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In this paper, we consider the existence and uniqueness of the mild solution for a class of coupled fractional stochastic evolution
equations driven by the fractional Brownian motion with the Hurst parameter H € (1/4,1/2). Our approach is based on Perov’s
fixed-point theorem. Furthermore, we establish the transportation inequalities, with respect to the uniform distance, for the law of

the mild solution.

1. Introduction

In the research of various fields of science and engineering,
fractional stochastic differential equations (SDEs) play a
significant role in the modeling of many complex phe-
nomena in diverse areas. The intensive development in both
theory and applications of fractional SDEs was investigated
in [1-4]. In addition, many scholars have also developed
interest in systems with memory or after effect (i.e., systems
with finite delays in the state equation). Therefore, it is
necessary to study stochastic evolution equations with finite
delays. The equation is widely used in network flow analysis,
mathematical finance, astrophysics, hydrology, image pro-
cessing, and other directions [5, 6]. For the nature of the
existence and uniqueness of the mild solutions, Sakthivel
etal. [7] considered the nonlinear-type fractional SDE, Li [8]
established stochastic delay fractional evolution equations
driven by fractional Brownian motion in a Hilbert space, and
Mophou [9] was concerned about impulsive fractional
semilinear differential equations.

Moreover, under the research of many scholars,
transportation inequalities are developed greatly in var-
ious SDEs and stochastic systems with respect to the
different measure conditions. Among others, the Girsanov

transformation argument introduced in [10] has been
efficiently applied, e.g., Wu and Zhang [11] considered
infinite-dimensional dynamical systems with respect to L?
metric; Usttnel [12] studied the multivalued SDE and
singular SDE under uniform distance; besides, Bao et al.
[13] investigated the neutral functional SDE with respect
to both the uniform distance and the L? distance; Saus-
sereau [14] researched the SDE driven by a fractional
Brownian motion; futhermore, Li and Luo [15] took it into
account that stochastic delay evolution equations driven
by fractional Brownian motion with the hurst parameter
H > 1/2 under the L? metric and the uniform metric; and
Boufoussi and Hajji [16] established the transportation
inequalities, with respect to the uniform distance, for the
law of the mild solution for a neutral stochastic differential
equation with finite delay, driven by a fractional Brownian
motion with the Hurst parameter lesser than 1/2 in a
Hilbert space.

In connection with the aforementioned works, in this
paper, we investigate the existence, uniqueness, and property
T, (C) under the uniform distance for the law of mild so-
lution of the coupled fractional stochastic delay evolution
equations with finite delay driven by a fractional Brownian
motion with the Hurst parameter 0 < H< 1/2:
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‘DY (x(t)) = (A;x(t) + f, (t, x,, y,))dt + o, (1)dBH (¢), t € [0,T],
‘D% (y (1) = (Ay (1) + f,(t, x,, y,))dt + 0, (1)dBY (1), t € [0,T], W
X(t) = ¢1 (t)) te [—T, 0]:
,V(t) = ¢2 (t)) te [_T, 0])

where ‘D% is the Caputo fractional derivative of order
a; € (1/2,1], for each i = 1,2, as for the state x(-), ¥ (-) has
values in a real and separable Hilbert X with an inner
product (-,-)y and norm | - ||y, where {A;,i = 1,2} are the
infinitesimal generators of analytic semigroups of bounded
linear operators {T; (t),t >0}, B! is the fractional Brownian
motion on a real and separable Hilbert space Y, with the
Hurst parameter H € (0,1/2), and let r>0 denote the
constant. As for y,, we mean the segment solution which is
defined in the usual way, thatis,if y (-,-): [-7,T] x Q — X,
then for any >0

v, (6, w) = y(t+6,w),

Before describing the properties fulfilled by operators
fi»0;, we need to introduce some nontations and describe
some spaces. Let 9, denote the space of all continuous
functions ¢: [-7,0] xQ — X such that ¢(0,-) is
F y-measurable for each 6 ¢ [-r,0]and [* Ellg|%dt < co.Tn
the space 9, we endow with the followmg norm:

0
lolly, = | Elo 1t 3

0€[-r0],weQ. (2)

Next, we denote by C(a,b;L?(Q; X)) = C(a,b; L*(Q,
F,P; X)) the Banach space of all continuous functions from
[a,b] into L*(Q; X). Now, fixing T >0, we define

D = {y: y € C(=r, T; L (©; X)), sup E(lly (®)l%) < oo,
te[0,T]

0
| E||y<t)||§dt<m},
()

endowing with the following norm:

Iyllg, = sup VE(ly 0OI%) +1y ®)llg, (5)
te |0,

We give initial data ¢,,¢, € 9, and Y is another real
and separable Hilbert space, and BH B is a Y-valued
fractional Brownian motion with 1ncrement covariance
given by a nonnegative trace class operator Q;, and L(Y, X)
represents the space of all bounded, continuous, and linear
operators from Y into X.

