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Neural networks in which communication works only among the neighboring units are called cellular neural networks (CNNs).
)ese are used in analyzing 3D surfaces, image processing, modeling biological vision, and reducing nonvisual problems of
geometric maps and sensory-motor organs. Topological indices (TIs) are mathematical models of the (molecular) networks or
structures which are presented in the form of numerical values, constitutional formulas, or numerical functions. )ese models
predict the various chemical or structural properties of the under-study networks. We now consider analogous graph invariants,
based on the second connection number of vertices, called Zagreb connection indices. )e main objective of this paper is to
compute these connection indices for the cellular neural networks (CNNs). In order to find their efficiency, a comparison among
the obtained indices of CNN is also performed in the form of numerical tables and 3D plots.

1. Introduction

A neural system that consists of a multidimensional cluster
of neurons and neighborhood-connected associations be-
tween the cells is called a cellular neural network (CNN) as
shown in Figure 1. )is kind of system presented in [1] is a
consistent time network in the form of an n × m rectangular
matrix array having n rows and m columns (see Figures 1–3
for some values of m and n).

A component of the rectangular array corresponds to a
cell in a neural arrangement. But it is noted that the ge-
ometry exhibited requires not only to be rectangular, but
also such shapes can be triangles or hexagons [2]. Multiple
clusters can be represented with a proper interconnected
structure to construct a multilayered cell neural system
(Figure4).

A cell C(h; k), where 1≤ h≤ n and 1≤ j≤m with its lth
neighborhood, can be presented as Nr(h; k) and is described
as the set of cells C(p; q), where 1≤p≤ n and 1≤ q≤m, such
that |p − h|≤ l and |q − k|≤ l. )e cells in lth neighborhood
of a cell C(h, k) are directly interconnected with cell C(h, k)

through A(p, q, h, k), A(h, k, p, q), B(p, q, h, k), and
B(h, k, p, q), where A(p, q, h, k) and A(h, k, p, q) are known

as the feedback weights and B(p, q, h, k) and B(h, k, p, q)

known as the feedforward weights.)e index pair (p, q, h, k)

describes the direction of signal from C(h, k) to C(p, q). )e
cell C(h, k) is connected directly with its adjacent cells
C(p, q) ∈ Nr(h, k). Since every C(p, q) has its adjacent cells,
the cell C(h, k) can also be linked with all other cells in-
directly as shown in Figure 5.

)e CNN has a lot of applications that are indicated by
their spatial dynamics. )e filtering image processing is one
of the good applications of CNN [3]. For more related works
about CNN and PNN, one can consult the references [4–13].

)oroughly, we take the graph G � (V, E) which does
not contain loops and multiple or directed edges, where the
sets V and E⊆V × V are of vertices and edges, respectively.
)e length of the shortest path from u to v (denoted by
d(u, v)) is called its distance and du � |N| is known by the
degree of u, where N � v ∈ V: d(v, u) � 1{ }. A topological
index (TI) defined with the help of the degrees of nodes of
the (molecular) network is a class of indices which are used
to find out and model the certain properties of the chemical
compounds of the (molecular) networks (see [14–16]). In
particular, the degree-based topological properties for the
CNN are studied in [17].
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)e first Zagreb index is studied for the total π-electron
energy [18], and the second Zagreb index appeared to
compute molecular branching [19]; they are denoted by M1
and M2, respectively:

M1(G) � 
u∈V(G)

du 
2
,

M2(G) � 
u∈E(G)

dudv.
(1)

In relation to the above equations, the first and second
Zagreb connection indices (ZCIs) have been put forward in
[20, 21] independently:

ZC1(G) � 
u∈V(G)

τu( 
2
,

ZC2(G) � 
uv∈E(G)

τuτv,

ZC
∗
1 (G) � 

u∈V(G)

duτu,

(2)

where τu denotes the number of vertices v ∈ G such that
d(u, v) � 2. It has been proved by Ali and Trinajstic [20] that
the topological index ZC∗1 can be written as

ZC
∗
1 (G) � 

uv∈E(G)

τu + τv( . (3)
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Figure 1: Cellular neural network CNN(3, 3) (a) and CNN(4, 3) (b).
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Figure 2: Cellular neural network CNN(m, 3) (a) and CNN(m, 4) (b).
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Figure 3: Cellular neural network CNN(m, n).
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In [17], the authors checked the chemical applicability of these
three Zagreb connection indices on the set of octane isomers, and
they found that ZC∗1 (G) has better correlating ability than the
other two Zagreb connection indices in the cases of entropy,
enthalpy of vaporization, standard enthalpy of vaporization, and
acentric factor. Basavanagoud and Jakkannavar checked the
chemical applicability of ZC1 and found that the index has a very
good correlationwith physical properties of chemical compounds
such as boiling point, entropy, enthalpy of evaporation, standard
enthalpy of vaporization, and acentric factor (see [23]).

