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Financial extreme jumps in asset price may propagate across stock markets and lead to the market-wide crashes, which severely
threatens the stability of the financial system. In order to analyzing the contagion features of jump tail risk, this paper proposes a
mutually exciting contagion model based on Hawkes process with intraday high frequency data. We use a simple two-stage method
that first extracts the jump component nonparametrically from the high frequency data and thenmodels the intraday jump tail using
mutually exciting Hawkes process. Moreover, we take both the occurrence time andmagnitude of jump into account inmodeling the
conditional intensity of Hawkes process.,e proposedmethod is applied to the five-minute high frequency data of the Chinese stock
market. ,e empirical results show that, for the two main Chinese stock markets, only background intensity is significant in the
Shanghai stock market, while mutually exciting effect is significant in the Shenzhen stock market. Both the location and size of jump
in the Shanghai stock market have significant stimulation to the next occurrences of jump in the Shenzhen stock market. Fur-
thermore, the proposed model performs very well in predicting the future jump tail events.

1. Introduction

It is well recognized that the financial asset returns are not
normally distributed, but instead exhibit more slowly
decaying and asymmetric tails. Numerous studies have shown
that these fatter tails may be attributable to stochastic volatility
and/or occasionally large absolute price changes, called
“jumps” in the underlying asset price process. With the
availability of reliable financial high frequency data over the
last two decades, many closer research studies on the dy-
namics of financial asset prices have documented the presence
of jumps; see [1–6]. While both components can account for
the extreme tail behavior, they have different mechanisms and
further have very different implications on pricing and risk
management, as explored by Bollerslev and Todorov [7].

In contrast to the numerous studies on tail risk resulting
from stochastic volatility, there is less work to study the jump
tail risk. However, the recent financial crisis has further
spurred the interest of studying the jump tail events. Bol-
lerslev et al. [8] first used the extreme value theory to study the

tail distribution of jumps and the dependence of jumps with
high frequency data. ,eir research reveals a strong degree of
tail dependence between the market-wide jumps and the
systematic jumps in individual stocks. Aı̈t-Sahalia et al. [9]
also pointed out that the jump occurred in one market may
propagate over time and spread to other markets as well.,ey
first used the Hawkes process to model the self-exciting and
mutually exciting features of jumps and then established a
class of jump contagion asset pricemodel.,e proposed jump
contagion model is then applied to the problems of derivative
pricing [10] and portfolio investment [11]. In addition, many
studies also consider the self-exciting features of jump in the
problems of options pricing [12] and volatility risk premium
modeling [13]. However, these econometric analysis of jump
transmission is often conducted using low sampling fre-
quencies, such as daily or lower. As many researchers pointed
out, the real price paths of many financial assets change fast at
the microstructure level, especially in periods of financial
crisis, and moreover, the tail-type jump events tend to occur
more frequently at the intraday frequency, rather than daily or
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lower frequencies [14–16]. Hence, combined with the
methods on jumps with high frequency data, this paper
proposes a simple two-stage method to model the jump
contagion at the intraday frequency. We first use the non-
parametric method to identify the intraday jump series with
high frequency data and then combine the mutually exciting
Hawkes process and peaks-over-threshold (POT) approach to
construct a mutually exciting jump tail contagion model. By
using the identified jump series at high frequency, we can
focus on studying its self-exciting and mutually exciting
features at the intraday frequency.

In comparison with the numerous research studies related
to jump risk on developed financial markets, there is limited
consideration on emerging markets. It is well known that
stock returns in emerging markets usually exhibit different
characteristics, such as higher volatility, fatter tails, and more
sudden shifts. ,erefore, jumps in emerging markets may be
more frequent, and the ways in which they transmit among
different markets may differ from developed markets. With
the enormous growth in the past decades, the Chinese stock
market has become a more and more influential emerging
market among the world stock markets. Hence, the proposed
method is applied to the Chinese stock market. We explore
the contagion mechanism of the jump tail between the two
stock markets in China’s mainland: the Shanghai stock
market and Shenzhen stock market based on the proposed
bivariate mutually exciting jump contagion model.