We  denote f;:JxDyxDy— X and o
J— L0 (Y, X). Here, let us denote L (Y, X) by the space
of all Q; Hllbert Schmidt operators from Y into X for each
i = 1,2 which will also be introduced in the next section.

Now, let us present the relevant knowledge of
transportation inequalities. To connect the measure
distances with the probability measures, we consider the
transportation distance, also called as Wasserstein dis-
tance. Let (E,d) be a metric space provided with the

o-field &, such that d(.,-) is B x B-measurable. Fixing
p =1 and for any probability measures y and » on E, we
define the Wasserstein distance of order p between y and
v as

(17p)
Wf,(ym):eliTn(iv)(Jd(x,y)”dﬂ(x,y)> ., (8

ExE

where IT (y, v) denotes the totality of probability measures on
E x E with the marginal ¢ and v. The relative entropy of v
with respect to y is defined as

J. log$dv, V< U,
H(np) = g (7)

+00, otherwise.

The probability measure p satisfies LP-transportation
inequality on (E, d) if there exists a constant C > 0 such that
for any probability measure v,

W (%) <[2CH (v ). (8)

As usual, we write y € T, (C) for this relation. The
property T, (C) is of particular interest. We will investigate
the property T,(C) for the law of the mild solution of
stochastic delay evolution equations driven by fractional
Brownian motion with the Hurst parameter 1/4<H<1/2
under the uniform distance.

This paper is organized as follows. In Section 2, we
introduce some preliminaries used in this paper such as
stochastic calculus, some properties of generalized Banach
spaces, and fractional calculus. In Section 3, we state and
prove the existence and uniqueness of the mild solution by
using Perov’s fixed-point type in generalized Banach spaces.
In Section 4, we investigate the property T, (C) for the law of
the solution of fractional stochastic delay evolution equa-
tions driven by fractional Brownian motion with the Hurst
parameter 1/4 < H<1/2 under the uniform metric. In Sec-
tion 5, we present an example to illustrate the efficiency of
the obtained result.

2. Preliminaries

In this section, we introduce some notations and recall
definitions and preliminary results which are used
throughout this paper.

Let (Q,F,P,{#,},.,) be a complete probability space
furnished with a normal filtration {#,},.,. We postulate that
the operator A; is self-adjoint and there exists the eigen-
vectors e, corresponding to eigenvalues y; such that
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Ay = yrep, e, = V2sin(kn), y, = kS ke N (9)

(a/2 ) (a/2)

For each 0>0,4;, e, =y, ,k=1,2,3,...
be the domain of {A { } defined by

, and let H’

o0
jod D(A“””) - {v eL*(X), st IviZe =Yy vi< oo}

k=0
(10)

where the vector v, = (v, ¢,) and the norm [|v| 4= = ||A(m) II.
Let L?>(X) be an X-valued Hilbert space with the inner
product E(-,-) and norm E || - ||, and it is given by

[2(X) = {x: Ellyl = JQHX(w)H?(d[P’(w) <00, W€ Q}
(11)

Definition 1. For H e (0,1), a continuous centered
Gaussian process {BH (t)}te[o,oo) with covariance function

t\H-(172) H-(1/2)
Ky (6,5) = ¢y (-) (t-s) —(H—
S

where ¢y =+H/(1-H)B(1-2H,H +1/2)) and f(.-)

denotes the Beta function. Ky (t,s) =0,t<s. Since
0<H<1/2, from (14), we can infer that
a (1
|KH(t,S)|SCH[ s) (5

< CH|: (t- S)H_(l/z) +(

NS

Then, we obtain

Ky (t,9)| <204 (2 = )12 4 1702, (16)

Taking the derivative of (14) with respect to t, we can
have

oKy B t\H-(72) H-(3/2)
A (1) —cH(H—(l/Z))<;> (t- 9" 0P (17)

Apparently, we can obtain the following inequality:
0Ky
ot

Let % be the Hilbert space defined as the closure of the
vector space spanned by the set of step functions
{I[O,t]’t € [O,T]} with respect to the scalar product:

Moo Ij0s? = Ry (8,9),

(t,s)=cH(%— H)(-9" 02 )

Vt,s € [0,T]. (19)

Now, we consider the operator Kj; from # to
L*([0,T]) defined by

Ry (t,5) = E[B" ()B" (5)]

L ow  om 2H
:z(t +s7 —|t—s| ), t,s € [0,00),

(12)

is called a one-dimensional fractional Brownian motion
(fBm), and H is the Hurst parameter. In particular, when
H=1/2, B (t) represents a standard Brownian motion.

