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In this paper, we consider the existence and uniqueness of the mild solution for a class of coupled fractional stochastic evolution
equations driven by the fractional Brownian motion with the Hurst parameter H ∈ (1/4, 1/2). Our approach is based on Perov’s
fixed-point theorem. Furthermore, we establish the transportation inequalities, with respect to the uniform distance, for the law of
the mild solution.

1. Introduction

In the research of various fields of science and engineering,
fractional stochastic differential equations (SDEs) play a
significant role in the modeling of many complex phe-
nomena in diverse areas. .e intensive development in both
theory and applications of fractional SDEs was investigated
in [1–4]. In addition, many scholars have also developed
interest in systems with memory or after effect (i.e., systems
with finite delays in the state equation). .erefore, it is
necessary to study stochastic evolution equations with finite
delays. .e equation is widely used in network flow analysis,
mathematical finance, astrophysics, hydrology, image pro-
cessing, and other directions [5, 6]. For the nature of the
existence and uniqueness of the mild solutions, Sakthivel
et al. [7] considered the nonlinear-type fractional SDE, Li [8]
established stochastic delay fractional evolution equations
driven by fractional Brownianmotion in a Hilbert space, and
Mophou [9] was concerned about impulsive fractional
semilinear differential equations.

Moreover, under the research of many scholars,
transportation inequalities are developed greatly in var-
ious SDEs and stochastic systems with respect to the
different measure conditions. Among others, the Girsanov

transformation argument introduced in [10] has been
efficiently applied, e.g., Wu and Zhang [11] considered
infinite-dimensional dynamical systems with respect to L2

metric; €Ust€unel [12] studied the multivalued SDE and
singular SDE under uniform distance; besides, Bao et al.
[13] investigated the neutral functional SDE with respect
to both the uniform distance and the L2 distance; Saus-
sereau [14] researched the SDE driven by a fractional
Brownian motion; futhermore, Li and Luo [15] took it into
account that stochastic delay evolution equations driven
by fractional Brownian motion with the hurst parameter
H > 1/2 under the L2 metric and the uniform metric; and
Boufoussi and Hajji [16] established the transportation
inequalities, with respect to the uniform distance, for the
law of the mild solution for a neutral stochastic differential
equation with finite delay, driven by a fractional Brownian
motion with the Hurst parameter lesser than 1/2 in a
Hilbert space.

In connection with the aforementioned works, in this
paper, we investigate the existence, uniqueness, and property
T2(C) under the uniform distance for the law of mild so-
lution of the coupled fractional stochastic delay evolution
equations with finite delay driven by a fractional Brownian
motion with the Hurst parameter 0<H< 1/2:
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cDα1(x(t)) � A1x(t) + f1 t, xt, yt( ( dt + σ1(t)dBH
1 (t), t ∈ [0, T],

cDα2(y(t)) � A2y(t) + f2 t, xt, yt( ( dt + σ2(t)dBH
2 (t), t ∈ [0, T],

x(t) � ϕ1(t), t ∈ [− r, 0],

y(t) � ϕ2(t), t ∈ [− r, 0],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where cDαi is the Caputo fractional derivative of order
αi ∈ (1/2, 1], for each i � 1, 2, as for the state x(·), y(·) has
values in a real and separable Hilbert X with an inner
product (·, ·)X and norm ‖ · ‖X, where Ai, i � 1, 2  are the
infinitesimal generators of analytic semigroups of bounded
linear operators Ti(t), t≥ 0 , BH

i is the fractional Brownian
motion on a real and separable Hilbert space Y, with the
Hurst parameter H ∈ (0, 1/2), and let r> 0 denote the
constant. As for yt, we mean the segment solution which is
defined in the usual way, that is, if y(·, ·): [− r, T] ×Ω⟶ X,
then for any t> 0

yt(θ,ω) � y(t + θ,ω), θ ∈ [− r, 0],ω ∈ Ω. (2)

Before describing the properties fulfilled by operators
fi, σi, we need to introduce some nontations and describe
some spaces. Let D0 denote the space of all continuous
functions φ: [− r, 0] ×Ω⟶ X such that φ(θ, ·) is
F0-measurable for each θ ∈ [− r, 0] and 

0
− r
E‖φ‖2Xdt<∞. In

the space D0, we endow with the following norm:

‖φ‖
2
D0

� 
0

− r
E‖φ(t)‖

2
Xdt. (3)

Next, we denote by C(a, b; L2(Ω; X)) � C(a, b; L2(Ω,

F,P; X)) the Banach space of all continuous functions from
[a, b] into L2(Ω; X). Now, fixing T> 0, we define

DT � y: y ∈ C − r, T; L
2
(Ω; X) , sup

t∈[0,T]

E ‖y(t)‖
2
X <∞,


0

− r
E‖y(t)‖

2
Xdt<∞,

(4)

endowing with the following norm:

‖y‖DT
� sup

t∈[0,T]

����������

E ‖y(t)‖2X 



+‖y(t)‖D0
. (5)

We give initial data φ1,φ2 ∈ D0, and Y is another real
and separable Hilbert space, and BH

Qi
� BH

i is a Y-valued
fractional Brownian motion with increment covariance
given by a nonnegative trace class operator Qi, and L(Y, X)

represents the space of all bounded, continuous, and linear
operators from Y into X.