Our research makes three differences from the existing
literature. First, by employing Hawkes process, what we really
care about is not the continuous risk caused by volatility, but
the contagion features of jump tails or to say extreme jump
risks. Second, instead of extending the existing asset price
models with mutually exciting jump component, we use a
simple nonparametric method to separate jump component
first and then focus on modeling the jump tail contagion,
which allows us to study the contagion feature of jump at the
intraday frequency. ,ird, in the modeling of the conditional
intensity of Hawkes process, we consider the stimulation
effects of both the jump magnitude and occurrence time.

,e rest of this paper is organized as follows. Section 2
presents the extraction method of jump in asset price with
high frequency data and proposes the mutually exciting
jump tail contagion model. ,e maximum likelihood esti-
mation and goodness of fit of the model are further dis-
cussed. Section 3 presents the empirical analysis. Section 4
concludes the paper.

2. Mutually Exciting Jump Tail
Contagion Model

2.1. Extraction of Jump with High Frequency Data.
Assume that the efficient logarithmic price p

(j)
t of the jth

asset defined on a filtered probability space (Ω, F, (Ft)t≥0,
P) evolves as

dp
(j)
t � b

(j)
t dt + σ(j)

t dWt + dJ
(j)
t , j � 1, 2, . . . , M, (1)

where W � (Wt) is an F-adapted standard Brownian
motion. ,e drift b(j) � (b

(j)
t ) and the volatility σ(j) � (σ(j)

t )

are progressively measurable processes which guarantee that
(1) has a unique, strong solution, which are adapted and
right continuous with left limits (càdlàg) processes. J(j) �

(J
(j)
t ) is a pure jump process.
From the theory of high frequency data analysis, we can

extract the jump component by consistently estimating the
quadratic variation (QV) and the integrated volatility (IV) of
price process. Considering that there are T trading days, for
simplicity, assume that on the time horizon [0, T], the
observations are equally spaced. On each trading day, there
are totally n discrete observations of log-return. Hence, the
realized volatility (RV) and the bipower variation (BV) on
day t are given as follows:
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(2)

where Δn
i p(j) represents the log-return of the jth asset on the

time interval [(i − 1)/n, i/n], i.e.,

Δn
i p

(j)
� p

(j)

(i/n) − p
(j)

((i−1)/n). (3)

Barndorff-Neilsen and Shephard [1, 2] demonstrated
that RV and BV converge to quadratic variation (QV) and
integrated volatility (IV), respectively, when the time in-
terval is small enough.

To eliminate the intraday effects of high frequency
volatility, we adopt theTOD statistics proposed by Bollerslev
et al. [8]:
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it � (t − 1)n + i, i � 1, 2, . . . , n,

(4)
where I(·) is an indicator function, and τ and ω are constants
satisfying τ > 0,ω ∈ (0, 0.5). TOD

(j)
i actually reflects the

intensity of the intraday effect of the ith interval. TOD
(j)
i

larger than 1 indicates that there is a strong intraday effect
and vice versa.

Next, we can use the threshold method of Mancini [17]
combined with the intraday effect of volatility to identify the
intervals where jump occurred on each trading day. ,e
locations of intervals containing the jump component on
day t for asset j, denoted by I

(j)
t , is estimated by

􏽢I
(j)

t � i ∈ 1,2, . . . ,n{ }: Δn
it
p

(j)
􏼌􏼌􏼌􏼌􏼌
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(5)
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where

α(j)
it

� τ
����������������������

BV
(j)
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(j)
t􏼐 􏼑 × TOD

(j)
i

􏽱

, i � 1, 2, . . . , n.

(6)

In the empirical analysis in Section 3, we set τ � 2.5 and
ω � 0.49.,en, the jump component can be estimated as the
returns on the intervals where jumps occurred, because if
there occurs a jump, the jump will dominate the return.
Hence, the identified jump series on day t for asset j can be
obtained by

􏽢J
(j)

it/n � Δn
it
p

(j)
: it � (t − 1)n + i, i ∈ 􏽢I

(j)

t􏼚 􏼛, t � 1, 2, . . . , T,

(7)

where 􏽢J
(j)

it/n
denotes the estimated jump at occurrence time

it/n. ,en, {it/n: it � (t − 1)n + i, i ∈ 􏽢I
(j)

t }is the arrival times
of jumps on day t.

With the identified jump series on each day, we can put
the results of all the trading days over [0, T] together in the
chronological order to obtain one series of jump. We denote
it by {J

(j)

t
(j)

k

}, where t
(j)

k is the time of jump and J
(j)

t
(j)

k

is the jump
size at time t

(j)

k for asset j. In the following, we will focus on
modeling the contagion behavior of these jump events based
on the Hawkes process and extreme value theory.