Now, let us aim at the Wiener integral with respect to the
fBm. To begin with, BY () has following integral expression
(see [17]):

t
B (1) =J Ky, (t,5)dB(s), (13)
0
where B = {B(t): t € [0, T]} is a Wiener process, Ky (t,s) is

a square integrable kernel, for 0 < H<1/2, and t>s; the
formula is as follows (see [17]):

1 _ t _ -
5)5(1/2) HJ (1 — )W H-GD) g | (14)
S

t
—H)s(l/z)fHJ (1 — 5)F=2) H(1/2)u2H1du]
N

(15)

t
_H>S(1/z)—HJ (1 — 5)H-02) H—(l/2)du]'
S

T
(KI’},T¢)(S)=KH(T,S)¢(S)+J (p(r) - (p(s)) H(r,s)dr
(20)

Furthermore, K};; is an isometry between # and

L* ([0, T])(see [18]).) Taking account for B = {B(t),
t € [0, T]} defined by
B(t) = B"((K7) 'Toy): (21)

it turns out that B is a Wiener process. Moreover, for any
¢ € ¥, with (13), we have

T T

j ¢ (S)dB" (s) := B (¢) = J (Kjpre ) (DdB(2).  (22)
0 0

For any 0<t <T, we can also deduce

t T
J ¢ (s)dB" (s) :=J (K} r91i0s) (s)dB(s)
0 0 (23)

= J;(Kfi},tso) (s)dB(s),



where Kj;, is defined in the same way as in (20) with ¢
instead of T. Next, we will use the notation K I;t without
specifying the parameter ¢ € [0, T].

Let (X, |- lix» ¢+ x) and (¥, [« ly, ¢»-)y) be two real,
separable Hilbert spaces and let Z (Y, X) denote the space of
all bounded linear operators from Y to X. Let Q € £ (Y, X)
be a nonnegative self-adjoint operator i.e., Qe, = A,e, with
trace trQ =Y’ A, <00, where A, € R* and {e,},., is a
complete orthonormal basis in Y. We define the infinite-
dimensional fBm on Y with covariance Q by the following
formula:

B0 = Y e B (0, 0, (24)
n=1

where {BX ()} . be a sequence of one-dimensional mu-
tually independent standard fractional Brownian motions
on (Q,F,P). Bf (t) is a Y-valued Gaussian process, starting
from 0, and has zero mean and covariance:

ECBE (£), x)(BEL (s), y) = R(5,)€Q(x), y,
forallx, y € Yandt,s € [0,T].

(25)

Let 32 (Y, X) be the space of all £ € & (Y, X) such that
£Q? is a Hilbert-Schmidt operator. The norm is given by

I8 = 3 [\ AE O,
n=1

Then, § is called a Q-Hilbert-Schmidt operator from Y to
X.

() <o (26)

Definition 2. Let ¢: [0,T] — &5 (Y, X). Then, the Wiener
integral of ¢ with respect to the fBm Byj is defined as follows:

[KEACE ) [ g ore,arit o

"2 [ V(K5 (g (928, 9,

(27)

where B, is the standard Brownian motion used to represent
Bf as in (13), and the sum above is finite when
b LK (ge,)l < oo.

The classical Banach contraction principle was ex-
tended for contractive maps on spaces endowed with a
vector-valued metric space by Perov [19] in 1964 and
Precup [20, 21]. Now, we recall some useful definitions
and results.

Definition 3. Let Z be a nonempty set. We denote by a
vector-valued metric on Z defined as a mapping d: Z x
Z — R" with the following properties:

(1) d(u,v)>0 forallu,ve Z; d(u,v)=0, onlyifu=w.

(2) d(u,v) =d(u,v) forallu,v € Z.

(3) d(u,v) <d(u,w) +d(w, v) forallu, v,w € Z.

Discrete Dynamics in Nature and Society

Now, we consider a generalized metric space (Z, d). For
r=(r,...,r,) € R}, we will define the open ball centered
in x, with radius r:

B(xg,7) ={x € Z: d(xy,x) <7}, (28)

and the closed ball centered in x,, with radius r:
B(xg,7) ={x € Z: d(x0,x) <7}. (29)
We state that for a generalized metric space, the notation

of open and closed sets, convergence, Cauchy sequence, and
completeness in a generalized metric space are similar to

those in usual metric spaces. If x, y € R", x = (x,,...,x,),
y=p-. ), byx<ythenwemean x; < y;,i=1,...,n
Also, |x| = (|x,],...,|x,]) and max(x, y) = max(max(x,,

Y1)s ..., max(x,, y,)). If c € R, then x <c means x; <c for
eachi=1,...,n

Definition 4. A generalized metric space (Z,d) where

d, (x, y)
d(x, y): = : is complete, if for every
d,(x, )

i=1,...,n, (Z,d;) is a complete metric space.

Definition 5. We denote that a real square matrix M is
convergent to zero if and only if its spectral radius p (M) is
strictly less than 1. In other words, it means that all the
eigenvalues of M are in the open unit disc (i.e., |A| <1, for
every A € C with det(M — AI) = 0, where I denotes the unit
matrix of A, (R)).

Definition 6. We denote that a nonsingular matrix
A = (a;))1<i,jen € M s, (R) has the absolute value property if

ATNAl<T, (30)

nxn

where
141 =(Jay]) . _ € M ®) ()
1<i,j<n

Now, we need to use the following fixed-point theorem
to prove the existence and uniqueness of mild solution for

).

