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We apply the fixed point index to obtain positive solutions of a nonresonant periodic boundary value problem for a third-order

differential equation u" + p*u = A f (u).

1. Introduction

Third-order differential equations arise in many areas of
physics and engineering [1] and describe, for example,
deflection of a curved beam having a constant or varying
cross section, a three-layered beam, and electromagnetic
waves. Boundary value problems for third-order differential
equations have been studied by many authors, for example,
[2-9] just to name a few. In this paper, we consider a well-
known [10, 11] boundary value problem:

u () +put) =Af (), te(0,2m), (1)

u?©) =u?@n), i=01,2 )
We improve the results of [10, 11] and obtain positive so-
lutions using the fixed point index. The solutions to (1) and
(2) will be sought in the Banach space % = CJ[0,2n]
endowed with the max-norm. In order to obtain positive
solutions, we apply the fixed point theorem of Guo and
Lakshmikantham [12] stated in Section 2.
Green’s function of u' (t) + pu(t) = 0 with u(0) = u(27m)
is
PGt 0<s<t<2m,

G (t,s) = 5 (3)
e —1 eP 1), 0<t<s<2m

Green’s function of u" (t) —pu' (t) + p?u(t) =0 with
u®0)=u?2n),i=0,1, is

2
t’ =

G (6:9) \3p(e™ + e ™ — 2 cos \/3mp)
gi(t—s), 0<s<t<2m, @

g, (s—1), 0<t<s<2m,

where
3
g, (x) = e(l/z)px<(e"p — cos V37p)sin %px
(5)
+sin V37p cos ?px),
3
g, (x) = e(m)px((e”" — cos V3mp)sin %px

(6)

3
+ sin \/gnp cos %px),

where x € [0,27]. To ensure that G,(t,s)>0, we need
p € (0,1/+/3).

We maximize g, and g,. Introduce, for convenience,
A(p) = e ™ —cos V3mp,
B(p) = sin \/gﬂp, (7)
C(p) = €™ - cos V3mp.

We formally find that g; (x;) = 0 if
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2
~1V3B(p) - A(p)
x; (p) = \/— cot V3A(p) + B(p) (8)
provided x; € (0,27).
Note that
m A0 1
p%* B(p) 3
(9)
Alp)
p%(l/\/_) B(P)
Also
A\ o AB- ”P(sm\/_ﬂp+\/§cosx/—r[p)
<§) (p) =7 sin®+/37p (10)
Denoting

a(p) = V3 —e ™ (sin V3mp + V3 cos V3mp), (11)

we have o' (p) =4me ™ sin\3np>0, p € (0,1/+/3), and
«(0) = 0 and we have (A/B)' (p) > 0. Hence,
V3B(p) - A(p)
P =
P = A+ B(p)
is a decreasing function on (0, 1//3), llmpHW(/)(p) = 00,
and lim, 5y ¢(p) = —1/4/3. We have

lim icotflv_B(p)—A(p)zét_n
p—VT) V3p  \3A(p)+B(p) 3’

(12)

Iim  x,(p) =
p—(1/V3)” !

. ) 2
1 = lim —=—cot
Jim xq (p) = limy NETo ¢(p)

2 . d(p
- %PIE})* 1+ ¢%(p)
_2 o A(PB() - B (PA(p)
T VB0 A%(p) + B2 (p)
_2 V3 — e ™ (sin V37p + V3 cos \/37p)
T3 p—>0* e™2m + 1 — 2e~™ cos \/3mp

) 2sin /37p
\/—p—>0* cosx/_np+\/§sm\/—np—e np

lim 2+/3 cos \3mp
\/—p—>0*3cosx/—ﬂp V3 sin \3mp + e

=TI
(13)
It is a lengthy exercise to verify that x, (p) is increasing
on (0,1/4/3). We infer
4
<X (p)<?ﬂ. (14)

It follows from (8) that
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_ V3B-A
PN T A B -
43 \3A+B
P A B

In fact, gi' (x,) <0; thus,

3 3
g, (x) < g, (x,) = V2P (A sin %px1 + Bcos %pxl)

SR

(16)
By a similar argument, one can show that
g, (x) < g, (x,), where
1V3C(p) - B(p) (zn)
= € , 17
x, (p) \/gpan B +Clp <\ (17)

so that

3 3
g (x)<g,(x,) =€ 1/2)‘0"2<C sin %px2 + Bcos gpx2>

e
(18)

We are in position to state and prove our first lemma.