2.2. Bivariate Mutually Exciting Jump Contagion Model.
Here, we focus on modeling the contagion behavior of the
left jump tail since we usually care about the events that
lead to extreme losses. We combine the peaks-over-
threshold (POT) approach in the extreme value theory
(EVT) and the mutually exciting Hawkes process to con-
struct the contagion model. ,e Hawkes process is a
counting process that models a sequence of ‘arrivals’ of
events over time, where each arrival excites the process in
the sense that the chance of a subsequent arrival is in-
creased for some period after the initial arrival. Hence,
Hawkes process is often used to model the clustering of
events. Ogata [18] first introduced self-exciting Hawkes
process in studying the earthquake occurrence. ,ere are
increasing applications of Hawkes process in finance, for
instance, modeling of the risk [19, 20], modeling of the
duration between trades [21], or the arrival process of buy
and sell orders [22]. Aı̈t-Sahalia et al. [9] use Hawkes
process to capture the contagion of jumps in different
regions of the world. In their modeling of jump contagion,
the factor of interest that affects the conditional intensity of
jump is the occurrence times of earlier events. However, in
the financial high-frequency context, it is natural to also let
intensity depend on the magnitudes. Hence, in this paper,
we consider that the conditional intensity could be affected
by both the magnitudes and occurrence times of previous
jumps.

Consider the bivariate situation. Assume that {J
(j)

t
(j)

k

},
j � 1, 2, is the identified negative jump series of two assets
for all the trading days over the fixed time interval [0, T],
according to the approach proposed in Section 2.1. Set u1 > 0

and u2 > 0 which are the threshold values of these two jump
series, respectively. If |J

(j)

t
(j)

k

|≥ uj, j � 1, 2, then extreme
jump occurs. Define the excess of extreme jump occurring at
t
(j)

k over the threshold uj as X
(j)

k � |J
(j)

t
(j)

k

| − uj. Following the
notation from [19, 20], let T

(j)

k􏽮 􏽯
k∈Z denote the series of

occurrence times of extreme jumps, and X
(j)

k􏽮 􏽯
k∈Z the

corresponding series of magnitudes of excess jumps. ,en,
(T

(j)

k , X
(j)

k )k∈Z forms two marked point processes, where
T

(j)

k defines the arrival times and X
(j)

k the corresponding
marks for the jth asset. LetHt be the sigma algebra generated
by the two processes, that is, the entire history of the marks
and their occurrence up to but not including the time t.
Assume that there are total n(1) and n(2) extreme jumps over
interval [0, T] for two assets. Use (t(1)

k , x(1)
k ), k � 1, 2, . . . , n(1),

to denote the observed sequence of the first marked point
process over the period [0, T] and (t(2)

k , x
(2)
k ), k � 1, 2, . . . ,

n(2), the observed sequence of the second marked point
process. ,en, according to the theory of marked point
process (see [23] for more details), assume that the condi-
tional ground intensity for the jth marked point process, i.e.,
the conditional intensity of the jth marginal point process of
locations of extreme jumps is given as

λj t |Ht( 􏼁 � λj + 􏽘
2

m�1
􏽘

k:t
(m)

k
<t{ }

θjmgjm t − t
(m)
k ,x

(m)
k􏼐 􏼑, j � 1,2,

(8)
where λj > 0 and θjm > 0. λj is the background intensity, and
gjm(t − t

(m)
k , x

(m)
k ) is the exciting function, which shows how

the jump events before the time t affect the intensity of the
jumps occurring at time t. Furthermore, we assume that

gjm t − t
(m)
k , x

(m)
k􏼐 􏼑 � exp δjmx

(m)
k − ηjm t − t

(m)
k􏼐 􏼑􏼐 􏼑, (9)

where δjm > 0 and ηjm > 0. ,is exciting function indicates
that the impact of extreme jump on the intensity of the
process is driven exponentially by the magnitude of the
excess jump and decreases exponentially in relation to the
distance from the jump event. ,en, the conditional ground
intensity is given by

λj t Ht

􏼌􏼌􏼌􏼌􏼐 􏼑 � λj + θj1 􏽘

k:t
(1)

k
<t{ }

exp δj1x
(1)
k − ηj1 t − t

(1)
k􏼐 􏼑􏽨 􏽩

+ θj2 􏽘

k:t
(2)

k
<t{ }

exp δj2x
(2)
k − ηj2 t − t

(2)
k􏼐 􏼑􏽨 􏽩.

