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0is research aims to improve autonomous navigation of coal mine rescue and detection robot, eliminate the danger for rescuers,
and enhance the security of rescue work. 0e concept of model predictive control is introduced into path planning of rescue and
detection robot in this paper. Sampling-Based Model Predictive Control (SBMPC) algorithm is proposed basing on the con-
struction of cost function and predictive kinematics model. Firstly, input sampling is conducted in control variable space of robot
motion in order to generate candidate path planning solutions. 0en, robot attitude and position in future time, which are
regarded as output variables of robot motion, can be calculated through predictive kinematics model and input sampling data.0e
optimum solution of path planning is obtained from candidate solutions through continuous moving optimization of the defined
cost function. 0e effects of the three sampling methods (viz., uniform sampling, Halton’s sampling, and CVT sampling) on path
planning performance are compared in simulations. Statistical analysis demonstrates that CVT sampling has the most uniform
coverage in two-dimensional plane when sample amount is the same for three methods. Simulation results show that SBMPC
algorithm is effective and feasible to plan a secure route for rescue and detection robot under complex environment.

1. Introduction

As an important tool for processing coal mine accidents,
rescue and detection robot can substitute rescuers to enter
the accident area for implementation of detecting and
rescuing. Real-time information can be transferred to rescue
command center rapidly. Rescue and detection robot can
provide scientific basis for the rescue decision, and the
rescue plan can be made as accurately as possible. 0erefore,
it has critical significance for safe production in coal mine
and can reduce the loss of public property and lives to
develop rescue and detection robot.

For recent years, a large number of research findings are
obtained in path planning which is the key technology of
robot to realize regional search. To some extent, path
planning is regarded as a synthesis of global planning and
local planning [1]. In practical application, the robot needs
to select an optimal path under some certain criteria such as

shortest path, minimal energy consumption, or time con-
suming at least. In the process of robot exploring along its
desired path, local planning is generally implemented
according to real-time information from sensor feedback,
and motion states are often adjusted for realization of real-
time obstacle avoidance.

Path planning method based on random sampling
has started in 1990 and originates from Randomized
Potential Planner (RPP) algorithm which is firstly pro-
posed by Barraquand and Latombe [2]. RPP is used for
solving the problem of local minimum in artificial po-
tential field method and improving planning efficiency in
high-dimensional space. Currently, there are three main
methods aiming at the problem of path planning for
mobile robot with multidegree of freedom, namely,
Probabilistic Roadmap Methods (PRM) algorithm [3],
Rapidly Exploring Random Tree (RRT) algorithm [4],
and Vector Field (VF) algorithm.
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0e main idea of PRM algorithm is to construct a
probabilistic roadmap through local planner firstly, then
implement global path planning on this roadmap, and finally
attempt to find a collision-free path with graph search al-
gorithm. PRM has the advantage of easy operation, but
random sampling points cannot be distributed uniformly in
the whole space due to limited sampling in practical ap-
plication. As a result, connectivity of roadmap is reduced,
especially for narrow channel environment, where PRM
often fails to find a feasible path. In order to solve this
problem, researchers propose many enhanced algorithms
for PRM. In [5], the coverage of a graph is defined as a
performance index of its optimality as constructed by a
sampling-based algorithm and an optimization algorithm is
proposed which can maximize graph coverage in the con-
figuration space. 0e simulation results confirm that the
roadmap graph obtained by the proposed algorithm can
generate results of satisfactory quality in path-finding tests
under various conditions.

0e main idea of RRT algorithm is to extend search tree
incrementally by browsing the state space in a rapid and
uniform way. 0is method proved to be probability com-
plete; namely, a collision-free path satisfying planning
conditions must be found if the amount of nodes is larger
than a certain value of threshold. In [6], a new method of
dynamic replanning is proposed, which is based on an
extended rapidly exploring random tree. An efficient
method of node sharing is applied to allow the multirobot
team to quickly develop path plans. Various experimental
results in both single- and multirobot scenarios show the
effectiveness of the proposed methods.