Theorem 1 (see [19]). Let (Z,d) be a complete generalized
metric space with d: ZxZ — R" and let operator
N: Z — Z be such that

d(N(x),N(y)) <Md(x, y), (32)
forall x, y € Z and some nonnegative square matrix M. If the

matrix M is convergent to 0, that is, M — 0 as k — 0,
then operator N has a unique fixed point x, € Z:

d(N*(xgox,)) s M (1= M) 'd(N (xo %)), (33)

for every x, € Z and k> 1.
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Definition 7. The fractional integral of index a with the
lower limit 0 for a function f can be written as

« Lt ()
Lfo = T (a) Jo (t - s)l_“ds’

provided the right-hand side is pointwise defined on
[0, +00), where T is the gamma function, which is defined by
T(y): = [, vl dt.

t>0,a>0, (34)

Definition 8. The Caputo derivative of index « for a function
f € C"([0,00)) is defined as

1 J»t f(n) (S)
r(n _ “) 0 (l’ _ S)a+1—n

“DIf(t) = ds=1""f" (1),

t>0,n—1<a<n.
(35)

3. Existence and Uniqueness

In this section, we investigate the existence and uniqueness
of a mild solution for (1). First of all, we will give some
hypotheses which will be used to prove our main result; for
this question, we assume that the following conditions hold.

t

x(t) =T, ¢;(0) + Jo (t- s)"“flE‘xl (t=s)f1(s, x5 y,)ds +

t
0

5
(.1) There exists constants a o b 7 € R* for each i =
1,2, ... such that
t
— 2
JO ||ft (S’ X ys) - fi (S’ Xs> ys)"x
t t
<ag [ b -x@hds by [ 1y -7 0lds
forallx, y, %,y € C([-r,T]; X).
(36)

(#.2) The function o: [0,T] — LOQ (Y, X) satisfies the
following Holder continuous conditions, that is, there
exists a constant C, >0 such that for all £,s € [0, T],

lo () = o ()50 <Colt —sI', (37)

where y>1-2H.

Now, we state the following definition of mild solution
for our problem.

Definition 9. A F-valued process u(t) = (x(t), y(t)) is
called a mild solution of (1) with respect to the probability space
(LF,P), if x,yeC(-r,T;L*(Q X)), (x(t),y()=
(¢, (), ¢, (1)) fort € [-r,0],and for each t € [0,T] =], u(t)
it satisfies the following integral equation:

Jt (t-9)""'E, (t - s)o, (s)dB} (s), P-as,te],
’ (38)

Y() = To 5, (0) + J (£ = 9% Ey (£ =) f3 (5%, 7,)ds + J; (t= 9% 'E, (t - 90, ()dBY (s), P-as,te],

where
r,(t)= J 1. (O)T; (t%6)0,
; o e

Eav(t):ocij 6, (O)T,(%6)8, i=1.2,
,  Ong

i=12,
(39)

in which T(¢) = e *4,t>0 is an analytic semigroup gen-
erated by the operator —A;, and the Mainardi’s Wright-type
function with o; € (0, 1) is given by

+00 n
(-2)
= > i 71 > .
e, (2) ;n!l‘(—(xi)n +1-q € (01)zeC. (40
The operators {Ta’_ (t)}tzo and {Eai (t)}tzo in (38) have the

following properties [22]:

Lemma 1 (see [23]). For any t>0andy € X, {Tai(t)}t>o
and {sz,- (t)}»o are linear and bounded operators. Moreover,
for 0<a; <1 and 0<v<2, there exists a constant C >0 such
that

T, O, <t

(a (41)
E, (0], <t iyl

Lemma 2 (see [23]). For any T >0and y € X, the operator
E, (1) is strongly continuous. Moreover, for 0<a;<1 and
0<v<2and0<t,<t,<T, there exists a constant C >0 such
that

’KE(x,- (tZ) - Ea,- (tl))X

o<CL 1)yl (42)

Lemma 3 (see [23]). Let S, (t) = t“f’lEai (1), for ¥y € X,
0<v<2,and0<a; <1, there exists a constant C > 0 such that

S (O =€,
” [Soc, (tZ) - Soc,- (tl)]X

L SC(e—t) e
(43)

The following lemma proves that the stochastic integral
in (38) is well defined.

Lemma 4. Under the assumptions on A, E, (t), and o (1), for
0<v<2,0<q;<1, and 1/4<H< 1/2, the stochastic integral
in (38) is well defined and satisfies the following:
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where the index should satisfy

2
E <Ct’ < oo, (44)
i

r (t— 9% 'E, (t - 5)0, (5)
0

8 =min{(2 - v)a; +4H -3, (2 —v)a; + 2H +y - 3,2H - (2 = v)o; + 1} > 0. (45)

Proof. Using the Wiener integral with respect to fBm and
noticing the expression of K;* and the properties of the Ito
integral, for 0 < H < (1/2), we get

t 2
[EJ (t =) 'E, (t - ) (s)dB" (s)]
, .