(10)

In this model, we believe that the conditional intensity of
extreme jump’s arrival for asset j can be decomposed into
two parts: the background intensity part λj, and the response
part which is triggered by the self-exciting and cross-exciting
effects of previous extreme jumps from the asset itself and
the other asset, respectively. Specifically, if an extreme jump
occurs in the first asset, its own intensity of extreme jumps
would increase immediately by θ11exp(δ11x

(1)
k ) and then

decay exponentially with the parameter η11. And the in-
tensity of extreme jumps in the second asset would increase
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instantaneously by θ21exp(δ21x
(1)
k ) and then decay expo-

nentially with the parameter η21. Likewise, if one extreme
jump occurs in the second asset, its own intensity of extreme
jumps would rise by θ22exp(δ22x

(2)
k ) and decay exponen-

tially with the parameter η22, while the intensity in the first
asset would increase by θ12exp(δ12x

(2)
k ) and then decay

exponentially with the parameter η12. ,erefore, we can

analyze the contagion behavior of the extreme jump risks
based on this bivariate mutually exciting Hawkes process.

2.3. Maximum Likelihood Estimation. Assuming that the
mark X

(j)

k􏽮 􏽯 is independent of time T
(j)

k􏽮 􏽯 and the past of the
marked point process, the log-likelihood function of the
bivariate marked point process (T

(j)

k , X
(j)

k ) is given by

log L � 􏽘
2

j�1
􏽘

k:t
(j)

k
≤T􏼈 􏼉

log λj t
(j)

k􏼐 􏼑 − 􏽚
T

0
λj(t)dt + 􏽘

k:t
(j)

k
≤T􏼈 􏼉

logfj x
(j)

k􏼐 􏼑
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠. (11)

See the details in the study by Embrechts et al. [24] and
Chavez-Demoulin et al. [20]. Let

log L1 � 􏽘
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(1)

k
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log λ1 t
(1)
k􏼐 􏼑 − 􏽚

T

0
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log L2 � 􏽘
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(2)

k
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log λ2 t
(2)
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T

0
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k:t
(1)
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(2)

k
≤T{ }
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k􏼐 􏼑,

(12)

where for j � 1, 2,

􏽚
T

0
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(1)

k
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􏽚
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+ θj2 􏽘
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k
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􏽚
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(2)
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(2)
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� λjT +
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× 1 − exp −ηj1 T − t
(1)
k􏼐 􏼑􏼐 􏼑􏽨 􏽩

+
θj2

ηj2
􏽘

k:t
(2)

k
≤T{ }

exp δj2x
(2)
k􏼐 􏼑

× 1 − exp −ηj2 T − t
(2)
k􏼐 􏼑􏼐 􏼑􏽨 􏽩.

(13)

fj(x) is the probability density of X
(j)

k . According to the
extreme value theory, if the threshold uj is large enough, the
distribution of X

(j)

k can be approximated by generalized
Pareto distribution (GPD). Hence, we can set

fj x; ξj, βj􏼐 􏼑 �

1
βj

1 + ξj

x

βj

􏼠 􏼡

− 1/ξj− 1

, if ξj ≠ 0,

1
βj

exp −
x

βj

􏼠 􏼡, if ξj � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)
where βj > 0 and ξj are the scale and shape parameters of the
generalized Pareto distribution, respectively.

,en, the total log-likelihood function of the model can
be written as a summation of logL1, logL2, logL3, and logL4.
,at is,

log L � log L1 + log L2 + log L3 + log L4. (15)

Hence, we can get the maximum likelihood estimation of
the parameters for generalized Pareto distribution and the
conditional ground intensity of Hawkes process separately.
In particular, log L1 and log L2 can be used to estimate the
parameters of the intensity, and log L3 and log L4 can be
used to estimate the parameters of the generalized Pareto
distribution.