Lemma 1. Green’s functions G, (t,s) and G, (t,s) satisfy
27mp

e
M, = Gy (t,5) = 5 19
! tsrel}(a)DZ(n] ( S) 2mp ] ( )
1
= G, (1, = 2
™ tsrer%g);n] ( S) e — 1 ( 0)

1
\/e”f’ +e7 — 2 cos \/3mp (21)

. max{e(I/Z)p (xl—n)’ e—(l/Z)p (n—xz) },

M, = max G,(t,s
27 selo2m] 2(69) =

2sin \/3mp
m, = max G,(t,s .
taclo2n] 2(hs) = \3p(e™ + e ™ — 2 cos \/3mp)
(22)
Proof. Identities (19) and (20) are easy to check.
The following identities are useful:
A*+ B = e —2¢7 cos \Bmp + 1,
C*+ B =™ - 2¢™ cos \3mp + 1,
. (23)
A+ B =¢7"(C*+ B),

e +e™ ~2cos \V3mp = eﬁr”(C2 + Bz).



Discrete Dynamics in Nature and Society

Then, using (16) and (18), we have
2
V3p (e + e~ — 2 cos \/3mp)

max G,(t,s) =
t,s€[0,27]

-max{g; (x,), g, (x,)}

2P
= mmax{gl (1), 92 (x,)}

e"r
p(C*+ B?)

e PP ET R )

max{e(llz)"x1 VA? + B2,

e
=—————m
pVC? + B?

e(l/2)7rp

{e(1/2)px1—pﬂ, e—(1/2)px2}

p\/e”f’ + e — 2 cos \37mp

. max{e(l/Z)PxFP”, e*(l/z)sz}

1
p\/e”f’ +e 7 — 2 cos \/3mp

. max{e(l/Z)p (Xl—ﬂ), e(1/2)p (n—xz) })

(24)

where x, and x, are given by (8) and (17), respectively. In
addition,

min g, (x) = min{g, (0), g, (2m)} = sin V3mp

x€[0,27]

3
Hence,
2sin \/37p
min G, (t,s) = . 26
tselo2n] (&) V3p (e + e — 2 cos \/3mp) (26)

Observe that (21) and (22) are exact and improve the

corresponding estimates stated in Lemma 3 of [10], namely,
2sin V3mp - 2

\V3p (e + 1) ~ \/3psin \3mp’

Indeed, (e™ +1)*>e™ +e ™ —2cos \V3mp, so (22)
improves the first inequality. From (14) and (17), it is clear
that

max{e(I/Z)p (xl—ﬂ)) e(l/Z)p(n—xz) } < e(1/2)r[p’

<G, (t,s) (27)

max{e (12)p (x,-7) ,e(172)p (m-x,) }

\/e”P +e™ — 2 cos \3mp

1
<
\/ 1 + e 2% — 2¢77 cos \/3mp

1 2
< . >
\/(e‘ " — cos \/3mp)’ + sin?\/37p V3 sin V37p
(28)

that is, (21) is preferred to the constant in the second
inequality.

Now, Green’s function of u (t)+ pPu(t) =0,
u®(0)=u?(2n),i=0,1,2, is determined from (3)-(6) by

2
G(t,s) = J G, (t,7)G, (1,s)dr = L{H, (t,s) + L,H, (t,5),
0

(25) (29)
= min 0), 2m) = min X).
192(0), g, @m} = min g, (x) where
3 3
e(l/z)”(ts)<sin<\/2—p(t -s)— Z) — e sin(\/z—p(t —-s—2m) — Z)), s<t,
H1 (t> S) =
3 3
e(l/z)”(t”m(sin(gp(t —s+2m) - g) — e sin(%p(t —s) - %)), t<s,
AR s<t,
H,(t,s) = (30)
ep(s—t—Zn) t<s,
2
L