0

2
’ | R(KS, (¢ - Do) (948, 5)]
0 H

S

2
e ds

=S B (xS, - 9e00) 0

© ot
= z J [E"A}C/ZSO‘, (t - 5)e o (s)Ky (8, s)ey
. :

k=1
t oK 2 46
+j N[y, (t=1)a(r) =S, (t = 5)o ()] 52 (r,5)epdr| ds (49
s i i or H
SEHERE ?
<2 k; Jo [E"/\k \ (t—s)o(s)Ky (t,s)ekHHVds
(el e oK ?
+ 4; JO [EHL)Lk [S, (t=7)(a(r) = 5 (5))] arH (r.9edr| ds
vy Jt E r)tma(s)[s (=) =5, (0 9] 55 (1, geyar|as
o s k o; a; or > k '
=1, +1, +1;.
With the help of the following inequality (see [24]): turthermore, combining Lemma 3 and Holder inequality, we
Ky (£,5) <C(H) (¢ - )" 12502 (47) ~OPtain
[ee] t 2
I, =2 Z J [E||)t,1</28ai (t =)o (s)Ky (£, s)e|[5rds
k=170
! 2 2H-32H- 1\ 12 |12
<2C(H)3 J (t =)@ V232 R B ) e | ds
0 k=1 (48)

t (172) s ¢ (1/2)
< zc<H>6Tr<Q>(j (t - 5)2[(2_V)“"+2H_3]ds) ( [[ son l)ds)
0 0

<C (H Q)at(Z— v)ey+4H-3
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where 0: = supy.rllo(s)|ge < +00. On the contrary,
utilizing (#..2), expression (1Q7) and Holder inequality, we
get

=4y J;[E J W2[S, (6= 0 ()~ 0 (D] B E (7, yeydr Vds
k=1
< 4c§{Cl2,2 - vTr(Q)(H - %)2 J; 1-2H J [ (t- r) (r - s)y] (r - s)H_(m)y(m)_H||;drds

(49)
(112)

t t a2) s ot
<C(H,Q) J 51—2H<J (t = 1)t _ S)Z(ZH—3+y)dr) <J r4H_2dr) ds
0 s s

<C(H,QBRQCH-3+y)+ 1,22 -va; —3)"? x B(2 - 2H, (2 - v)a; + 4H + y — 4)t >3

where B(p,q) = Ll) xP~1(1 = x)T 'dx is the standard Beta
function, and we have used t§-t{<C(t,—t)” for
0<w<1, in the above derivation.

MER
cai (-}
g

Finally, for I5, applying Lemma 3 and expression (17), we
have

t

ds

Ao (s)[S,, (1) =S, (t- s)] S, s)ekdr .

il M8

t t
Tr(Q)5 J 1- ZHJ (r — )GV 2H-1 (L 2H=3) g4
0 oH Y H (50)
<C(H, Q)5 | 172 (¢ — 5)H-C-ma-14g
<C(H,Q)a°B(2 - 2H,4H — (2 — v)a,)¢* = V%+1,
Then, when d=min{(2-v)a;+4H -3, (2-v)a;+2H+ G-,
y—3,2H—- (2-v)a; +1}>0 and (1/4)<H < (1/2) and com- B, = 7](1,
bining the above estimation inequalities of I},1,, and I5, we 2-v)a, -1
can obtain
T(2— V), — lbf1
t 2 B, = Q2-va, -1
B[ (-9 B (- 90(9dB" (9] < <o, (53)
0 i H 5 T(Z— v)az—lafz
51 =\ ,
(51) TNQC-va, -1

where C >0 is a constant depending only on H,Q,v,y, «;,

T(Z— v)a,— lbf
and function o (s). O B, = 2

2-va, -1

Theorem 2. Assume that (#.1) — (¥ .2) are satisfied and
the matrix

B, B
Mye=( " 2), B;20,j=1,234, (52)
B3 B4 g

where

If M converges to zero, then problem (1) has a unique
solution.

Proof. We consider the operator N: D x Dy — Dypx Dy
defined by

N (x,y) = (N, (x, ), N, (x, ), (x,y) € Dy x D,
(54)
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where
[ ¢, (1), t e [-r,0],
N1(x)y)=‘ t a1 f a—1 H
T, ()¢, (0)+ | (t=9)"E, (t-5)f, (s x5y, )ds+ | (=9 E, (t—s)o,(s)dB) (s), P-aste],
{ 0 0
( ¢2 (t)) (S [_r) O],
N, (x,y) =1 t a-1 ! -1 H
Ty, (), (0) + | (=) E, (t=95)fr(s, x5y )ds+ | (t=35)" E, (t—5)0,(s)dB, (s), P—as, te].
{ 0 0
(55)
Now, we prove that N (x, y) has a fixed point by The-
orem 1. Indeed, let (x, y),(X,¥) € Dy x Dy, and by using
Lemma 1 and Holder inequality, we obtain that
E[N, (x (6, y(1) = N, R0, 7 O]
t . 2 t o
< Jo (t — 5)>2 S, (t =) Hvds[E Jo" [f1(s,x09) = f1(s xs,ys)]”;ds
t(2— v)ocl—laf " 5 t(z—v)ocl—lbf t 5
_ h|E -% _ h| E -
Sa—w%-wjo”x“)'“”““*(z—m%—1jo"”” F()Ids 6
t(z— V)Otl—laf t 5
<— =L E -x d
-(z_vml_ljoﬁ?”x“° %(Dl3ds
t(2— v)al—lbfl t . B 5 q
+aj;aj7Lﬁgnﬂﬂ—ﬂﬂhs