2.4. Goodness of Fit. With the observations (t
(j)

k , x
(j)

k ),
k ∈ 1, 2, . . . , n(j)􏼈 􏼉, j � 1, 2, of the two marked point pro-
cesses, define

t
(j)∗
k � 􏽚

t
(j)

k

0
λj(s)ds. (16)

Based on model (10), formula (16) can be given as

t
(j)∗
k � λjt

(j)

k +
θj1

ηj1
􏽘

m:t
(1)
m ≤t

(j)

k
􏼈 􏼉

exp δj1x
(1)
m􏼐 􏼑

× 1 − exp −ηj1 t
(j)

k − t
(1)
m􏼐 􏼑􏼐 􏼑􏽨 􏽩

+
θj2

ηj2
􏽘

m:t
(2)
m ≤t

(j)

k
􏼈 􏼉

exp δj2x
(2)
m􏼐 􏼑

× 1 − exp −ηj2 t
(j)

k − t
(2)
m􏼐 􏼑􏼐 􏼑􏽨 􏽩.

(17)
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According to the residual analysis of point process, the
sequence t

(j)∗
1 , t

(j)∗
2 , . . . , t

(j)∗
n(j)􏽮 􏽯 forms a Poisson process with

unit rate. ,us, the interarrival times τ1,τ2,􏼈

...,τn(j)−1}� t
(j)∗
2 −t

(j)∗
1 ,t

(j)∗
3 −t

(j)∗
2 ,...,t

(j)∗
n(j) −t

(j)∗
n(j)−1􏽮 􏽯 should

satisfy τi ∼i.i.d.exp(1). ,erefore, it is feasible to use QQ plot
using the exponential distribution to see how well the Hawkes
process fits the observations. Alternatively, we can use the
Kolmogorov–Smirnov test to test whether τi follows expo-
nential distribution.

3. Empirical Analysis

3.1. Estimation of Mutually Exciting Jump Tail Contagion
Model. We collect the tick-by-tick transaction data of the
Shanghai (SH) composite index in the Shanghai stock
market and Shenzhen (SZ) component index in Shenzhen
stock market from the Chinese RESSET high-frequency
database.,e sample starts on January 4, 2006, and ends on
December 31, 2013. ,ere are totally 1932 valid trading
days after excluding the holidays and the trading days with
successive missing values over intervals with length of ten
minutes or above. ,en, we sample the tick-by-tick data at
five-minute frequency by assigning the last observation in
each five-minute interval as the price at five-minute fre-
quency. Finally, we calculate the five-minute log-returns
with five-minute prices for these two indexes.,e following
analysis is carried out by using these five-minute return
data.

Firstly, we extract the jump components from the five-
minute returns by using the threshold method proposed in
Section 2.1. Also, we are interested in the negative jumps.
,en, we use the mean excess function to find an appro-
priate threshold, which can make the jump tails subject to
the generalized Pareto distribution. Figure 1 shows the
mean excess functions of the SH composite index and SZ
component index, respectively. From the figure, we can
obtain that both mean excess functions tend to be positively
linear when the threshold is over 0.3. ,erefore, we select
0.3 as the threshold with which we can identify the extreme
jumps and obtain the excesses of extreme jumps for the two
indexes.

Table 1 reports some summary statistics about the ex-
treme jumps over threshold identified in the SH composite
index and SZ component index, respectively.

With the identified extreme jump times and their marks,
i.e., magnitudes of the excesses of extreme jumps for these
two indexes, we next estimate the bivariate mutually exciting
jump contagion model by the maximum likelihood esti-
mation method. Table 2 reports the estimation results of two
generalized Pareto distributions.

Figure 2 gives the QQ-plots of two fitted generalized
Pareto distributions for the SH composite index and SZ
component index, respectively, which show that the negative
jump tails of both indexes are well fitted by the generalized
Pareto distribution.

Table 3 reports the estimation results of parameters in
the conditional ground intensity of Hawkes process.

Moreover, we use the bootstrap method to obtain the
standard errors of parameter estimation by Monte Carlo
simulation. In particular, we first simulate 1000 paths of the
bivariate Hawkes process with the estimated values of
parameters and then run the parameter estimation pro-
cedure with these 1000 bootstrap samples to get 1000 es-
timates of the parameters. ,en, we can compute the
standard error of each parameter with these 1000 estimated
values. From the results of intensity process in the Shanghai
stock market, we can see that only background intensity is
significant, which shows that there are no significant self-
exciting and mutually exciting effects in the Shanghai stock
market.