0e main idea of VF algorithm is similar to that of
potential field algorithm, which has been widely used as a
tool for path planning in the robotics community [7]. Vector
fields are different from potential fields in that they do not
necessarily represent the gradient of a potential [8]. Rather,
the vector field simply indicates a desired direction of travel
[9]. In [10], a method for accurate path following for
miniature air vehicles is developed. 0e method is based on
the notion of vector fields, which are used to generate the
desired course inputs to inner-loop attitude control laws.
Lyapunov’s stability analysis demonstrates asymptotic decay
of path-following errors in the presence of constant wind
disturbances. 0is method can be applied for path following
of straight-line and circular arcs effectively.

In addition to the above research findings, there are
many new methods proposed for path planning [11, 12]. In
[13], the theory of charged particles’ potential fields is uti-
lized by assigning a potential function for each individual
obstacle. 0e interaction of all scattered obstacles is inte-
grated in a scalar potential surface (SPS) which strongly
depends on the physical features of the mobile robot and
obstacles. 0e achieved results demonstrate a feasible, fast,
oscillation-free, and collision-free path planning of the
proposed method. In [14], a new method called laser sim-
ulator (LS) is proposed in order to solve the path planning
problem of a nonholonomic three-wheeled mobile robot
(WMR). 0e path planning and roundabout detection are
determined based on LS and sensor fusion of a laser range

finder, camera, and odometry measurements. Experimental
results show the capability of this proposed algorithms to
robustly drive the robot.

In the field of Model Predictive Control (MPC) appli-
cation, there are also successful cases which are worthy of
studying. In [15], nonlinear terminal sliding mode control
(TSMC) and linear MPC are combined to solve the robust
optimal three-axis attitude tracking problem of spacecrafts.
0e global stability and robust attitude tracking are guar-
anteed by this method. In [16], a disturbance rejection MPC
scheme is developed for tracking nonholonomic vehicle with
coupled input constraint and matched disturbances. 0e
whole system is input-to-state stable if no information about
the disturbance is available and can reach an offset-free
tracking performance if the harmonic frequencies of the
disturbance are known. In [17], MPC is used to model and
implement controllers for dynamic encirclement of UAVs
team. 0e contributions of this paper lie in the imple-
mentation of MPC to solve the problem of dynamic en-
circlement of a team of UAVs in real time and the
application of theoretical stability analysis to the problem.

In this paper, path planning is implemented through
Sampling-Based Model Predictive Control (SBMPC)
method combined with nonlinear kinematics model of
rescue and detection robot. In SBMPC method, cost func-
tion with the form used by Model Predictive Control (MPC)
[18] is adopted and input of control system is optimized.
Different from traditional numerical optimization, SBMPC
applies the method of objective-oriented optimization which
is widely used in robotics and artificial intelligence field. 0e
process of path planning through SBMPC algorithm is
deduced in this paper, and the selection of sampling
methods is also analyzed from the viewpoint of effect on
planning performance.

2. Design of Path Planning Based on SBMPC

2.1. Kinematics Model of Rescue and Detection Robot. In this
paper, rescue and detection robot is regarded as the research
subject. As shown in Figure 1, xoy denotes global reference
frame and xRCyR denotes local reference frame. C denotes
the center of robot mass, v(t) is robot forward speed, and
ω(t) is robot angular speed.