We denote fi: J × D0 × D0⟶ X and σi:

J⟶ L0
Qi

(Y, X). Here, let us denote L0
Qi

(Y, X) by the space
of all Qi-Hilbert–Schmidt operators from Y into X for each
i � 1, 2 which will also be introduced in the next section.

Now, let us present the relevant knowledge of
transportation inequalities. To connect the measure
distances with the probability measures, we consider the
transportation distance, also called as Wasserstein dis-
tance. Let (E, d) be a metric space provided with the

σ-field B, such that d(·, ·) is B × B-measurable. Fixing
p≥ 1 and for any probability measures μ and ] on E, we
define the Wasserstein distance of order p between μ and
] as

W
d
p(μ, v) � inf

π∈(μ,v)


Ε×Ε

d(x, y)
pdπ(x, y)⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/p)

, (6)

whereΠ(μ, ]) denotes the totality of probability measures on
E × E with the marginal μ and ]. .e relative entropy of ]
with respect to μ is defined as

H(v, μ) �

 log
d]
dμ

dv, ]≪ μ,

+∞, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

.e probability measure μ satisfies Lp-transportation
inequality on (E, d) if there exists a constant C≥ 0 such that
for any probability measure ],

W
d
p(μ, ])≤

���������

2CH(] | μ)



. (8)

As usual, we write μ ∈ Tp(C) for this relation. .e
property T2(C) is of particular interest. We will investigate
the property T2(C) for the law of the mild solution of
stochastic delay evolution equations driven by fractional
Brownian motion with the Hurst parameter 1/4<H< 1/2
under the uniform distance.

.is paper is organized as follows. In Section 2, we
introduce some preliminaries used in this paper such as
stochastic calculus, some properties of generalized Banach
spaces, and fractional calculus. In Section 3, we state and
prove the existence and uniqueness of the mild solution by
using Perov’s fixed-point type in generalized Banach spaces.
In Section 4, we investigate the property T2(C) for the law of
the solution of fractional stochastic delay evolution equa-
tions driven by fractional Brownian motion with the Hurst
parameter 1/4<H< 1/2 under the uniform metric. In Sec-
tion 5, we present an example to illustrate the efficiency of
the obtained result.

2. Preliminaries

In this section, we introduce some notations and recall
definitions and preliminary results which are used
throughout this paper.

Let (Ω,F,P, Ft t≥0) be a complete probability space
furnished with a normal filtration Ft t≥0. We postulate that
the operator Ai is self-adjoint and there exists the eigen-
vectors ek corresponding to eigenvalues ck such that
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Aiek � ckek, ek �
�
2

√
sin(kπ), ck � π2k2

, k ∈ N+
. (9)

For each σ > 0, A
(σ/2)

i ek � c
(σ/2)

k , k � 1, 2, 3, . . . , and let _H
σ

be the domain of A
(σ/2)

i  defined by

_H
σ

� D A
(σ/2)

i  � v ∈ L
2
(X), s.t. ‖v‖

2
_H
σ � 

∞

k�0
c

(σ/2)

k v
2
k <∞

⎧⎨

⎩

⎫⎬

⎭,

(10)

where the vector vk � (v, ek) and the norm ‖v‖ _H
σ � ‖A

(σ/2)

i v‖.
Let L2(X) be an X-valued Hilbert space with the inner
product E(·, ·) and norm E ‖ · ‖, and it is given by

L
2
(X) � χ: E‖χ‖

2
X � 

Ω
‖χ(ω)‖

2
XdP(ω)<∞, ω ∈ Ω .

(11)

Definition 1. For H ∈ (0, 1), a continuous centered
Gaussian process BH(t) t∈[0,∞) with covariance function

RH(t, s) � E B
H

(t)B
H

(s) 

�
1
2

t
2H

+ s
2H

− |t − s|
2H

 , t, s ∈ [0,∞),

(12)

is called a one-dimensional fractional Brownian motion
(fBm), and H is the Hurst parameter. In particular, when
H� 1/2, BH(t) represents a standard Brownian motion.

Now, let us aim at theWiener integral with respect to the
fBm. To begin with, BH(t) has following integral expression
(see [17]):

B
H

(t) � 
t

0
KH(t, s)dB(s), (13)

where B � B(t): t ∈ [0, T]{ } is a Wiener process, KH(t, s) is
a square integrable kernel, for 0<H< 1/2, and t> s; the
formula is as follows (see [17]):

KH(t, s) � cH

t

s
 

H− (1/2)

(t − s)
H− (1/2)

− H −
1
2

 s
(1/2)− H


t

s
(u − s)

H− (1/2)
u

H− (3/2)du , (14)

where cH �
��������������������������
H/((1 − H)β(1 − 2H, H + 1/2))


and β(·, ·)

denotes the Beta function. KH(t, s) � 0, t≤ s. Since
0<H< 1/2, from (14), we can infer that

KH(t, s)


≤ cH (t − s)
H− (1/2)

+
1
2

− H s
(1/2)− H


t

s
(u − s)

H− (1/2)
u

− H− (1/2)
u
2H− 1du 

≤ cH (t − s)
H− (1/2)

+
1
2

− H s
(1/2)− H


t

s
(u − s)

H− (1/2)
u

− H− (1/2)du .