However, from the results of the Shenzhen stock market,
we can see that λ2, δ21, and η21 are significant at 5% level, and
θ21 is significant at 10% level, which shows that the jump
intensity in the Shenzhen stock market are mainly affected
by the background factors and jumps occurred in the
Shanghai stock market as well. Both the locations and sizes
of jumps occurred in the Shanghai stock market have sig-
nificant stimulations to the extreme jumps in the Shenzhen
stock market. ,ese results can be attributed to the different
characteristics of the two stock markets. ,e Shanghai stock
market mainly consists of large-cap stocks such as financial
stocks or blue chips, and the companies listed in Shanghai
stock exchange are often the leading enterprises in their own
industry, while the main components of the Shenzhen stock
market are medium and small-cap stocks and growth en-
terprises market board. ,erefore, the performance of
Shenzhen component index tends to follow the changes in
the Shanghai composite index.

With the estimation results, the simulated paths of the
conditional ground intensities for the two indexes are given
in Figure 3. ,e figure shows that the intensity of the SZ
component index is more volatile than the SH composite
index since there exists cross-exciting effect in the Shenzhen
stock market apart from the influence of common factors.
Figure 4 presents the QQ-plots of two fitted Hawkes process
for the SH composite index and SZ component index, re-
spectively. From the figure, it can be easily seen that the
sample quantiles and the theoretical quantiles of exponential
distribution almost lie in a line, which indicates that the
observations are well fitted by the model.

3.2. Prediction. Here, we consider the problem of predicting
the future jump events out of sample. Since our model is
based on Hawkes point process, it is impossible to use it to
predict the exact locations of future jumps. However, similar
to the forecasting of earthquake, we can forecast the
probability of the future jump’s arrivals within a time period.
Such kind of forecasting can be implemented by simulating
the bivariate Hawkes process with the estimated intensity
function repeatedly and then calculate the frequency of the
arrivals within a given time interval. ,en, we can calculate
the frequencies of the arrivals within different time periods
and finally get the empirical distribution of times for future
jump arrivals. For instance, we can obtain the empirical
distribution of days within which the next jump occurs or
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the next two jumps and other situations occur. Hence, with
the estimated results in Section 3.1, we simulate 2000 paths
of our model over the next month after December 31, 2013,

i.e., January in 2014. We choose the following one month as
the time interval of the simulation and prediction because
this time period is long enough for the future occurrences of

�reshold

M
ea

n 
ex

ce
ss

1 2 3 4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(a)

0 1 2 3 4
Threshold

M
ea

n 
ex

ce
ss

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Figure 1: Mean excess functions for the (a) SH composite index and (b) SZ component index.

Table 1: Summary statistics of extreme jumps in the SH composite index and SZ component index.

Count Mean Std. dev. Minimum Maximum
SH 946 0.8006 0.5947 0.3008 6.2527
SZ 948 0.8595 0.5801 0.3010 4.6786

Table 2: Estimation results for generalized Pareto distribution.

Scale β Shape ξ
SH 0.4257∗∗ (0.0210) 0.1496∗∗ (0.0374)
SZ 0.5434∗∗ (0.0253) 0.0286 (0.0334)
Note. ,e values in parenthesis are the results of standard errors. ∗∗ ,e parameter is significant at 5% level.
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Figure 2: QQ-plots of generalized Pareto distribution fitting for the (a) SH composite index and (b) SZ component index.
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jump events, which makes the prediction procedure de-
scribed above and the checking of its performance feasible.
Table 4 reports the frequencies of the first extreme jump

occurring on the following days for the SH composite index
and SZ component index based on simulation. Figure 5
shows the histograms.

Table 3: Estimation results for ground intensity process.

Parameter Value Std. err. Parameter Value Std. err.
λ1 0.0102∗∗ 0.0002 λ2 0.0101∗∗ 0.0002
θ11 0.0003 0.0012 θ21 0.0025∗ 0.0015
δ11 0.1281∗∗ 0.0387 δ21 0.0962∗∗ 0.0367
η11 0.3631∗∗ 0.0635 η21 0.4728∗∗ 0.0541
θ12 4.8e− 7 0.0015 θ22 2.5e− 10 0.0012
δ12 0.0579 0.0435 δ22 0.2697∗∗ 0.0544
η12 0.6962∗∗ 0.0496 η22 0.5179∗∗ 0.0567
Note. ,e results of standard errors are obtained by 1000 bootstrap simulations. ∗ and ∗∗ denote that the parameters are significant at 10% and 5% level,
respectively.