Kinematics model of rescue and detection robot [19] can
be described as

_x

_y

_θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

r · cosθ
4

r · cosθ
4

r · sinθ
4

r · sinθ
4

−
r

2l

r

2l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

_ϕ1

_ϕ2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, (1)

where (x, y) is the robot position in global reference frame
and θ is the angle deviation between local reference frame
and global reference frame. r is the diameter of motivation
wheel, l is the distance from left wheel to right wheel, _ϕ1 is
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the rotation speed of left wheel, and _ϕ2 is the rotation speed
of right wheel. In this paper, r is 0.5m and l is 0.8m.
Equation (1) can be expressed briefly as

_X � B · U, (2)
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Equation (2) is the state equation of robot motion. X is
the state variable, U is the control input variable, and B is the
control input matrix. In the process of path planning, robot
attitude and position is regarded as output variable of robot
motion, which can be defined as

Y � x y θ 
T
. (4)

0erefore, the output equation of robot motion is
expressed as

Y � X. (5)

Equations (2) and (5) are the kinematics model of rescue
and detection robot.

2.2. PredictiveModel ofMotionPlanning. Derivatives of x, y,
and θ at the time k can be calculated from equation (1) and
expressed as
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where _ϕ1(k) is the rotation speed of left wheel at the time k

and _ϕ2(k) is the rotation speed of right wheel at the time k.
x(k + 1), y(k + 1), and θ(k + 1) can be calculated through
integration and expressed as

x(k + 1) � x(k) + _x(k) · T, (9)

y(k + 1) � y(k) + _y(k) · T, (10)

θ(k + 1) � θ(k) + _θ(k) · T, (11)

where T is the sampling period.
Equations (6)∼(11) constitute the predictive model of

robot motion and can be used for calculating robot attitude
and position in future time through iterative computation.

2.3. Cost Function of Motion Planning. If Shannon’s sam-
pling constraints [20] are satisfied, the cost function of robot
motion planning based on SBMPC can be described as
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Variables in equation (12) should satisfy the following
inequality conditions; viz.,

Y(k + N) − G0
����

����≤ ε, (13)

Q(i)≥ 0,

S(i)> 0.
(14)

In equation (12), the term ‖Y(k + i + 1) − Y(k + i)‖Q(i)

represents the edge cost of planning path between the
current predictive output Y(k + i) and the next predictive
output Y(k + i + 1). 0e term ‖U(k + i) − U(k + i − 1)‖S(i)

represents the energy consumption in robot motion process.
In the constraint (13), G0 denotes the goal state which is used
for construction of the terminal constraint of path planning.
ε is a small positive number which represents the proximity
of robot output to the goal state. 0e constraint (13), which
reflects the requirement that robot should reach the target
G0 with the accuracy ε, is a key condition for ensuring the
convergence of planning algorithm. Q(i) and S(i) are the
orders of corresponding norms. 0erefore, the goal-directed
optimization is adopted here, and in this method, the goal is
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Figure 1: Rescue and detection robot in global reference frame.
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implicitly considered through the calculation of a rigorous
lower bound for the cost from a particular state to G0.

2.4. Principle of Motion Planning Based on Sampling.
Sampling-based motion planning algorithms include Rap-
idly Exploring Random Trees (RRTs) and randomized A∗
algorithms [21]. A common feature of these algorithms is
that they are applied in the output space of robot and used
for generating samples through various strategies. In es-
sence, as shown in Figure 2, sampling-based motion plan-
ning methods are applied by using sampling to construct a
tree that connects the root (initial state) with a goal region.

Sampling-based path planning algorithm is shown in
Figure 3.

Sampling-based path planning algorithm follows the
steps below.

Step 1. Initialization: G(V, E) represents a search graph
where V denotes the set of nodes and E denotes the set
of edges. During the initialization, V only contains start
node and E does not contain any edge.
Step 2. Node selection: select a node τ in V, which is
regarded as the current node.
Step 3. New edge generation: generate corresponding
routes Γs for all candidate nodes τnew in Cfree (the set of
candidate nodes). Γs satisfies the following constraints:

Γs(0) � τ,

Γs(1) � τnew.
(15)