Therefore, since (x, y) = (X,¥) over the interval [-r,0],
by taking supremum in the above inequality, we have

— 12 _ _
N1 (%, 9) = Ny (%), < Billx = =l5, + Bylly = 715,

(57)
where
2-v)a; -
B - T o laf1
1S\ o
2-v)a, -1
(58)
2-v)a,—
B, = w
2 2-va, -1
Repeating the above process, we can also obtain
E|N, (x (1), y (1) = N, (0. 7 O)5
t(2— v)a,— 161 t )
<— E -X d
-V, -1 Jos,‘i? le(@=x@lxds 59

t(Z—v)(xz—l ; ¢ ,
b [ upElly (r) - 3 (DI ds.
2-v)a, -1 Jo ST? Iy (@) =y (@)lxds

Thus,
2 _ _
N, (%, 9) = N, (X )|, < B3llx = XI5, + Billy = 5,
(60)
where
5 T(Z— v)az—lafz
N2 -v)a, -1
(61)
5 T(2— v)a,— lbfz
N2 -va, -1
Hence,

[Ny (6 3) = Ny (Z 7)o, >
N2 (x, ) = N, (% 9) o,

<<Bl Bz) "x—E”@T
“\B, B, /\ ly-7lg, )

uwa—wabﬁ<

(62)

Therefore,
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INGo ) - N Gl <M e
X, - X Do = rice — >
4 Phoe=Rice| 1y Sy, (63)

forall, (x, y), (X,7) € D x Dr.

From Theorem 1, the mapping N has a unique fixed
(x, y) € Dy x Dy which is a unique solution of equation
D). O

Remark 1. Noticing  that
B,B, - B,B; — (B, + B,)>0, then

( B, B, ), (64)
B; By

B,,B,,B;,B, € RY, if

is convergent to zero.

4. Transportation Inequalities

In this section, we consider the property T', (C), for the law
of the mild solution of equation (1), on the space
C=C([0,T],X) endowed with the uniform metric d,.
Precisely, we have the following theorem.

Theorem 3. Assume that (H.1)and (%.2) holds, and let
Py, [F"#,2 be the la4w of x (¢y, -)3 y(¢,, ), the solution process of
equation (1). Using the metric

do (%, y) =supllx = ylx, %y €C([0,TLX), (45
te]

the probability measure Py , P satisfies “T, (C)” in the sense
that

wi@up ) s Wi (@up )]
<2C[H (@, |Py,) + Hy(Q, [Py, )],
on the metric space C([0,T], X) with the metric d .

Proof. Let Py, Py be the law of x(t,¢,), y(t, ¢,),t € [0,T]
on % = C[(0,T), X] and Q; be any probability measure on C
such that @; < P . Define

da,

@i =
aP,

(x (- 9;))P, (67)

which is a probability measure on (Q, %). Recalling the
definition of entropy and adopting a measure-transforma-
tion argument,

_ (Hl(@zlﬂj’))
H@IP) = ,

H,(Q,|P)

H,(Q,|P,) )

Hy(Q,|Py,)

H(@|P¢):(

Hi(@i | P) = ngog(i%>d@i

in sz
JQlog<dP¢ (x(',¢))) ap, (x( ¢;))dP
do,\ do,
e,

=H(Q|P,), i=12

(68)

Following [25], then there exists a predictable process
hy(t),h,(t) € X, t €] with
T 2
JO||hi @ ds<+oo i=12P-as (69

such that
(H(Q]Py,) Hy(Q2 | Py,))

1_ (T 1 (T
_ (Z[Eal jo I I ds, E[Ealjo I, (s)"ids).

By the Girsanov theorem, the process B, (t) and B, (t)
which are defined by

B,(t) =B, (t) - JO hy (s)ds,

(70)

t )
B,(t) = B, (t) - JO I, ()ds,

are two Brownian motions with respect to {#,},., on the
probability space (Q,%,Q;). Let us consider the Q;-frac-

tional Brownian motion {Bf{ (t)} defined by
¢ te]
B (1) = J Ky (¢, 5)dB, (s)
, (72)
=I Ky (£,5)dB, (s) — (Kyhy) (1), i=1,2,
0

where K h; is defined by (Kyh;)(t) = '[E) Ky (t,8)h; (s)ds.
By the Fubini theorem, we obtain
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t H-(1/2) t
(Kyhy) (t) = J cH[(£> (t - s)Hi(l/z) —(H - %)5(1/2)4{ J uf1=62 (u-— s)H(l/z)du]hi (s)ds
0 N s