Time

In
te

ns
ity

Process 1

0 20000 40000 60000 80000

0.0102

0.0104

0.0106

(a)

In
te

ns
ity

Process 2

Time
0 20000 40000 60000 80000

0.010

0.011

0.012

0.013

0.014

(b)

Figure 3: Paths of ground intensity processes of the (a) SH composite index and (b) SZ component index.
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Figure 4: QQ-plots of Hawkes process fitting for the (a) SH composite index and (b) SZ component index.
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From Table 4, we can obtain that, for the SH composite
index, the frequency that the next negative extreme jump
occurs within one day after December 31, 2013, is 0.3790,
within two days, 0.6195 (sum of the frequencies of the first
two days) and within three days, 0.7545 (sum of the
frequencies of the first three days). As for the SZ com-
ponent index, the corresponding frequencies are 0.3740,
0.6060, and 0.7550, respectively. In summary, our pre-
diction results show that in both stock markets the fre-
quency that the next negative extreme jump occurs within
three days is above 0.75, which implies that the next jump
occurs within following three days with a relatively large
probability.

To check the performance of our prediction, we use the
intraday five-minute high frequency data from January 2,
2014, to January 31, 2014, and separate the negative extreme
jumps for the two indexes to make a comparison with our
prediction results. We find that in the Shanghai stock
market, the first jump occurs at 10 :10 a.m. on January 2, and
in the Shenzhen stock market, the first jump occurs at 09 : 35
a.m. on January 3. Overall, the arrivals of the first jump are
observed within two days for the two stock markets, which
verifies our above prediction.

In order to make the idea of the prediction more clear,
we proceed to report the frequency tables and histograms of
the second extreme jump occurrence on following days for
the SH composite index and SZ component index in Table 5
and Figure 6, respectively.

From the results in Table 5, we can obtain that the
frequencies that first two jumps occur in the SH composite
index within 3 days and within 6 days are 0.4415 and 0.791,
respectively. And the frequencies that first two jumps occur
in the SZ component index within 3 days and within 6 days
are 0.444 and 0.798, respectively. From the results of
identified jumps with real data, we find that the second jump
occurs at 9 : 35 a.m. on Januray 3 and 10 : 00 a.m. on January
3, respectively, for the SH composite index and SZ com-
ponent index, which means that the arrivals of the next two
jumps are observed within two days for the two indexes. ,e
results are compatible with our prediction.

Next, we adopt the procedure described above repeatedly
and use the rolling window method to make prediction over
the months from February to December in 2014. ,e per-
formances of total 11 predictions with rolling window are
reported in Table 6 for the SH composite index and in
Table 7 for the SZ component index. In both tables, we
report the frequencies of the first jump occurring within 3
days and 7 days over the forecasting interval and the
identified dates and times of the first extreme jump oc-
currence by using the actual data for comparison. From
Tables 6 and 7, we can see that, for all the rolling window
predictions, the frequencies of the first extreme jump oc-
currence in 3 days are around 75%, a relatively large
probability, and the frequencies in 7 days are around 97%, a
very high probability. Furthermore, the jump arrivals with
relatively large probability in every rolling window

Table 4: Frequencies of the first extreme jump occurrence on following days.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Above 7 days
SH 0.3790 0.2405 0.1350 0.0865 0.0555 0.0365 0.0300 0.0370
SZ 0.3740 0.2320 0.1490 0.0935 0.0605 0.0410 0.0180 0.0320
Note. ,e values in the table are the frequencies of the fist extreme jump occurring on the following days. For instance, for the SH composite index, 0.3790 is
the frequency of the first extreme jump occurring on the first day, and 0.2405 is the frequency of the first extreme jump occurring on the second day over the
one-month prediction window.

Time

D
en

sit
y

2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

Time
2 4 6 8 10

D
en

sit
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 5: Histogram of the next jump occurrence.
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prediction are almost observed. In particular, the next jump
occurs within 3 days over prediction window for all the
predictions except that in the sixth rolling prediction, the
next jump for the SZ component index occurs in next 7 days,
in the seventh rolling prediction, the next jump for the SH
composite index occurs in next 4 days, and in the eighth
rolling prediction, the next jumps for both indexes occurs in
next 6 days. ,e results further demonstrate our model’s
power.