If the route Γs does not exist for a certain candidate
node, select the next candidate node to generate its
corresponding route. Until above processing covers all
candidate nodes, then go to Step 4.
Step 4. New edge insertion: all the routes Γs generated in
Step 3 are regarded as new edges connecting the node τ
to the node τnew and incorporated to E.0e node τnew is
also incorporated to V if V does not contain τnew.
Step 5. Search for path planning solutions: start from
the current node τ in the graph G(V, E) and search for
the optimal edge as the best route for node refreshing;
meanwhile, the terminal node τnew of the optimal edge
is regarded as the starting node of planning path in the
next time.
Step 6. Return to Step 2. Repeat the above steps until
τnew arrives at the goal node or the path planning time
is over.
0e novelty of SBMPC method is mainly reflected in
three aspects, i.e., input sampling, implicit state grid,
and goal-directed optimization, which are described in
the following parts.

2.5. Input Sampling. 0ere are two primary disadvantages to
use output sampling commonly done in traditional sampling
methods. 0e first limitation is that the algorithm must
determine the most ideal node to expand [22]. 0is selection

is typically made based on the proximity of nodes in the
graph to a sampled output node and involves a potentially
costly nearest-neighbor search. 0e Local Planning Method
(LPM) presents the second and perhaps more troublesome
problem, which is determining an input that connects a
newly sampled node to the current node [23]. 0is problem
is essentially a two-point boundary value problem that
connects one output or state to another. 0ere is no
guarantee that such an input exists. Also, for systems with
complex dynamics, the search itself can be computationally
expensive, which leads to a computationally inefficient
planner. In contrast, when the input space is sampled as
proposed in this paper, the need for a nearest-neighbor
search is eliminated, and the LPM is reduced to the inte-
gration of a system model, and therefore, only outputs that
are achievable for the system are generated.

In order to visualize this concept, consider a robot that
has position (x, y) and orientation θ, which are the outputs
of the robot kinematics model. 0e model restricts the at-
tainable outputs. All the dots in Figure 4 are output nodes
obtained from sampling the output space even though only
the dots on the mesh surface can physically be achievable by
the robot. 0ere are a larger number of dots (sampled
outputs) in the output space that do not lie in the achievable
region (mesh surface).0ismeans those sampled outputs are
not physically achievable, so traditional sampling-based
methods would have to finish the search in the whole output
space. 0is leads to an inefficient search that can substan-
tially increase the computational time of the planner. In
essence, sampling in the input space leads to more efficient
results since each of the corresponding dots in the output
space is allowed by the model.

2.6. Implicit State Grid. Although extension from several
existing sampling-based paradigms can lead to input sam-
pling algorithms like SBMPC, input sampling has not been
used in most planning research.0is is most likely due to the
fact that input sampling is seen as an inefficient method
because it can result in highly dense samples in the output
space since input sampling does not inherently lead to a

Goal

Node

Root

Edge

Figure 2: Diagram of tree connecting the root with a goal region.
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uniformly discrete output space, such as a uniform grid.0is
problem is especially evident when encountering a local
minimum problem associated with the A∗ algorithm [24],
which can occur when planning in the presence of a large

concave obstacle while the goal is on the other side of the
obstacle.0is situation is considered in depth for discrete 2D
path planning in the work of this paper, which discusses that
the A∗ algorithm must explore all the states in the neigh-
borhood of the local minimum, shown as the shaded region
of Figure 5, before progressing to the final solution.0e issue
presented to input sampling methods is that the number of
states within the local minimum is infinite due to the lack of
a discrete output space.

0e concept of an implicit state grid is introduced as a
solution to both of the challenges generated by input
sampling. 0e implicit grid ensures that the graph generated
by the SBMPC algorithm is constructed such that only one
active output (state) exists in each grid cell, limiting the
number of nodes that can exist within any finite region of the
output space. In essence, the implicit state grid provides a
discrete output space. It also allows for the efficient storage
of potentially infinite grids by only storing the grid cells that

Achievable outputs 

50

0θ°

–50
–0.4

–5

5

0

0.4

–0.2
0.2

0
Y (m)

X (m)

Figure 4: Potential problems in output space sampling.