(15)

.en, we obtain

KH(t, s)


≤ 2cH (t − s)
H− (1/2)

+ s
H− (1/2)

 . (16)

Taking the derivative of (14) with respect to t, we can
have

zKH

zt
(t, s) � cH(H − (1/2))

t

s
 

H− (1/2)

(t − s)
H− (3/2)

. (17)

Apparently, we can obtain the following inequality:

zKH

zt
(t, s)




� cH

1
2

− H (t − s)
H− (3/2)

. (18)

Let H be the Hilbert space defined as the closure of the
vector space spanned by the set of step functions
I[0,t], t ∈ [0, T]  with respect to the scalar product:

〈I[0,t], I[0,s]〉 � RH(t, s), ∀t, s ∈ [0, T]. (19)

Now, we consider the operator K∗H,T from H to
L2([0, T]) defined by

K
∗
H,Tφ (s) � KH(T, s)φ(s) + 

T

s
(φ(r) − φ(s))

zKH

zr
(r, s)dr.

(20)

Furthermore, K∗H,T is an isometry between H and
L2([0, T])(see [18]). Taking account for B � B(t),{

t ∈ [0, T]} defined by

B(t) � B
H

K
∗
H( 

− 1Ι[0,t] , (21)

it turns out that B is a Wiener process. Moreover, for any
φ ∈H, with (13), we have


T

0
φ(S)dB

H
(s) :� B

H
(φ) � 

T

0
K
∗
H,Tφ (t)dB(t). (22)

For any 0≤ t≤T, we can also deduce


t

0
φ(s)dB

H
(s) :� 

T

0
K
∗
H,TφΙ[0,t) (s)dB(s)

� 
t

0
K
∗
H,tφ (s)dB(s),

(23)
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where K∗H,t is defined in the same way as in (20) with t
instead of T. Next, we will use the notation K∗H,t without
specifying the parameter t ∈ [0, T].

Let (X, ‖ · ‖X, 〈·, ·〉X) and (Y, ‖ · ‖Y, 〈·, ·〉Y) be two real,
separable Hilbert spaces and letL(Y, X) denote the space of
all bounded linear operators from Y to X. Let Q ∈L(Y, X)

be a nonnegative self-adjoint operator i.e., Qen � λnen with
trace trQ � 

∞
n�1 λn <∞, where λn ∈ R+ and en n≥1 is a

complete orthonormal basis in Y. We define the infinite-
dimensional fBm on Y with covariance Q by the following
formula:

B
H
Q (t) � 

∞

n�1

��

λn



enB
H
n (t), t≥ 0, (24)

where BH
n (t) n∈N be a sequence of one-dimensional mu-

tually independent standard fractional Brownian motions
on (Ω,F,P). BH

n (t) is a Y-valued Gaussian process, starting
from 0, and has zero mean and covariance:

E〈BH
Q (t), x〉〈BH

Q (s), y〉 � R(s, t)〈Q(x), y〉,

for allx, y ∈ Y and t, s ∈ [0, T].
(25)

Let L0
2(Y, X) be the space of all ξ ∈L(Y, X) such that

ξQ(1/2) is a Hilbert–Schmidt operator. .e norm is given by

‖ξ‖
2
L0
2(Y,X) :� 

∞

n�1

�������

λnξ(s)en

������

������

2
� tr ξQξ∗( <∞. (26)

.en, ξ is called a Q-Hilbert–Schmidt operator from Y to
X.

Definition 2. Let φ: [0, T]⟶L0
2(Y, X). .en, the Wiener

integral of φ with respect to the fBm BH
Q is defined as follows:


t

0
φ(s)dB

H
Q (s) :� 

∞

n�1


t

0

��

λn



φ(s)endB
H
n (s)

� 
∞

n�1


t

0

��

λn



K
∗
H φen( ( (s)dBn(s),

(27)

where Bn is the standard Brownian motion used to represent
BH

n as in (13), and the sum above is finite when

∞
n�1 λn‖K∗H(φen)‖<∞.
.e classical Banach contraction principle was ex-

tended for contractive maps on spaces endowed with a
vector-valued metric space by Perov [19] in 1964 and
Precup [20, 21]. Now, we recall some useful definitions
and results.

Definition 3. Let Z be a nonempty set. We denote by a
vector-valued metric on Z defined as a mapping d: Z ×

Z⟶ Rn with the following properties:

(1) d(u,v)≥0 forallu,v∈Z; d(u,v) � 0, only if u � v.

(2) d(u, v) � d(u, v) for all u, v ∈ Z.

(3) d(u, v)≤ d(u, w) + d(w, v) for all u, v, w ∈ Z.