N t\H-(172) H-(1/2) N\ meo (Y an-H H-(1/2) (73)
=1 ¢y ” (t—u) h; (u) - H_E u Ou (u—s) h; (s)ds [du

t
= J gi(w)du, i=1,2.
0

Consequently, under the measure Q;, the process
{u(t,¢) = (x(t,¢,), y(t, </>2))}t5, satisfies that

( (/)1 (t)’ te [-T‘, O]a
-1 Ta 08,0+ JO (£ =9 E, (= 9)f, (5,3, ,)ds + JO (t =9 'E, (t - 90, ()4 ()
+ r (t - s)‘)‘“lEm1 (t —s)a, (s)g; (s)ds, P-as.te],
0
(74)
( ¢2 (t)’ te [—7", 0],
b =1 T (t)p, (0) + JO (t=5)""'E, (t=5)f, (s x, p)ds + JO (t =) "E, (t - $)0,()dB; (s)
+ r (t=5)""'E, (t - 5)0,(5)g, (s)ds, P-aste].
0
We now consider the solution (X, ¥) (under (@1, @2)) of
the following equation:
[ <p (x(1) = (A x() + f, (6%, 7,))dt + 0 (t)dEf’(t), te[0,T],
D% (y(t) = (A, 7 (8) + f, (6%, 7,))dt + o, ()dBY (1), t € [0,T], s
x(t) = ¢, (1), t € [-r,0],
[ v (1) = ¢, (), t € [-r,0].

By Theorem 2, under @1,@2, the law of (x(1),x(1)), (y (1), ¥ (1)), t € [0,T] under Q is a coupling of
X(t, ), y(t, )t €] is Py Pys therefore, (@,Py) and it follows that

d 2 Ea] (doo (% E))Z Eal(supte]"x(t) - E(t)"i)
(Wi (Q.Py)] < L= ) (76)
E (deo (7)) Eg (sup,gylly (1) - 7 (D))
where we also use the Cauchy inequality Now, we can use the result above to estimate the distance

(a+b)<2a® + 2b% 77) between u and % with respect to d:
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e (8) - X ()15 = JO (t = )" "Ey (t =) (1 (s:%0 y.)) = (f1 (5% 7)) ds

2

+Jt (t= 9% 'E, (t - )0, (5)g, (5)ds
0 X

: (78)

X

<

JO (t - S)alilEtxl (t - S) (fl (S’ Xs> ys)) - (fl (S’ Es’ 75))(15

2

+

J; (t= 9% 'E, (t - )0, (), (5)ds
= 2(]1 + ]2).

X

By using the Holder inequality, condition (#.1), and
Lemma 3, we obtain

< J; =5y By (1 - 9) s J; I(f1 (5 %0 32) = 1 (5.0 ) s

LIy [ e -z oas N [ - nas 79)
2=V —-1Jo X Q2-va; -1 Jo X

t2=va-1, ¢ , t(z—v)al—lbf ¢ ,
sm Jo Tzl[lolil ll (1) = % (7)]I  ds +m JO 121[102] ly (1) = 7 (1)l ds.

For the second term, using the Fubini theorem and
Holder inequality, we obtain

2

t \H-(172) Ho(12)
S, (t—ys) S (t—2s) hy (s)ds
0

2 ~
J, <2c,0

1 2 ~
+ Z(H - E)CH(T

t s
[ S0 (6= 90 | w0 (502, s
0 0

)

~ t(Z—v)otlJrZH—Z t 5 1 2 5 (80)
<2610 5 e T3 [ I ©lhas+ a0 -m(r-2) dapeH, @-va-1)
t
X B(2-2H, (2 - v)a; + 4H + 4)t >~ V%3 J |y ()] 5 du
0
* t 2
=i | I e
Combining (78)-(80), we have
) 2-v)a;—1 ¢ 5
llc (s) =% ()l Sm JO sup lx (7) = % (1)l ds
t(2—v)a1—1b ¢
T |, ey - @IS (8D
T€E

<[ 2
v [ I @les
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Similarly, we have
(2-v)a;—1

(© Ol = g | sup e () - F@les

t(z—")"‘l—l ¢
vt | ey @ -y @
t
+C j I ©lfds
(82)
Adding (81) and (82), we obtain
su})(llx () =% )% +ly () - FSI)
- t
<C[ sup (Ix(0) - XD +1y () - F (I )ds

0 7¢[0,5]
[ Pl + G lRas
(83)
where C = max{2 (t@ V-1 (ap +ap)l(2-v)a, - 1),

2 (¢ M-l (by +b7)/(2=v)a; —1}and  C* = max{Cj,
C3}. By using the Gronwall inequality, we have

sup (lx(s) =% ()l +ly (s) =y ()% )
se[0,
o (84)

* ~ g 2 2
<C* exp(CT) JO Iy D% + ] ()2 ds.

