏼌
dV S, I1, I2( 􏼁

dt
� 0, S, I1, I2( 􏼁 ∈ D􏼨 􏼩.

(16)
,en D0 � (S, I1, I2) | I1 � 0􏼈 􏼉 is an invariant set of model
(1). By Lasalle’s principle, we know that all solutions of
model (1) in D satisfy limt⟶∞I1(t) � 0.

Using similar argument, we can obtain statement (ii). □

,ese two conditions are usually called the principle of
competitive exclusion [24, 25].

3. Coexistence

,is section discusses the persistence of model (1).

Theorem 4. For model (1), if R1
0 > 1 and R2

0 > 1, then there
exists a positive constant δ∗ > 0, such that for at least one
strain I(t) satisfies lim supt⟶∞I(t)≥ δ∗.

Proof. As SE � λ/d is a global attractor for (dS/dt) � λ − dS,
we can choose small enough δ > 0 that for the system,

dS

dt
� λ + c1 + c2 −

β1(t)S

1 + S
−
β2(t)S

1 + S
􏼠 􏼡η − dS. (17)

If 0< η< δ, then ∀ε> 0. ,ere exists a time T that when
t>T, |S(t) − SE|< ε. Without loss of generality, from the
conditions R1

0 � (1/k1T) 􏽒
T

0 (β1(t)SE/1 + SE)> 1 and R2
0 �

(1/k2T) 􏽒
T

0 (β2(t)SE/1 + SE)> 1, we can choose δ∗ > 0 and
small ε that, for any t>T, S(t)> SE − ε, (1/k1T)

􏽒
T

0 (β1(t)(SE − ε)/1 + (SE − ε))> 1, and (1/k2T) 􏽒
T

0 β2(t)

(SE − ε)/1 + (SE − ε)> 1.
We prove by contradiction. Assume both of these two

strains I1 and I2 satisfy lim supt⟶∞I1(t)< δ∗ and
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lim supt⟶∞I2(t)< δ∗. Without loss of generality, we as-
sume I1(t)< δ∗ and I2(t)< δ∗.

As a consequence, for all t≥T, there hold

I1′(t)≥
β1(t) SE − ε( 􏼁

1 + SE − ε( 􏼁
− k1􏼠 􏼡I1,

I2′(t)≥
β2(t) SE − ε( 􏼁

1 + SE − ε( 􏼁
− k2􏼠 􏼡I2,

(18)

and it is easy to see that limt⟶∞I1(t) � +∞ and
limt⟶∞I2(t) � +∞, which lead to a contradiction. Hence,
the conclusion holds. □

Moreover, if (β2(t)/β1(t)) � (k2/k1) � m hold for all
t≥ 0, then it is easy to get that

dI2

dI1
� m

I2

I1
. (19)

,erefore,
I2 � QI

m
1 , (20)

where Q is a constant which is determined by the initial
values I1(0), I2(0). ,en, the dynamical behavior of model
(1) is equivalent to that of the following model:

dS

dt
� λ + c1 −

β1(t)S

1 + S
􏼠 􏼡I1 + Q c2 − m

β1(t)S

1 + S
􏼠 􏼡I

m
1 − dS,

dI1

dt
�

β1(t)S

1 + S
− k1􏼠 􏼡I1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(21)

We can get the following theorem about the above
model.

Theorem 5. If R1
0 > 1, then there exists a positive constant

δ > 0; then (1) all solutions of model (21) with positive initial
conditions will satisfy lim inf t⟶∞I1(t)≥ δ, and model (21)
will admit at least one positive periodic solution.

Proof. Since R1
0 � μ1(SE)/k1 > 1, there exists a small enough

η> 0 such that μ1(SE − η)> k1. Let us consider the following
equation:

dx

dt
� λ − β1(t)δ − mQβ1(t)δm

− dx, (22)

and the solution of this equation (22) is

x(t) � SE + C0e
− dt

− δ + mQδm
( 􏼁 􏽚

t

0
β1(τ)e

d(τ− t)dτ,

(23)

where C0 is a constant. As 0< β1(t)<M, the following
inequalities hold:

SE − δ + mQδm
( 􏼁

M

d
≤ lim

t⟶∞
x(t)≤ SE. (24)

,us, we can fix a small enough number δ � δ∗ > 0 such
that limt⟶∞x(t)> SE − η.

Suppose, by contradiction, that lim supt⟶∞I1(t)< δ∗.
Without loss of generality, we can assume that I1(t)< δ∗, it
follows 0≤ I1(t)< δ∗. By the first equation of model (21), we
have the following inequality:

S′(t)≥ λ − β1(t)δ∗ − mQβ1(t)δ∗m − dS. (25)

,us, there exists a time T∗; for all t>T∗, we have
S(t)> SE − η. As a consequence, for all t≥T, there holds

I1′(t)≥
β(t) SE − η( 􏼁

1 + SE − η( 􏼁
− k􏼠 􏼡I1. (26)

Since μ(SE − η)> k, it is easy to see that limt⟶∞I1(t) �

+∞, which leads to a contradiction. Hence, lim supt⟶∞I1
(t)≥ δ∗.