Now, we consider a generalized metric space (Z, d). For
r � (r1, . . . , rn) ∈ Rn

+, we will define the open ball centered
in x0 with radius r:

B x0, r(  � x ∈ Z: d x0, x( < r , (28)

and the closed ball centered in x0 with radius r:

B x0, r(  � x ∈ Z: d x0, x( ≤ r . (29)

We state that for a generalized metric space, the notation
of open and closed sets, convergence, Cauchy sequence, and
completeness in a generalized metric space are similar to
those in usual metric spaces. If x, y ∈ Rn, x � (x1, . . . , xn),
y � (y1, . . . , yn), by x≤y then we mean xi ≤yi, i � 1, . . . , n.

Also, |x| � (|x1|, . . . , |xn|) and max(x, y) � max(max(x1,

y1), . . . , max(xn, yn)). If c ∈ R, then x≤ c means xi ≤ c for
each i � 1, . . . , n.

Definition 4. A generalized metric space (Z, d) where

d(x, y): �

d1(x, y)

⋮
dn(x, y)

⎛⎜⎝ ⎞⎟⎠ is complete, if for every

i � 1, . . . , n, (Z, di) is a complete metric space.

Definition 5. We denote that a real square matrix M is
convergent to zero if and only if its spectral radius ρ(M) is
strictly less than 1. In other words, it means that all the
eigenvalues of M are in the open unit disc (i.e., |λ|< 1, for
every λ ∈ C with det(M − λI) � 0, where I denotes the unit
matrix of Mn×n(R) ).

Definition 6. We denote that a nonsingular matrix
A � (aij)1≤i,j≤n ∈Mn×n(R) has the absolute value property if

A
− 1

|A|≤ I, (30)

where

|A| � aij



 
1≤i,j≤n
∈Mn×n(R). (31)

Now, we need to use the following fixed-point theorem
to prove the existence and uniqueness of mild solution for
(1).

Theorem 1 (see [19]). Let (Z, d) be a complete generalized
metric space with d: Z × Z⟶ Rn and let operator
N: Z⟶ Z be such that

d(N(x), N(y))≤Md(x, y), (32)

for all x, y ∈ Z and some nonnegative square matrix M. If the
matrix M is convergent to 0, that is, Mk⟶ 0 as k⟶ 0,
then operator N has a unique fixed point x∗ ∈ Z:

d N
k

x0, x∗(  ≤M
k
(I − M)

− 1d N x0, x0( ( , (33)

for every x0 ∈ Z and k≥ 1.
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Definition 7. .e fractional integral of index α with the
lower limit 0 for a function f can be written as

I
α
f(t) �

1
Γ(α)


t

0

f(s)

(t − s)1− α ds, t> 0, α> 0, (34)

provided the right-hand side is pointwise defined on
[0, +∞), where Γ is the gamma function, which is defined by
Γ(y): � 

∞
0 ty− 1e− tdt.

Definition 8. .eCaputo derivative of index α for a function
f ∈ Cn([0,∞)) is defined as

C
D

α
t f(t) �

1
Γ(n − α)


t

0

f(n)(s)

(t − s)α+1− n
ds � I

n− α
f

(n)
(t),

t> 0, n − 1< α< n.

(35)

3. Existence and Uniqueness

In this section, we investigate the existence and uniqueness
of a mild solution for (1). First of all, we will give some
hypotheses which will be used to prove our main result; for
this question, we assume that the following conditions hold.

(H.1) .ere exists constants afi
, bfi
∈ R+ for each i �

1, 2, . . . such that


t

0
fi s, xs, ys(  − fi s, xs, ys( 

����
����
2
X

≤ afi


t

− r
‖x(s) − x(s)‖

2
Xds + bfi


t

− r
‖y(s) − y(s)‖

2
Xds,

for allx, y, x, y ∈ C([− r, T]; X).

(36)

(H.2) .e function σ: [0, T]⟶ L0
Q(Y, X) satisfies the

following H€older continuous conditions, that is, there
exists a constant Cσ > 0 such that for all t, s ∈ [0, T],

‖σ(t) − σ(s)‖L0
Q
≤Cσ |t − s|

c
, (37)

where c> 1 − 2H.

Now, we state the following definition of mild solution
for our problem.

Definition 9. A H-valued process u(t) � (x(t), y(t)) is
called amild solution of (1) with respect to the probability space
(Ω,F,P), if x, y ∈ C(− r, T; L2(Ω; X)), (x(t), y(t)) �

(ϕ1(t), ϕ2(t)) for t ∈ [− r, 0], and for each t ∈ [0, T] � J, u(t)

it satisfies the following integral equation:

x(t) � Tα1ϕ1(0) + 
t

0
(t − s)

α1− 1
Eα1(t − s)f1 s, xs, ys( ds + 

t

0
(t − s)

α1− 1
Eα1(t − s)σ1(s)dB

H
1 (s), P − a.s., t ∈ J,

y(t) � Tα2ϕ2(0) + 
t

0
(t − s)

α2− 1
Eα2(t − s)f2 s, xs, ys( ds + 

t

0
(t − s)

α2− 1
Eα2(t − s)σ2(s)dB

H
2 (s), P − a.s., t ∈ J,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(38)

where

Tαi
(t) � 

∞

0
ηαi

(θ)Ti t
αiθ( θ, i � 1, 2,

Eαi
(t) � αi 

∞

0
θηαi

(θ)Ti t
αiθ( θ, i � 1, 2,

(39)

in which T(t) � e− tAi , t≥ 0 is an analytic semigroup gen-
erated by the operator − Ai, and the Mainardi’s Wright-type
function with αi ∈ (0, 1) is given by