Hence, it follows that

2

2

u(t,0) =u(t,m) =0,
v(t,0) =v(t,m) =0,

u(t,x) = ¢, (t,x),

L V(t> X) = ¢2 (t’ x),

~byv(t,x(t — 1) (cost + cos(V2t)) + et (aB )

1 —bv((t,x(t = 1)) (cost + cos (2t ))) + ! (4B/dr),

Discrete Dynamics in Nature and Society

[Wi=(2, )] +[Wi=(@,,p,,)]
T
<c exp(aT)Eal( [ I OF 1 <5)||§ds> (85

S2C[Hl<@1 |P¢1> + H2<@2 | P¢z>]>
where C = C* exp (CT). The proof is complete. O

Remark 2. In [15], by using the Girsanov theorem for
fractional Brownian motion, the authors established the
transportation inequalities for the law of the mild solution to
stochastic evolution equations driven by the fractional
Brownian motion with the Hurst parameter H € ((1/2), 1).
Besides, Boufoussi and Hajji [16] established the trans-
portation inequalities for the law of the mild solution to
stochastic evolution equations driven by the fractional
Brownian motion with the Hurst parameter H € (0, (1/2)).
However, the transportation inequalities for fractional
stochastic evolution equations driven by the fractional
Brownian motion are more complicated. On the contrary,
for a coupled system, we have to consider the transportation
inequalities for the law of the random vector (X (#),Y (1)),
which is more difficult. So, our results generalize and im-
prove the results in [15, 16].

5. An Example

In this section, we present an example to illustrate the
usefulness and applicability of our results. We consider the
following fractional stochastic partial differential equation
with delay effects:

D% (u(t,x)) = %u(t, x) + (1 - ayu(t,x(t — 7)) (sint +sin (V21)))

te€ [0, T],0<x<m,

D% (u(t,x)) = %u(t, x) + (1 - au(t,x (t — 7)) (sint + sin (V21)))

te€ [0, T],0<x<m, (86)
te[0,T],

te[0,T],

te[-r0],0<x<m,

te[-r0],0<x<m,
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where a;, b, > 0,a; € ((2/3),1] and 7> 0, B denotes a frac-
tional Brownian motion. To rewrite this system into the
abstract form (1), we set

i (t’ Pues ¢2t) (n)=1-a, (‘/’1 (”lt) (sint + sin(\/ft)))
~ by (¢, (n,) (cost + COS(\/Z)))’

f2(to b1 b)) () = 1= ay (¢ (17,) (sint + sin(\/ft)))
~ b, (¢, (1,) (cost + cos(V21))),

01 (t) = eita

0, (t) = 2¢7",
(87)

and & = # = L*([0,7]). We denote the operator A by
Au=u", with domain D(A)={ue %, u" € ¥ and
u(0) = u(m) = 0}.

Then, it is easy to obtain

[ee]
Az = — Z ez, ee, z€x, (88)
n=1

and A is the infinitesimal generator of an analytic semigroup
{S()}5o on F, which has following the following formula:

S(t)u = Z e " u, eve, Uue, (89)

n=1

where e, (u) = /)Y sin(mu),n=1,2,..., is the or-

thogonal set of eigenvectors of A. If the analytic semigroup
{S(t)},t € J, is compact, then there exists a constant K > 1
such that [S(®)|* <K.

In order to define the operator Q: # — %, we choose
a sequence {Qe, = 0,¢,} and assume that

tr(Q) = ) /d, <co. (90)
n=1
Define the process B (s) by
B" =} \3,B, (t)e,, (91)
n=1

where 1/4 < H<1/2 and {B},  is a sequence of two-sided
one-dimensional mutually independent fractional Brownian
motions. Thus, one has

1f1 (6% 9) £, 6% )| <8ayllx - %o, +8bylly - o,

If2(t 2 9) ~ £, %) <8ayllx ~ Xy, + 8b,lly — Ty,
(92)

On account of the conditions, it is straightforward to
check that (#.1) and (#.2) hold. Let

I T(Z— Yy~ 1a1 ’ T(Z— Vay— lb1
\j(z—v)ocl—l \J(Z—v)(xl—l

M =22 - (93)
’ T2 )y~ 1a2 ’ T2 V)~ 1b2
\j(2—v)oc2—1 \1(2—v)0c1—1

13

IfM converges to zero, then assumptions in Theorem 2
are fulfilled, then we can conclude that the law of the unique
mild solution of system (86) on [0, T] satisfies the property
T, (C).

6. Conclusion

In this paper, by Perov’s fixed-point theorem, some sto-
chastic analysis technique, and the properties of operator
semigroup, we show the existence and uniqueness of the
mild solution for a class of coupled fractional stochastic
evolution equations driven by the fractional Brownian
motion with the Hurst parameter H € (1/4,1/2). Further-
more, we establish the transportation inequalities for the law
of the mild solution, with respect to the uniform distance. In
our next paper, we will explore the existence, uniqueness,
and the transportation inequalities of the mild solution for a
class of coupled fractional stochastic evolution equations
driven by the fractional Brownian motion with the Hurst
parameter H € (0, 1/4).
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