Initialization of
G (V, E)

Select current node τ

Obtain candidate node τnew,
through input sampling

For τ and τnew,
does the route satisfying the

constraints exist?

Does above processing
cover all the candidate

nodes?

Select the next candidate
node τnew, to generate its

corresponding route

N

N
Insert new nodes and new,

routes to G (V, E)

Search for the optimal path
planning solution in

G (V, E)

Y

Y

Regard τnew, as the starting
node in the next time

Figure 3: Diagram of sampling-based path planning algorithm.
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contain nodes, which is increasingly important for higher-
dimensional problems.

As shown in Figure 6, a, b, and c denote the edge length
of planning path. Node τ1 is selected for expansion after
which the lowest-cost node is τ3. 0e implicit state grid then
recognizes that τ2 and τ3 are close enough to be considered
the same and updates the path to their grid cell; then the
modified planning path is c since c< a + b.

2.7. Goal-Directed Optimization. 0ere is a class of discrete
optimization techniques that have their origin in graph
theory and have been further developed in the path planning
literature. In this study, these techniques will be called goal-
directed optimization and refer to graph search algorithms
such as Dijkstra’s algorithm [25], A∗ algorithm, D∗ algo-
rithm [26], and LPA∗ algorithm [27]. Given a graph, these
algorithms find a path that optimizes some cost of moving
from a start node to some given goal. In contrast to discrete
optimization algorithms such as branch-and-bound opti-
mization, which is used for solving continuous optimization
problems, the goal-directed optimization methods are in-
herently discrete and usually used for real-time path
planning.

Although not commonly recognized, goal-directed op-
timization methods are capable of solving control theory
problems for which the ultimate objective is to plan an
optimal trajectory and control inputs to reach a goal (or set
point) while optimizing a cost function. Hence, graph search
algorithms can be applied to terminal constraint optimi-
zation problems and set point control problems. To observe
this, consider the tree graph of Figure 2. Each node of this
tree can correspond to a system state and the entire tree may
be generated by integrating sampled inputs to a system
model. Assume that the trajectory cost is given by the sum of
corresponding edge (i.e., branch) cost, where each edge cost
is dependent not only on the states it connects but also on
the inputs that are used to connect those states. 0e use of
the system kinematics model can be viewed simply as a
means to generate the directed graph and associated edge
cost. Figure 7 shows the block diagram of the optimal node
selection based on SBMPC.

2.8. Rescue and Detection Robot Path Planning Based on
SBMPC. In this section, path planning algorithm based on
SBMPC is presented. Firstly, variables used in this algorithm
are defined. Sampling-Based Model Predictive Optimization
(SBMPO) is similar to LPA∗ algorithm, and the difference
between the two methods lies in the way neighborhood
solution is generated. In this paper, states for future time are
generated by introducing predictive model of robot motion
with certain constraints shown in Part B of Section 2.

SBMPC operates on a dynamic directed graph G which is
a set of all nodes and edges currently in the graph. Node τ
denotes the motion states of rescue and detection robot,
namely, τ � [x, y, θ]T. SUCC(τ) represents the set of suc-
cessors (children) of node τ ∈ G while PRED(τ) denotes the
set of all predecessors (parents) of node τ ∈ G. 0e cost of
traversing from node τ to node τ′ ∈ SUCC(τ) is denoted by
c(τ, τ′), where τ satisfies 0< c(τ, τ′)< 1. 0e optimization
component of SBMPC is SBMPO which is an algorithm that
determines the optimal cost (i.e., shortest path, shortest time,
least energy, etc.) from a start node τstart ∈ G to a goal node
τgoal ∈ G. 0e start distance of node τ ∈ G is given by g∗(τ)

which is the cost of the optimal path from the given start
node τstart to the current node τ. 0is paper will focus on
determining the shortest path through SBMPC algorithm.