Define

X � R
2
+,

X0 � R+ × intR+,
zX0 � X/X0,

(27)

where R+ � x | x≥ 0{ } and intR+ � x | x> 0{ }. ,en, assume
u(t, (S0, I01)) is the solution of model (21) and p((S0, I01)) �

u(T, (S0, I01)) is the Poincare map.
E0 is globally attractive in zX0 for p, and E0 is isolated

invariant sets in X with Ws(E0)∩X0 � ∅. Clearly, every orbit
in zX0 converges toE0. By,eorem 1.3.1 in [26], for a stronger
repelling property of zX0, we conclude that p is uniformly
persistent with respect to (X0, zX0). ,us, ,eorem 3.1.1 in
[26] implies the uniform persistence of the solutions of model
(21) with respect to (X0, zX0). By,eorem 1.3.6 in [26], p has
a fixed point (􏽢S(0), 􏽢I1(0)) ∈ X0. ,en 􏽢S(0) ∈ R+ and
􏽢I1(0) ∈ intR+. We further claim that 􏽢S(0) ∈ R+/ 0{ }. Suppose
􏽢S(0) � 0, then we have λ + c1

􏽢I1(0) + c2Q
􏽢Im
1 (0) � 0, which is

a contradiction. So from model (21), we can get u(t, (􏽢S(0),
􏽢I1(0))) ∈ int(R2

+), ∀t> 0. ,en (􏽢S(0), 􏽢I1(0)) is a component-
wise positive fixed point of p. ,us, (􏽢S(t), 􏽢I1(t)) is a positive
T-periodic solution of model (21). □

Remark 2. It is easy to conclude that when the condition
∀t, (β2(t)/β1(t)) � (k2/k1) � m and R1

0 > 1 hold, there exist
at least one persistent solution (S(t), I1(t), and I2(t)) with
respect to I2(t) � QI1(t)m and Q≥ 0. Moreover, when
Q � 0, model (21) becomes the plane system that I2(t) � 0.

,en, we consider a more special case that the infection
rate of model (21) satisfies β1(t) � b0 + ε cos(t), where ε> 0
is a small number. When R1

0 > 1 and ε � 0, model (21) be-
comes an autonomous model

dS

dt
� λ + c1 −

b0S

1 + S
􏼠 􏼡I1 + Q c2 − m

b0S

1 + S
􏼠 􏼡I

m
1 − dS,

dI1

dt
�

b0S

1 + S
− k1􏼠 􏼡I1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

,e positive equilibrium E1 � (S∗, I∗) for model (28)
satisfies
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b0S
∗

1 + S∗
� k1,

c −
b0S
∗

1 + S∗
􏼠 􏼡I

∗
+ Q c2 − m

b0S
∗

1 + S∗
􏼠 􏼡I

∗m
� dS
∗

− λ.

(29)

As (b0S
∗/1 + S∗) � k1 > c1, m(b0S

∗/1 + S∗) � k2 > c2
and R1

0 > 1 implies dS∗ − λ> 0, so there exists unique positive
equilibrium E1 � (S∗, I∗) for model (28). It is easy to check
the Jacobin matrix at equilibrium E1 is

−
b0I
∗

1 + S∗( )2
−

mQb0I
∗m

1 + S∗( )2
− d c1 −

b0S
∗

1 + S∗
+ mQ c2 − m

b0S
∗

1 + S∗
􏼠 􏼡I

∗ (m−1)
1

b0I
∗

1 + S∗( )2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

and its two eigenvalues λ1, λ2 satisfy

λ1 + λ2 � −
b0I
∗

1 + S∗( )2
−

mQb0I
∗m

1 + S∗( )2
− d< 0,

λ1λ2 �
b0I
∗

1 + S∗( )2
c1 −

b0S
∗

1 + S∗
􏼠

+ mQ c2 − m
b0S
∗

1 + S∗
􏼠 􏼡I

∗(m−1)
1 􏼡> 0,

(31)

when R1
0 > 1, which implies that the real parts of λ1 and λ2 are

negative. So the unique equilibrium E1 is asymptotically stable.
,e right-hand side of model (21) f(S, I, μ) can be il-

lustrated as

f S, I, b1( 􏼁 �

λ + c1 −
b0S

1 + S
􏼠 􏼡I1 + Q c2 − m

b0S

1 + S
􏼠 􏼡Im

1 − dS

b0S

1 + S
− k1􏼠 􏼡I1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε

−
cos(t)SI1

1 + S
− Qm

cos(t)SIm
1

1 + S

cos(t)SI1

1 + S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(32)

It is easy to see f(S, I, ε) is analytic with S, I ∈ R+ and
ε ∈ R, and when ϵ � 0, model (21) becomes (28). ,en by
,eorem 1.1 in Chapter 14 in [27], there exists a T-periodic
solution (S(t), I(t)) near equilibrium E1 for small ε, and by
,eorem 1.2 in Chapter 14 in [27] , this solution (S(t), I(t))

is asymptotically stable.
,us, we have the following theorem.