" 3p2(1 + €2 — 2e™ cos \3mp)’

1
L=
27 3p2(1 - e 2m)



One can find (29) in [11]. The structure of (29) is too
complex to be analyzed the same way as G, (t, s). Instead, by
Lemma 1,

2 2 M
G(ts) = I G, (t,1)G, (1, s)drSMZJ Gyt vydr ==,
0 0

(31)
and, similarly,
m
G(t,5)>— (32)
P
Also,
2 2 M
G(t,s) = j G, (t,1)G, (1, s)dr < M, J Ga(t v)dr = =21
0 0
G(t,s)> %.
(33)
Thus,

1 I .
Emax{ml,pmz} =m<G(t,s)<M = /?mm{Ml,pMz}.

(34)
Comparing m, to pm, and M, to pM,, respectively, we find
that the constants “compete” and we cannot simplify (34).
Finally, note that Theorem 2.6 in [11] contains similar es-
timates only for 0<p< (2/3/3) while (34) is fulfilled for
0<p< (1/4/3).
In the next section, as an application of (34), we obtain a
positive solution of (1) and (2). O

2. Main Results

Assume that (H,) f: [0,00) — [0, 00) is continuous and
A>0.
It is clear that the map T: % — & defined by

Tu(t) =2 rﬂ G(t,s) f (u(s))ds, (35)
0

is completely continuous. Define

m
@ = {u € B u(t) 2M||u||}. (36)

Obviously, € is a cone in 9. By (34), T: € — ¥ and
u € P is a solution of (1) and (2) if u € A is a fixed point of
T.
Let
Gr ={u € G: |lul <R},

(37)
0%, ={u € €: |lul = R.

We apply the following theorem [12].

Theorem 1. Let 9B be a Banach space. Assume that
T: €, — € is completely continuous such that Tu#u for
u €0%,.

(Ap) If ITull = |ull for u €0F,, then i(T,%,,¥) = 0.
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(A2) If |Tull < llull for u €0€,, then i(T,€,,6€) = 1.

We will restrict our attention to the case.

(Hy) foofeo#0, where f,=Ilim, ,f(x)/xand
foo=lim, _  f(x)/x.

Recall that
2 1
J G(t,s)ds = — (38)
0 P

If there exists § > 0 such that f (x) > dx, then for u € G,

Tu(t) = A Jzn G(t,s) f (u(s))ds
0

2
>0 J G(t, s)u(s)ds
0
B (39)

m
=100 JO G(t, s)ds|ul

m
= AM7I)3||”||-

Similarly, if there exists § > 0 such that f (x) <yx, then,
for u € 6,

Tu(t)=A rﬂ G(t,s)f (u(s))ds
0

2
<y Jo G(t,s)u(s)ds
(40)

2
<My J G (t, $)ds]lu
0

= A%||u||.

From these inequalities, by Theorem 1, we have the following
result.

Theorem 2. If (H,) and (H,) are satisfied, then (1) and (2)
have at least one positive solution provided:

Mp? P’
Ae (mmax{foo,fo}’min{foo’fo}). )

Proof. Consider f_ > f,. Let f. >e€>0 be such that

Mp3 p3 )
Ae , : (42)
(m(foo_e) f0+€
There exists R, <0 such that f(x)<(f,+e)x,

x € [0,R], thatis, f(u(£))< (fy+eu(t),ue B%Rl. Hence,
1

ITull <A(f, + e); lull <llull, v €€y (43)

There exists R >R, such that f(x)> (f,, —€)x, x>=R.

Let R, = max{2R;, MR/m}. Then, u(t)> (m/M)l|lull >R,
u €0%y,. As above, for u €0y ,
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m
ITull 2A(f o — €) MpP lfeell > [lael]. (44)

It follows that i (T, Cp,€) =1 and i (T, Cr,» €) =0 so that
i(T, ﬁRZ/?Rl, %) =-1, that is, T has a fixed point in
Cr,/Cr,-

The case f, < f, is handled similarly. O
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