SBMPC maintains two estimates of g∗(τ). 0e first
estimate g(τ) is essentially the current cost from τstart to the
node τ while the second estimate rhs(τ) is a one-step look-
ahead estimate based on g(τ′) for τ′ ∈ PRED(τ) and pro-
vides more information than the estimate g(τ). 0e rhs(τ)

value satisfies

rhs(τ) � 0, if τ � τstart, (16)

rhs(τ) � min
τ′∈PRED(τ)

g τ′(  + c τ′, τ( ( , otherwise (17)

A node τ is locally consistent if g(τ) � rhs(τ) and locally
inconsistent if g(τ)≠ rhs(τ). If all nodes are locally con-
sistent, then g(τ) satisfies equation (17) for all τ ∈ G and is
therefore equal to the start distance. 0is enables the ability
to trace the shortest path from τstart to any node τ by starting
at τ and traversing to any predecessor τ′ that minimizes
g(τ′) + c(τ′, τ) until τstart is reached.

Goal
τ1

τ2 τ3

c b

Start
a

Figure 6: Necessity for introducing implicit state grid.

Goal

Figure 5: Diagram of implicit state grid.
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To facilitate fast replanning, SBMPO does not make
every node locally consistent after an edge cost changes and
instead it uses a heuristic function h(τ, τgoal) to focus the
search so that it only updates g(τ) for nodes necessary to
obtain the shortest path.0e heuristic is used to approximate
the goal distances and must follow the triangle inequality
h(τgoal, τgoal) � 0 and h(τ, τgoal)≤ c(τ, τ′) + h(τ′, τgoal) for
all nodes τ ∈ G and τ′ ∈ SUCC(τ). SBMPO employs the
heuristic function along with the start distance estimates to
rank the priority queue containing the locally inconsistent
nodes and thus all the nodes that need to be updated in order
for them to be locally consistent. 0e priority of a node is
determined by a two-component key vector

key(τ) �
k1(τ)

k2(τ)
  �

min(g(τ), rhs(τ)) + h τ, τgoal 

min(g(τ), rhs(τ))

⎛⎝ ⎞⎠,

(18)

where the keys are ordered lexicographically with the smaller
key values having a higher priority.

0e SBMPC algorithm contains three main functions:
SBMPC, SBMPO, and Neighbor Generation. 0e main
SBMPC algorithm follows the general structure of MPC
where SBMPO repeatedly computes the optimal path be-
tween the current state τcurrent and the goal state τgoal. After a
single path is generated, τcurrent is updated to reflect the
implementation of the first control input and the graph G is
updated to reflect any system changes. 0ese steps are re-
peated until the goal state is reached.

0e second algorithm SBMPO repeatedly generates the
neighbors of locally inconsistent nodes until τgoal is locally
consistent or the key of the next node in the priority queue is
not smaller than key (τgoal). 0e node τbest with the highest
priority (lowest key value) is on top of the priority que. 0e
algorithm then deals with two potential cases based on the
consistency of the expanded node τbest. If the node is locally
overconsistent, g(τ)> rhs(τ), the g-value is set to rhs(τ)

making the node locally consistent. 0e successors of τ are
then updated.

0e node updating process includes recalculating rhs(τ)

and key values, checking for local consistency and either
adding or removing the node from the priority queue

accordingly. For the case when the node is locally under-
consistent, g(τ)< rhs(τ), the g-value is set to∞making the
node either locally consistent or overconsistent. 0is change
can affect the node along with its successors which then goes
through the node updating process.

0e Neighbor Generation algorithm determines the
successor nodes of the current node. In the input space, a set
of quasirandom samples are generated that are then used
with the predictive model of robot motion to calculate a new
set of outputs (states) with τcurrent being the initial condition.
0e branching factor Nb determines the number of paths
that will be generated. 0e path is represented by a sequence
of states τ(k) for k � k1, k1 + Δk, . . . , k2, where Δk is the
model step size. 0e set of states that do not violate any state
or obstacle constraints is called τfree. If τ(k) ∈ τfree, then the
new neighbor node τnew and the connecting edge can be
added to the graph. If τnew ∈ STATE GRID, then the node
currently exists in the graph and only the new path to reach
the existing node needs to be added.