Theorem 6. For model (21), if R1
0 > 1 and β1(t) � b0+

ε cos(t), where ε> 0 and small, then there exists a asymptoti-
cally stable positive 2π-periodic solution (S(t), I(t)) for model
(21).

4. Uniqueness of the Solution on the Surface

In this section, we mainly talk about the uniqueness of the
solution of model (21), and the solution is on the surface
I2 � QIm

1 . We consider the model

dS

dt
� λ + c1 −

β(t)S

1 + S
􏼠 􏼡I + Q c2 −

mβ(t)S

1 + S
􏼠 􏼡I

m
− dS,

dI

dt
�

β(t)S

1 + S
− k􏼠 􏼡I,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where β(t) � b0 + ε cos(t) and b0 � 8, λ � 1, c1 � c2 � 1,

d � 1, k � 2, Q � 2, andm � 2.

Theorem 7. When ε is small enough, model (5) exhibits
unique 2π-periodic solution.

Proof. Assume system (33) has a solution

Sp(t) � S0(t) + εS1(t) + ε2S2(t) + ε3S3(t) + . . . ,

Ip(t) � I0(t) + εI1(t) + ε2I2(t) + ε3I3(t) + . . . .
(34)

Using (34) in model (35), and equating the powers of ε,
we get the following equations:

dS0(t)

dt
� λ + c1 −

b0S0(t)

1 + S0(t)
􏼠 􏼡I0(t)

+ Q c2 −
mb0S0(t)

1 + S0(t)
􏼠 􏼡I0(t)m − dS0(t),

dI0(t)

dt
�

b0S0(t)

1 + S0(t)
− k􏼠 􏼡I0(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSj(t)

dt

dIj(t)

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� J

Sj(t)

Ij(t)

⎛⎜⎝ ⎞⎟⎠ +

Fj(t)

Gj(t)

⎛⎜⎝ ⎞⎟⎠,

(35)
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where Fj and Gj are periodic functions of the period 2π, and
they are only relevant to S0(t),I0(t), . . . , Sj−1(t), Ij−1(t), and

J �

−2
b0QI0(t)2

1 + S0(t)( 􏼁
2 −

b0I0(t)

1 + S0(t)( 􏼁
2 − d c1 −

b0S0(t)

1 + S0(t)
+ 2Q c2 − 2

b0S0(t)

1 + S0(t)
􏼠 􏼡I0(t)

b0I0(t)

1 + S0(t)( 􏼁
2

b0S0(t)

1 + S0(t)
− k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

We set b0 � 8, λ � 1, c1 � c2 � 1, d � 1, k � 2, andQ �

2 and obtain
S0(t) �

1
3
,

I0(t) �
1
3
,

(37)

,e fundamental matrixΦ(t) of the linear homogeneous
differential equation system of system (35) is

Φ(t) �
ϕ11(t), ϕ12(t)

ϕ21(t), ϕ22(t)
􏼠 􏼡, (38)

where

ϕ11(t) � e
− 7/4t cos(1/4t

��
23

√
) −

7
��
23

√
e− 7/4t sin(1/4t

��
23

√
)

23
,

ϕ12(t) � −
12

��
23

√
e− 7/4t sin(1/4t

��
23

√
)

23
,

ϕ21(t) �
6

��
23

√
e− 7/4t sin(1/4t

��
23

√
)

23
,

ϕ22(t) � e
− 7/4t cos(1/4t

��
23

√
) +

7
��
23

√
e− 7/4t sin(1/4t

��
23

√
)

23
.