ηαi
(z) � 

+∞

0

(− z)n

n!Γ − αi( n + 1 − αi

, αi ∈ (0, 1), z ∈ C. (40)

.e operators Tαi
(t) 

t≥0 and Eαi
(t) 

t≥0 in (38) have the
following properties [22]:

Lemma 1 (see [23]). For any t> 0 and χ ∈ X, Tαi
(t) 

t≥0
and Eαi

(t) 
t≥0 are linear and bounded operators. Moreover,

for 0< αi < 1 and 0≤ v< 2, there exists a constant C> 0 such
that

Tαi
(t)χ

�����

����� _H
v ≤Ct

− αiv/2( )‖χ‖X,

Eαi
(t)χ

�����

����� _H
v ≤Ct

− αiv/2( )‖χ‖X.
(41)

Lemma 2 (see [23]). For any T> 0 and χ ∈ X, the operator
Eαi

(t) is strongly continuous. Moreover, for 0< αi < 1 and
0≤ v< 2 and 0≤ t1 < t2 ≤T, there exists a constant C> 0 such
that

Eαi
t2(  − Eαi

t1(  χ
�����

����� _H
v ≤C t2 − t1( 

αiv/2( )‖χ‖X. (42)

Lemma 3 (see [23]). Let Sαi
(t) � tαi − 1Eαi

(t), for ∀χ ∈ X,

0≤ v< 2, and 0< αi < 1, there exists a constant C> 0 such that

Sαi
(t)χ

�����

����� _H
v ≤Ct

(2− v)αi − 2/2( )‖χ‖X,

Sαi
t2(  − Sαi

t1(  χ
�����

����� _H
v ≤C t2 − t1( 

2− (2− v)αi/2( )‖χ‖X.

(43)

.e following lemma proves that the stochastic integral
in (38) is well defined.

Lemma 4. Under the assumptions on A, Eαi
(t), and σ(t), for

0≤ v< 2, 0< αi < 1, and 1/4<H< 1/2, the stochastic integral
in (38) is well defined and satisfies the following:
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E 
t

0
(t − s)

αi − 1
Eαi

(t − s)σ2(s)

�������

�������

2

_H
v
≤Ct

δ <∞, (44)
where the index should satisfy

δ � min (2 − v)αi + 4H − 3, (2 − v)αi + 2H + c − 3, 2H − (2 − v)αi + 1 > 0. (45)

Proof. Using the Wiener integral with respect to fBm and
noticing the expression of K∗t and the properties of the Ito
integral, for 0<H< (1/2), we get

E 
t

0
(t − s)

αi− 1Εαi
(t − s)σ(s)dB

H
(s)

�������

�������

2

_H
v

� 
∞

k�1
E 

t

0
λ1/2k K

∗
t Sαi

(t − s)ekσ (s)dβk(s)

�������

�������

2

_H
v

� 

∞

k�1


t

0
E λ1/2k K

∗
t Sαi

(t − s)ekσ (s)
�����

�����
2
_H

vds

� 
∞

k�1


t

0
E λ1/2k Sαi

(t − s)ekσ(s)KH(t, s)ek

�����

+ 
t

s
λ1/2k Sαi

(t − r)σ(r) − Sαi
(t − s)σ(s) 

zKH

zr
(r, s)ekdr

�������

2

_H
v
ds

≤ 2 

∞

k�1


t

0
E λ1/2k Sαi

(t − s)σ(s)KH(t, s)ek

�����

�����

2

_H
v
ds

+ 4 
∞

k�1


t

0
E 

t

s
λ1/2k Sαi

(t − r)(σ(r) − σ(s)) 
zKH

zr
(r, s)ekdr

�������

�������

2

_H
v
ds

+ 4 
∞

k�1


t

0
E 

t

s
λ1/2k σ(s) Sαi

(t − r) − Sαi
(t − s) 

zKH

zr
(r, s)ekdr

�������

�������

2

_H
v
ds

:� I1 + I2 + I3.

(46)

With the help of the following inequality (see [24]):

KH(t, s)≤C(H)(t − s)
H− (1/2)

s
H− (1/2)

, (47)

furthermore, combining Lemma 3 andH€older inequality, we
obtain

I1 � 2 
∞

k�1


t

0
E λ1/2k Sαi(t − s)σ(s)KH(t, s)ek

����
����
2
_H

vds

≤ 2C(H)σ 
t

0
(t − s)

(2− v)αi+2H− 3S2H− 1


∞

k�1
Ε λ1/2k ek

����
����
2
ds⎛⎝ ⎞⎠

≤ 2C(H)σTr(Q) 
t

0
(t − s)

2 (2− v)αi+2H− 3[ ]ds 

(1/2)


t

0
s
2(2H− 1)ds 

(1/2)