3. Simulation

In order to verify the effectiveness of SBMPC algorithm
proposed in this paper, path planning simulation of rescue
and detection robot is conducted under the conditions of
uniform sampling [28], Halton’s sampling [29, 30], and
Centroidal Voronoi Tessellation (CVT) sampling [31, 32],
respectively. Simulation results show that local minimum
value is avoided successfully by using SBMPC algorithm.
Specific conditions relating to simulation are described as
follows.

3.1. Uniform Sampling. Figure 8 shows the path planning
simulation of SBMPC algorithm with uniform sampling,
where obstacles are denoted by red circles and robot di-
mensions are considered for the safety of obstacle avoidance.
In Figure 8, the start position is (1, 1) and the goal position is
(19, 19). 0e sample size is 441 at each time k. 0e total
length of planning path in Figure 8 is 30.15m. Time con-
sumption from start position to goal position is 150.75 s.
Figure 9 shows the variation of direction angle θ during the
process.

Input
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model of
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node
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Robot
control
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Total cost
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of planning
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output

Robot
current
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control

increment
Δτ

Current node
updating τ = τ∗

Optimal
node τ∗
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and
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Figure 7: Optimal node selection based on SBMPC.
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It can be seen from Figures 8 and 9 that the direction
angle varies sharply when the sample time is near 15 sec and
30 sec. 0e simulation result of uniform sampling is not
optimal although robot can avoid all the obstacles and attain
the goal position along the planning path.0e reason for this
problem is characteristic information of control input space
cannot be extracted completely and accurately through
uniform sampling and the candidate solutions are not se-
lected within the global scope of solution space, which leads
to the nonideal planning path.

3.2. Halton’s Sampling. Figure 10 shows the path planning
simulation of SBMPC algorithm with Halton’s sampling. In
Figure 10, the start position is (1, 1) and the goal position is
(19, 19). 0e sample size is 441 at each time k. 0e total
length of planning path in Figure 10 is 26.82m. Time
consumption from start position to goal position is 134.10 s.
Figure 11 shows the variation of direction angle θ during the
process.

It can be seen from Figures 10 and 11 that the planning
path based on SBMPC algorithm with Halton’s sampling is
not smooth but the variation of direction angle is relatively
steady compared with the simulation of uniform sampling.
0e robot can avoid all the obstacles and attain the goal
position along the planning path. Since the distribution
distance between any two points of Halton’s stochastic se-
quence is not limited and the sample point cannot be

inserted randomly between any two points of uniform
sampling sequence, the point position information obtained
by Halton’s sampling is more comprehensive and the point
coverage is more reasonable than uniform sampling when
the sample size is same.

3.3. CVT Sampling. Figure 12 shows the path planning
simulation of SBMPC algorithm with CVT sampling. In
Figure 12, the start position is (1, 1) and the goal position is
(19, 19). 0e sample size is 441 at each time k. 0e total
length of planning path in Figure 12 is 26.18m. Time
consumption from start position to goal position is 130.90 s.
Figure 13 shows the variation of direction angle θ during the
process.

It can be seen from Figures 12 and 13 that the planning
path based on SBMPC algorithm with CVT sampling is
more smooth and the variation of direction angle is more
steady compared with the simulation of Halton sampling.