Ali and Trinajstic [20] checked the chemical applicability of
ZC∗1 , and they found that this TI correlates well with the
entropy and acentric factor of octane isomers. A large number of
networks has been studied with the help of connection number-
based TIs such as T-sum networks [24], resultant networks
[25, 26], connected networks [27, 28], alkanes [22, 29, 30],

dendrimer nanostars [31], trees, and unicyclic networks [32] and
subdivided and semitotal point networks [33].

2. Main Results and Discussion

Let ck(G) denote the number of vertices in G with con-
nection number k and mk,l(G) denote the number of edges
in G whose vertices have connection numbers k and l.

)e following formulas for the ZCIs are equivalent to the
previous definitions:

ZC1(G) � 
0≤ k≤ n−2

ck(G)k
2
, (4)

ZC2(G) � 
0≤ l≤ k≤ n−2

mk,l(G)(k.l), (5)
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Figure 4: Cellular neural network.
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Figure 5: Differences of indices for CNN(m, 3) (a) and for CNN(m, 4) (b).
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ZC
∗
1 (G) � 

0≤ l≤ k≤ n−2
mk,l(G)(k + l). (6)

From Figure 1 and definition of the ZCIs, we have the
following:

(1) For m � 3 and n � 3,

(a) ZC1(CNN(3, 3)) � 100
(b) ZC2(CNN(3, 3)) � 156
(c) ZC∗1 (CNN(3, 3)) � 88

(2) For m � 4 and n � 3,

(a) ZC1(CNN(4, 3)) � 280
(b) ZC2(CNN(4, 3)) � 555
(c) ZC∗1 (CNN(4, 3)) � 258

(3) For m � 4 and n � 4,

(a) ZC1(CNN(4, 4)) � 584
(b) ZC2(CNN(4, 4)) � 1634
(c) ZC∗1 (CNN(4, 4)) � 524

Theorem 1. Let m≥ 5 and CNN(m, 3) be the CNN. 0en,

(1) ZC1(CNN(m, 3)) � 198m − 512
(2) ZC2(CNN(m, 3)) � 360m − 840
(3) ZC∗1 (CNN(m, 3)) � 102m − 144

Proof. In order to prove our result, we will compute ck, the
number of vertices of connection number k, and yk,l(G) is
the edge of CNN(m, 3) whose vertices have connection
numbers k and l. It is easy to see from the structure of
CNN(m, n) that c3 � 4, c5 � 4, c6 � m, and c9 � 2m − 8.
)us, from equation (4), we have the following:

ZC1(CNN(m, 3)) � 
0≤ k≤ n−2

ck(G)k
2

� c3 32  + c5(5)
2

+ c6(6)
2

+ c9(9)
2

� 36 + 100 + 36m + 81(2m − 8)

� 198m − 512.

(7)

)e edge set of CNN(m, 3) can be partitioned into
different classes depending upon the edge types of yk,l(G) as
listed in Table 1.

From the definition of the second ZCI and substitution
of yk,l from Table 1 in (5), it follows that

ZC2(CNN(m, 3)) � y3,5(3 × 5) + y3,6(3 × 6) + y3,9(3 × 9)

+ y5,6(5 × 6) + y6,6(6 × 6) + y6,9(6 × 9)

� 8(15) + 8(18) + 4(27) + 4(30)

+(m − 1)(36) +(6m − 24)(54)

� 360m − 840.

(8)

Similarly, from substitution of yk,l(G) from Table 1 in
(6), we have

ZC
∗
1 (CNN(m, 3)) � y3,5(3 + 5) + y3,6(3 + 6) + y3,9(3 + 9)

+ y5,6(5 + 6) + y6,6(6 + 6) + y6,9(6 + 9)

� 8(8) + 8(9) + 4(12) + 4(11)

+(m − 1)(12) +(6m − 24)(15)

� 102m − 144.