≤C(H, Q)σt
(2− v)αi+4H− 3

,

(48)
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where σ: � sup0≤s≤T‖σ(s)‖L0
Q
< +∞. On the contrary,

utilizing (H..2), expression (17), and H€older inequality, we
get

I2 � 4 

∞

k�1


t

0
E 

t

s
λ1/2k Sαi

(t − r)(σ(r) − σ(s)) 
zKH

zr
(r, s)ekdr

�������

�������

2

_H
v
ds

≤ 4c
2
HC

2
σ2 − vTr(Q) H −

1
2

 
2


t

0
s
1− 2H


t

s
(t − r)

(2− v)αi − 2
2 (r − s)

c
 (r − s)

H− (3/2)
c

(1/2)− H
������

������

2

_H
v
drds

≤C(H, Q) 
t

0
s
1− 2H


t

s
(t − r)

2(2− v)αi− 4
(r − s)

2(2H− 3+c)dr 

(1/2)


t

s
r
4H− 2dr 

(1/2)

ds

≤C(H, Q)β 2(2H − 3 + c) + 1, 2(2 − v)αi − 3( 
(1/2)

× β 2 − 2H, (2 − v)αi + 4H + c − 4( t
(2− v)αi+2H+c− 3

,

(49)

where β(p, q) � 
1
0 xp− 1(1 − x)q− 1dx is the standard Beta

function, and we have used tω2 − tω1 ≤C(t2 − t1)
ω for

0≤ω≤ 1, in the above derivation.

Finally, for I3, applying Lemma 3 and expression (17), we
have

I3 � 4 
∞

k�1


t

0
E 

t

s
λ1/2k σ(s) Sαi

(t − r) − Sαi
(t − s) 

zKH

zr
(r, s)ekdr

�������

�������

2

_H
v
ds

≤ 4c
2
H H −

1
2

 
2
Tr(Q)σ2 

t

0
s
1− 2H


t

0
(r − s)

2H− (2− v)αi c
2H− 1

(r − s)
2H− 3

�����

����� _H
vdrds

≤C(H, Q)σ2
t

0
s
1− 2H

(t − s)
4H− (2− v)αi − 1ds

≤C(H, Q)σ2β 2 − 2H, 4H − (2 − v)αi( t
2H− (2− v)αi+1.

(50)

.en, when δ �min (2 − v)αi +4H − 3, (2 − v)αi +2H+

c − 3,2H − (2 − v)αi +1}>0 and (1/4)<H<(1/2) and com-
bining the above estimation inequalities of I1, I2, and I3, we
can obtain

E 
t

0
(t − s)

αi − 1
Eαi

(t − s)σ(s)dB
H

(s)

�������

�������

2

_H
v
≤Ct

δ <∞,

(51)

where C> 0 is a constant depending only on H, Q, v, c, αi,
and function σ(s). □

Theorem 2. Assume that (H.1) − (H.2) are satisfied and
the matrix

Mtrice �
B1 B2

B3 B4
 , Bj ≥ 0, j � 1, 2, 3, 4, (52)

where

B1 �

�����������
T(2− v)α1− 1af1

(2 − v)α1 − 1



,

B2 �

�����������
T(2− v)α1− 1bf1

(2 − v)α1 − 1



,

B3 �

�����������
T(2− v)α2− 1af2

(2 − v)α2 − 1



,

B4 �

�����������
T(2− v)α2− 1bf2

(2 − v)α2 − 1



.

(53)

If M converges to zero, then problem (1) has a unique
solution.

Proof. We consider the operatorN: DT × DT⟶ DT× DT

defined by

N(x, y) � N1(x, y), N2(x, y)( , (x, y) ∈ DT × DT,

(54)
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where

N1(x, y) �

ϕ1(t), t ∈ [− r, 0],

Tα1(t)ϕ1(0) + 
t

0
(t − s)

α1− 1
Eα1(t − s)f1 s, xs, ys( ds + 

t

0
(t − s)

α1− 1
Eα1(t − s)σ1(s)dB

H
1 (s), P − a.s, t ∈ J,

⎧⎪⎪⎨

⎪⎪⎩

N2(x, y) �

ϕ2(t), t ∈ [− r, 0],

Tα2(t)ϕ2(0) + 
t

0
(t − s)

α2− 1
Eα2(t − s)f2 s, xs, ys( ds + 

t

0
(t − s)

α2− 1
Eα2(t − s)σ2(s)dB

H
2 (s), P − a.s, t ∈ J.

⎧⎪⎪⎨

⎪⎪⎩

(55)

Now, we prove that N(x, y) has a fixed point by .e-
orem 1. Indeed, let (x, y),(x, y) ∈ DT × DT, and by using
Lemma 1 and H€older inequality, we obtain that

E N1(x(t), y(t)) − N1(x(t), y(t))
����

����
2
_H

v

≤ 
t

0
(t − s)

2α1− 2
Sα1(t − s)

�����

�����
2
_H

vdsE
t

0
f1 s, xs, ys(  − f1 s, xs, ys(  

����
����
2
X
ds

≤
t(2− v)α1− 1af1

(2 − v)α1 − 1


t

0
E‖x(s) − x(s)‖

2
Xds +

t(2− v)α1− 1bf1

(2 − v)α1 − 1


t

0
E‖y(s) − y(s)‖

2
Xds

≤
t(2− v)α1− 1af1

(2 − v)α1 − 1


t

0
sup
τ∈J

E‖x(τ) − x(τ)‖
2
Xds

+
t(2− v)α1− 1bf1

(2 − v)α1 − 1


t

0
sup
τ∈J

E‖y(τ) − y(τ)‖
2
Xds.