(39)

,e inverse matrix of Φ(t) is Ψ(t):

Ψ(t) �
ψ11(t),ψ12(t)

ψ21(t),ψ22(t)
􏼠 􏼡, (40)

where

ψ11(t) �
1
23

7
��
23

√
sin(1/4t

��
23

√
) + 23 cos(1/4t

��
23

√
)

e−7/4t (cos(1/4t
��
23

√
))2 +(sin(1/4t

��
23

√
))2􏼐 􏼑

,

ψ12(t) �
12

��
23

√
sin(1/4t

��
23

√
)

23e−7/4t (cos(1/4t
��
23

√
))2 +(sin(1/4t

��
23

√
))2􏼐 􏼑

,

ψ21(t) � −
6

��
23

√
sin(1/4t

��
23

√
)

23e−7/4t (cos(1/4t
��
23

√
))2 +(sin(1/4t

��
23

√
))2􏼐 􏼑

,

ψ22(t) �
1
23

−7
��
23

√
sin(1/4t

��
23

√
) + 23 cos(1/4t

��
23

√
)

e−7/4t (cos(1/4t
��
23

√
))2 +(sin(1/4t

��
23

√
))2􏼐 􏼑

.

(41)

We obtain the solution of system (35)

Sj(t)

Ij(t)
⎛⎝ ⎞⎠ � Φ(t)

c1j

c2j

⎛⎝ ⎞⎠Ψ(t) 􏽚
t

0
Ψ(τ)

Fj(τ)

Gj(τ)
⎛⎝ ⎞⎠dτ.

(42)

By periodicity, we obtain

c1j

c2j

⎛⎝ ⎞⎠ � (Φ(0) −Φ(2π))
− 1Φ(2π) 􏽚

2π

0
Ψ(τ)

Fj(τ)

Gj(τ)
⎛⎝ ⎞⎠dτ.

(43)

After simple calculation, we get det(Φ(0) −Φ(2π))− 1 ≈
1≠ 0. ,erefore, we obtain the unique existence of the pe-
riodic solution of period 2π of model (33). □

5. Numerical Simulation

Numerical simulations are performed to illustrate the dy-
namic behaviors of model (1) and (21).

Figures 1(a) and 1(b) show the solution of (21) under the
conditions R1

0 � 1.5 and R1
0 � 2. From these two figures, we

can see that there exists one stable periodic solution of model
(21) under different values of R0, and when the value of R0
becomes larger, the mean value of I(t) becomes larger.

Figures 2(a) and 2(b) show the results of ,eorem 3.
When the competitive exclusion condition holds, one strain
will drive another into extinction.

Figures 3(a) and 3(b) show the coexistence of model (1)
under the condition β1(t)/k1 � β2(t)/k2. Figure 3(a) is under
the initial condition (S(0), I1(0), I2(0)) � (2, 1, 2) and Figure
3(b) is ((S(0), I1(0), I2(0)) � (2, 2, 1).

Figure 4(a) is the solution of model (1) with β1 � 3+

sin(t), β2 � 3 + cos(t), λ � 1, d � 1, k1 � 1, c1 � 0.1, k2 �

1, c2 � 0.1, and R1
0 � R2

0. Figure 4(b) is the solution of model
(1) with β1 � 3 + sin(t), β2 � 3.5 + sin(t), λ � 1, d � 1,

k1 � 1.2, c1 � 0.1, k2 � 1.401, c2 � 0.1, R1
0 � 1.25, R2

0 �

1.2491, and R1
0 ≠R2

0. ,ese two figures illustrate that the basic
reproductive numbers of different strains cannot determine the
coexistence of model (1). One strain can drive another into
extinction even with the same reproductive number, and the two
strains can coexist with different basic reproductive numbers.

6. Discussion

In this paper, we study the dynamical behaviors of a two-
strain SIS model with a periodic infection rate and get its

6 Discrete Dynamics in Nature and Society
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Figure 2: Continued.

Time

So
lu
tio

ns

S
I

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

(a)

Time

So
lu
tio

ns

S
I

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

(b)

Figure 1: ,e simulated solution of model (21) under the conditions (a) R1
0 � 1.5 and (b) R1

0 � 2.
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persistence, competitive exclusion, and coexistence condi-
tions. We gain the global stability conditions of the disease-
free equilibrium E0 and establish the competitive exclusion
condition of the two strains.,e coexistence and uniqueness

are also discussed and proved. Our results lead to a new
insight into the mechanism of two strains interaction and
provide a new approach to investigate the inference of the
periodic infection rate on the coexistence of two strains. It is
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Figure 3: ,e simulated solution of model (1) with β1(t)/k1 � β2(t)/k2 � 3 + sin(t) and the initial conditions (a)(S(0), I1(0), I2(0)) �

(2, 1, 2) and (b)((S(0), I1(0), I2(0)) � (2, 2, 1).
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Figure 2: ,e simulated solution of model (1) under the conditions (a) β1(t)/k1 � 3 + sin(t) and β2(t)/k2 � 2.85 + 0.95 sin(t) and (b)
β1(t)/k1 � 2.72 + 0.91 sin(t) and β2(t)/k2 � 3 + sin(t).
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worth to mention that the analysis in this article can be
applied to the n-strain epidemic model with a periodic
infection rate and obtain similar results.
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