(9)

Theorem 2. Let m≥ 5 and CNN(m, 4) be the CNN. 0en,

(1) ZC1(CNN(m, 4)) � 404m − 1032
(2) ZC2(CNN(m, 4)) � 1361m − 3940
(3) ZC∗1 (CNN(m, 4)) � 266m − 540

Proof. It is easy to see from the structure of CNN(m, 4) that
c5 � 4, c6 � 8, c7 � 4, c9 � 2m − 8, and c11 � 2m − 8. )us,
from equation (4), we have the following:

ZC1(CNN(m, 4)) � 
0≤ k≤ n−2

ck(G)k
2

� c5(5)
2

+ c6(6)
2

+ c7(7)
2

+ c9(9)
2

+ c11(11)
2

� 4(25) + 8(36) + 4(49) +(2m − 8)(81)

+(2m − 8)(121) � 404m − 1032.

(10)

)e edge set of CNN(m, 4) can be partitioned into
different classes depending upon the edge types of yk,l(G) as
listed in Table 2.

From the definition of the second ZCI and substitution
of yk,l from Table 2 in (5), it follows that

ZC2(CNN(m, 4)) � y5,6(5 × 6) + y5,7(5 × 7) + y6,6(6 × 6) + y6,7(6 × 7) + y6,9(6 × 9)

+ y6,11(6 × 11) + y7,7(7 × 7) + y7,9(7 × 9) + y7,11(7 × 11) + y9,9(9 × 9) + y9,11(9 × 11) + y11,11(11 × 11)

� 8(30) + 4(35) + 6(36) + 12(42) + 4(54) + 4(66) + 2(49) + 4(63) + 8(77) +(2m − 10)(81)

+(6m − 28)(99) +(5m − 24)(121) � 1361m − 3940.

(11)
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Similarly, from substitution of yk,l(G) from Table 2 in
(6). we have

ZC
∗
1 (CNN(m, 4)) � y5,6(5 + 6) + y5,7(5 + 7)

+ y6,6(6 + 6) + y6,7(6 + 7)

+ y6,9(6 + 9) + y6,11(6 + 11)

+ y7,7(7 + 7) + y7,9(7 + 9)

+ y7,11(7 + 11) + y9,9(9 + 9)

+ y9,11(9 + 11) + y11,11(11 + 11)

� 8(11) + 4(12) + 6(12) + 12(13)

+ 4(15) + 4(17)

+ 2(14) + 4(16) + 8(18)

+(2m − 10)(18) +(6m − 28)(20)

+(5m − 24)(22)

� 266m − 540.

(12)

(1) ZC1(CNN(m, n)) � 256mn − 700m − 700n + 1448

(2) ZC2(CNN(m, n)) � 1024mn − 2808m − 2808n +

7474
(3) ZC∗1 (CNN(m, n)) � 128mn − 246m − 246n − 100

Theorem 3. Let m, n≥ 5 and CNN(m, n) be the CNN. 0en,

Proof. In order to prove our result, we will compute ck, the
number of vertices of connection number k, and yk,l(G) is
the edge of CNN(m, n) whose vertices have connection
numbers k and l. It is easy to see from the structure of
CNN(m, n) that c5 � 4, c6 � 8, c7 � 4, c9 �

2m + 2n − 16, c11 � 2m + 2n − 16, and c16 � (m − 4)(n − 4).
)us, from equation (4), we have the following:

ZC1(CNN(m, n)) � c5(5)
2

+ c6(6)
2

+ c7(7)
2

+ c9(9)
2

+ c11(11)
2

+ c16(16)
2

� 4(25) + 8(36) + 4(49)

+(2m + 2n − 16)(81) +(m − 4)

· (n − 4)(256) +(2m + 2n − 16)(121)

� 256mn − 700m − 700n + 1448.

(13)

)e edge set of CNN(m, n) can be partitioned into
different classes depending upon the edge types of yk,l(G) as
listed in Table 3.