(56)

.erefore, since (x, y) � (x, y) over the interval [− r, 0],
by taking supremum in the above inequality, we have

N1(x, y) − N1(x, y)
����

����
2
DT
≤B

2
1‖x − x‖

2
DT

+ B
2
2‖y − y‖

2
DT

,

(57)

where

B1 �

�����������
T(2− v)α1− 1af1

(2 − v)α1 − 1



,

B2 �

�����������
T(2− v)α1− 1bf1

(2 − v)α1 − 1



.

(58)

Repeating the above process, we can also obtain

E N2(x(t), y(t)) − N2(x(t), y(t))
����

����
2
_H

v

≤
t(2− v)α2− 1af2

(2 − v)α2 − 1


t

0
sup
τ∈J

E‖x(τ) − x(τ)‖
2
Xds

+
t(2− v)α2− 1bf2

(2 − v)α2 − 1


t

0
sup
τ∈J

E‖y(τ) − y(τ)‖
2
Xds.

(59)

.us,

N2(x, y) − N2(x, y)
����

����
2
DT
≤B

2
3‖x − x‖

2
DT

+ B
2
4‖y − y‖

2
DT

,

(60)

where

B3 �

�����������
T(2− v)α2− 1af2

(2 − v)α2 − 1



,

B2 �

�����������
T(2− v)α2− 1bf2

(2 − v)α2 − 1



.

(61)

Hence,

‖N(x, y) − N(x, y)‖DT
�

N1(x, y) − N1(x, y)
����

����DT

N2(x, y) − N2(x, y)
����

����DT

⎛⎝ ⎞⎠

≤
B1 B2

B3 B4
 

‖x − x‖DT

‖y − y‖DT

⎛⎝ ⎞⎠.

(62)

.erefore,
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‖N(x, y) − N(x, y)‖DT
≤Mtrice

‖x − x‖DT

‖y − y‖DT

⎛⎝ ⎞⎠,

for all, (x, y), (x, y) ∈ DT × DT.

(63)

From .eorem 1, the mapping N has a unique fixed
(x, y) ∈ DT × DT which is a unique solution of equation
(1). □

Remark 1. Noticing that B1, B2, B3, B4 ∈ R+, if
B1B4 − B2B3 − (B1 + B4)> 0, then

B1 B2

B3 B4
 , (64)

is convergent to zero.

4. Transportation Inequalities

In this section, we consider the property T2(C), for the law
of the mild solution of equation (1), on the space
C � C([0, T], X) endowed with the uniform metric d∞.
Precisely, we have the following theorem.

Theorem 3. Assume that (H.1) and (H.2) holds, and let
Pϕ1,Pϕ2 be the law of x(ϕ1, ·), y(ϕ2, ·), the solution process of
equation (1). Using the metric

d∞(x, y) � sup
t∈J

‖x − y‖X, x, y ∈ C([0, T], X), (65)

the probability measure Pϕ1,Pϕ2 satisfies “T2(C)” in the sense
that

W
d∞
2 Q1,Pϕ1  

2
+ W

d∞
2 Q1,Pϕ2  

2

≤ 2C H1 Q2
Pϕ1  + H1 Q2

Pϕ2  ,
(66)

on the metric space C([0, T], X) with the metric d∞.

Proof. Let Pϕ1,Pϕ2 be the law of x(t, ϕ1), y(t, ϕ2), t ∈ [0, T]

onC � C[(0, T), X] andQi be any probability measure onC

such that Qi≪Pϕi
. Define

Qi :�
dQi

dPϕi

x ·, ϕi( ( P, (67)

which is a probability measure on (Ω,F). Recalling the
definition of entropy and adopting a measure-transforma-
tion argument,

H( Q |P) �

H1
Q2

P 

H2
Q2

P 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

H Q |Pϕ  �

H1 Q1
Pϕ1 

H2 Q2
Pϕ2 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

Hi
Qi

P  � 
Ω
log

d Qi

dP
 d Qi

� 
Ω
log

dQi

dPϕ
(x(·, ϕ)) 

dQi

dPϕi

x ·, ϕi( ( dP

� 

c

log
dQi

dPϕ
 

dQi

dPϕi

dPϕi

� H Qi

Pϕi
 , i � 1, 2.

(68)

Following [25], then there exists a predictable process
h1(t), h2(t) ∈ X, t ∈ J with


T

0
hi(s)

����
����

2

X
ds< +∞, i � 1, 2,P − a.s, (69)

such that

H1 Q1
Pϕ1 , H2 Q2

Pϕ2  

�
1
2
EQ1


T

0
h1(s)

����
����

X

2 ds,
1
2
EQ1


T

0
h2(s)

����
����

X

2 ds .