4. Conclusions

In this paper, we focus on modeling the contagion feature of
the intraday jump tail with financial high frequency data. We
use a two-stage method that first extracts the intraday jump
nonparametrically with high frequency data and then con-
structs the mutually exciting jump tail contagion model based
on Hawkes process and peaks-over-threshold approach. In the
modeling of the conditional intensity of the Hawkes process,

Table 6: Performances of the rolling window prediction of the SH composite index.

Prediction no. 1 2 3 4 5 6 7 8 9 10 11
Dates Feb. 7 Mar. 4 Apr. 3 May 7 Jun. 5 Jul. 3 Aug. 6 Sep. 9 Oct. 9 Nov. 3 Dec. 3
Times 09 : 35 09 : 35 14 : 00 09 : 35 09 : 35 09 : 35 09 : 35 09 : 50 11 : 00 14 : 05 13 : 20
In 3 days 0.7630 0.7665 0.7715 0.7605 0.7855 0.7440 0.7635 0.7640 0.7415 0.7605 0.7575
In 7 days 0.9700 0.9730 0.9710 0.9645 0.9705 0.9620 0.9715 0.9640 0.9575 0.9645 0.9625
Note.,e rows named “Dates” and “Times” in the table are the identified dates and times of the first jump on each prediction window, and the rows named “In
3 days” and “In 7 days” are the results of the cumulative frequencies of the first jump occurring within 3 days and 7 days over each prediction window.

Table 7: Performances of the rolling window prediction of the SZ component index.

Prediction no. 1 2 3 4 5 6 7 8 9 10 11
Dates Feb. 7 Mar. 4 Apr. 3 May 5 Jun. 4 Jul. 9 Aug. 5 Sep. 9 Oct. 9 Nov. 3 Dec. 3
Times 09 : 35 09 : 35 14 : 00 09 : 50 09 : 35 14 : 05 10 : 20 09 : 50 11 : 00 14 : 05 13 : 20
In 3 days 0.7630 0.7665 0.7550 0.7655 0.7500 0.7525 0.7635 0.7565 0.7675 0.7460 0.7840
In 7 days 0.9650 0.9660 0.9615 0.9630 0.9620 0.9590 0.9635 0.9600 0.9715 0.9595 0.9675
Note. ,e meaning of the results in the table is the same as the ones in Table 6.

Table 5: Frequencies of the second extreme jump occurrence on following days.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Above 9 days
SH 0.0865 0.1775 0.1775 0.1420 0.1245 0.0830 0.0535 0.0520 0.0365 0.0670
SZ 0.0990 0.1635 0.1815 0.1520 0.1120 0.0900 0.0620 0.0465 0.0245 0.0690
Note. ,e values in the table are frequencies of the second extreme jump occurring on the following days. For instance, for the SH composite index, 0.0865 is
the frequency of the second extreme jump occurring on the first day, and 0.1775 is the frequency of the second extreme jump occurring on the second day over
the one-month prediction window.
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Figure 6: Histogram of the second jump occurrence.
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we take into account the effects of both occurrence time and
excess jump magnitude. We then discuss the maximum
likelihood estimation and the goodness of fit of the model.
Finally, we apply the proposed method to the real high fre-
quency data in the Chinese stock market. We first separate the
negative jump series from the five-minute high frequency data
of the Shanghai composite index and Shenzhen component
index, which are the two main market indexes in China and
then apply the proposed bivariate mutually exciting jump
contagion model to the identified jump series. ,e empirical
results show that mutually exciting feature is significant in the
Shenzhen stock market, while both self-exciting and mutually
exciting features are not significant in the Shanghai stock
market. In particular, the intensity of extreme jump occurrence
in the Shanghai stock market is only significantly affected by
the background factors, while the intensity in the Shenzhen
stock market is significantly affected by the background factors
and the extreme jump events in the Shanghai stock market as
well. Both the occurrence times and magnitudes of jumps
occurred in the Shanghai stock market have significant
stimulations to the extreme jumps in the Shenzhen stock
market. Furthermore, the prediction results of the future jump
events based on simulation demonstrate our model’s power.
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