From the definition of the second ZCI and substitution
of yk,l from Table 3 in (5), it follows that

Z2(CNN(m, n)) � y5,6(5 × 6) + y5,7(5 × 7) + y6,6(6 × 6) + y6,7(6 × 7) + y6,9(6 × 9)

+ y6,11(6 × 11) + y7,9(7 × 9) + y7,11(7 × 11) + y7,16(7 × 16) + y9,9(9 × 9) + y9,11(9 × 11)

+ y11,11(11 × 11)y11,16(11 × 16) + y16,16(16 × 16) � 8(30) + 4(35) + 4(36) + 8(42) + 8(54)

+ 8(66) + 8(63) + 8(77) + 4(112) +(2m + 2n − 20)81 + 99(6m + 6n − 56) + 121(2m + 2n − 16)

+(6m + 6n − 56)(176) +(4mn − 19m − 19n + 90)(256) � 1024mn − 2808m − 2808n + 7474.

(14)

Table 1: Partition of edge set of CNN(m, 3).

Edges of type yk,l Number of edges

y3,5 8
y3,6 8
y3,9 4
y5,6 4
y6,6 m − 1
y6,9 6m − 24

Table 2: Partition of edge set of CNN(m, 4).

Edges of type yk,l Number of edges

y5,6 8
y5,7 4
y6,6 6
y6,7 12
y6,9 4
y6,11 4
y7,7 2
y7,9 4
y7,11 8
y9,9 2m − 10
y9,11 6m − 28
y11,11 5m − 24

Table 3: Partition of edge set of CNN(m, n).

Edges of type yk,l Number of edges

y5,6 8
y5,7 4
y6,6 4
y6,7 8
y6,9 8
y6,11 8
y7,9 8
y7,11 8
y7,16 4
y9,9 2m + 2n − 20
y9,11 6m + 6n − 56
y11,11 2m + 2n − 16
y11,16 6m + 6n − 56
y16,16 4mn − 19m − 19n + 90

Discrete Dynamics in Nature and Society 5
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Table 4: Differences of indices for CNN(m, 3).

m ZC1 ZC2 ZC∗1

5 478 960 366
6 676 1320 468
7 874 1680 570
8 1072 2040 672
9 1270 2400 774
10 1468 2760 876
11 1666 3120 978
12 1864 3480 1080
13 2062 3840 1182
14 2260 4200 1284
15 2458 4560 1386

Table 5: Differences of indices for CNN(m, 4).

m ZC1 ZC2 ZC∗1

5 988 2865 790
6 1392 4226 1056
7 1796 5587 1322
8 2200 6948 1588
9 2604 8309 1854
10 3008 9670 2120
11 3412 11031 2386
12 3816 12392 2652
13 4220 13753 2918
14 4624 15114 3184
15 5028 16475 3450

6 Discrete Dynamics in Nature and Society



Similarly, from substitution of yk,l(G) from Table 3 in
(6), we have

Z
∗
1 (CNN(m, n)) � y5,6(5 + 6) + y5,7(5 + 7) + y6,6(6 + 6) + y6,7(6 + 7) + y6,9(6 + 9) + y6,11(6 + 11)

+ y7,9(7 + 9) + y7,11(7 + 11) + y7,16(7 + 16) + y9,9(9 + 9) + y9,11(9 + 11)

+ y11,11(11 + 11) + y11,16(11 + 16)

+ y16,16(16 + 16) � 8(11) + 4(12) + 4(12) + 8(13) + 8(15) + 8(17) + 8(16) + 8(18) + 4(23)

+(2m + 2n − 20)18 + 20(6m + 6n − 56) + 22(2m + 2n − 16) + 27(6m + 6n − 56)

+ 32(4mn − 19m − 19n + 90)

� 128mn − 246m − 246n − 100.

(15)

3. Numerical and Graphical Comparisons

In this section, we will give numerical and graphical com-
parisons of the Zagreb connection indices with respect to the
cellular neural network. Maple software is used to construct a
simple comparison of the Zagreb connection indices related to
the cellular neural network into 3D plots (Figures 5 and 6).)e
numerical comparison is given in Tables 4–6. We can see from
the 3D plots and numerical tables that the second Zagreb index
is always greater than the other two indices.

4. Conclusion

)e Zagreb connection indices for the cellular neural system
on a rectangular grid have been computed. Later on, the
obtained results for the Zagreb connection indices, has an
application; with the help of numerical tables and 3D plots,
the determination of detailed comparisons among these
indices of CNN has been outlined. It is notable that the
obtained results for these networks are all quadratic in terms
of the order of the network, which showed that one can build
efficient graph algorithms to compute the indices within
polynomial time.
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