As shown in Table 1, fitting performances of sampling
points generated by uniform sampling, Halton’s sampling,
and CVT sampling are compared and analyzed through
fitting toolbox inMATLAB software. SSE denotes the sum of
squares for error between fitting data and corresponding
original data. SSE indicates better fitting performance when
it approaches zero. RMES denotes the square root of SSE
mean, and R-square denotes the certain coefficient, which
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Figure 11: Curve of direction angle while Halton’s sampling.
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Figure 8: Simulation of SBMPC algorithm with uniform sampling.
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Figure 10: Simulation of SBMPC algorithm with Halton’s
sampling.
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approaches 1 when fitting performance is improved. 0e
plane generated by CVT sampling points is closest to the
original plane, and this demonstrates that CVT sampling
points can accurately reflect the shape information of a
measured plane. 0erefore, the performance of SBMPC
algorithm is more ideal when the control input variable is
sampled through CVT method.

Figure 14 shows the path planning simulation of SBMPC
algorithm while the robot is encountering U-shaped ob-
stacle. In Figure 14, the start position is (16.5, 11.5) and the
goal position is (14, 27.5). 0e sample size is 441 at each time
k. 0e total length of planning path in Figure 14 is 34.53m.
Time consumption from start position to goal position is
172.65 s. Figure 15 shows the variation of direction angle θ
during the process.

It can be seen from Figures 14 and 15 that the robot can
avoid U-shaped obstacle safely and reach the goal position
quickly through path planning based on SBMPC algorithm.

Figure 16 shows the path planning simulation of SBMPC
algorithm while the robot is encountering cross obstacle. In

Figure 16, the start position is (5, 2.5) and the goal position is
(7.5, 31). 0e sample size is 441 at each time k. 0e total
length of planning path in Figure 16 is 41.39m. 0e time
consumption from start position to goal position is 206.94 s.
Figure 17 shows the variation of direction angle θ during the
process.

Table 1: Fitting performance comparison of three methods.

Uniform Halton CVT
SSE 0.06125 0.04307 0.01518
RMES 0.02144 0.01682 0.01256
R-square 0.9991 0.9994 0.9999
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Figure 12: Simulation of SBMPC algorithm with CVT sampling.
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Figure 14: Simulation of SBMPC algorithm with U-shaped
obstacle.
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Figure 16: Simulation of SBMPC algorithm with cross obstacle
(sample size is 441).
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Figure 18 shows the path planning simulation of SBMPC
algorithm while the robot is encountering cross obstacle. In
Figure 18, the start position is (5, 2.5) and the goal position is
(7.5, 31). 0e sample size is 1681 at each time k. 0e total
length of planning path in Figure 18 is 40.18m. Time
consumption from start position to goal position is 200.93 s.
Figure 19 shows the variation of direction angle θ during the
process.

Figures 16 and 18 demonstrate that the robot can avoid
cross obstacle safely through path planning based on
SBMPC algorithm. 0e planning path in Figure 18 is more

smooth than the planning path in Figure 16. It can be seen
from the total length of planning path and time con-
sumption from start position to goal position that path
planning performance is improved when the sample size
increases.

4. Conclusion

Path planning principle of rescue and detection robot based
on SBMPC is mainly analyzed in this paper. SBMPC al-
gorithm and its detailed steps for implementation are
specified by analyzing construction of cost function and
predictive model.

Simulation results prove the effectiveness of this algo-
rithmwhen it is applied in the case of encountering intensive
obstacles, U-shaped obstacle and cross obstacle. 0e effects
of three sampling methods (viz., uniform sampling, Halton’s
sampling, and CVT sampling) on path planning perfor-
mance are compared. Statistical analysis demonstrates that
CVT sampling points have the most uniform coverage in
two-dimensional plane when the amount of sampling points
is the same for the three methods. If path planning of rescue
and detection robot is designed through SBMPC algorithm
proposed in this paper, the optimal path can be obtained
when the control input variable is sampled through CVT
method.

In this paper, SBMPC algorithm is mainly used for path
planning research and its application of rescue and detection
robot. If this algorithm becomes maturer in algorithm
structure and process mode, it can also be applied for path
planning of domestic service robot and used for life im-
provement in the future.
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