(70)

By the Girsanov theorem, the process B1(t) and B2(t)

which are defined by

B1(t) � B1(t) − 
t

0
h1(s)ds,

B2(t) � B1(t) − 
t

0
h2(s)ds,

(71)

are two Brownian motions with respect to Ft t≥0 on the
probability space (Ω,F, Qi). Let us consider the Qi-frac-

tional Brownian motion B
H

t (t) 
t∈J

defined by

B
H

t (t) � 
t

0
KH(t, s)dBi(s)

� 
t

0
KH(t, s)dBi(s) − KHhi( (t), i � 1, 2,

(72)

where KHhi is defined by (KHhi)(t) � 
t

0 KH(t, s)hi(s)ds.
By the Fubini theorem, we obtain
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KHhi( (t) � 
t

0
cH

t

s
 

H− (1/2)

(t − s)
H− (1/2)

− H −
1
2

 s
(1/2)− H


t

s
u

H− (3/2)
(u − s)

H− (1/2)du hi(s)ds

� 
t

0
cH

t

u
 

H− (1/2)

(t − u)
H− (1/2)

hi(u) − H −
1
2

 u
H− (3/2)


u

0
u

(1/2)− H
(u − s)

H− (1/2)
hi(s)ds du

:� 
t

0
gi(u)du, i � 1, 2.

(73)

Consequently, under the measure Qi, the process
u(t, ϕ) � (x(t, ϕ1), y(t,ϕ2)) t∈J satisfies that

x(t) �

ϕ1(t), t ∈ [− r, 0],

Tα1(t)ϕ1(0) + 
t

0
(t − s)

α1− 1
Eα1(t − s)f1 s, xs, ys( ds + 

t

0
(t − s)

α1− 1
Eα1(t − s)σ1(s)dB

H

1 (s)

+ 
t

0
(t − s)

α1− 1
Eα1(t − s)σ1(s)g1(s)ds, P − a.s. t ∈ J,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y(t) �

ϕ2(t), t ∈ [− r, 0],

Tα2(t)ϕ2(0) + 
t

0
(t − s)

α2− 1
Eα2(t − s)f2 s, xs, ys( ds + 

t

0
(t − s)

α2− 1
Eα2(t − s)σ2(s)dB

H

2 (s)

+ 
t

0
(t − s)

α2− 1
Eα2(t − s)σ2(s)g2(s)ds, P − a.s. t ∈ J.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(74)

We now consider the solution (x, y) (under ( Q1,
Q2)) of

the following equation:

cDα1(x(t)) � A1x(t) + f1 t, xt, yt( ( dt + σ1(t)dB
H

1 (t), t ∈ [0, T],

cDα2(y(t)) � A2y(t) + f2 t, xt, yt( ( dt + σ2(t)dB
H

2 (t), t ∈ [0, T],

x(t) � ϕ1(t), t ∈ [− r, 0],

y(t) � ϕ2(t), t ∈ [− r, 0].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)

By .eorem 2, under Q1,
Q2, the law of

x(t, ϕ1), y(t, ϕ1), t ∈ J is Pϕ1,Pϕ2; therefore,
(x(t), x(t)), (y(t), y(t)), t ∈ [0, T] under Q is a coupling of
(Q,Pϕ) and it follows that

W
d∞
2 Q,Pϕ  

2
≤

EQ1
d∞(x, x)( 

2

EQ2
d∞(y, y)( 

2
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ �

EQ1
supt∈J‖x(t) − x(t)‖2X 

EQ2
supt∈J‖y(t) − y(t)‖2X 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (76)

where we also use the Cauchy inequality

(a + b)
2 ≤ 2a

2
+ 2b

2
. (77)

Now, we can use the result above to estimate the distance
between u and u with respect to d∞:
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‖x(t) − x(t)‖
2
X � 

t

0
(t − s)

α1− 1
Eα1(t − s) f1 s, xs, ys( (  − f1 s, xs, ys( ( ds

�������

+
t

0
(t − s)

α1− 1
Eα1(t − s)σ1(s)g1(s)ds

�������

2

X

≤ 
t

0
(t − s)

α1− 1
Eα1(t − s) f1 s, xs, ys( (  − f1 s, xs, ys( ( ds

�������

�������

2

X

+ 
t

0
(t − s)

α1− 1
Eα1(t − s)σ1(s)g1(s)ds

�������

�������

2

X

:� 2 J1 + J2( .

(78)

By using the H€older inequality, condition (H.1), and
Lemma 3, we obtain

J1 ≤ 
t

0
(t − s)

α1− 1
Eα1(t − s)

�����

�����
2
_H

vds 
t

0
f1 s, xs, ys(  − f1 s, xs, ys( ( 

����
����
2
X
ds

≤
t(2− v)α1− 1af1

(2 − v)α1 − 1


t

0
‖x(s) − x(s)‖

2
Xds +

t(2− v)α1− 1bf1

(2 − v)α1 − 1


t

0
‖y(s) − y(s)‖

2
Xds

≤
t(2− v)α1− 1af1

(2 − v)α1 − 1


t

0
sup
τ∈[0,s]

‖x(τ) − x(τ)‖
2
Xds +

t(2− v)α1− 1bf1

(2 − v)α1 − 1


t

0
sup
τ∈[0,s]

‖y(τ) − y(τ)‖
2
Xds.

(79)

For the second term, using the Fubini theorem and
H€older inequality, we obtain

J2 ≤ 2c
2
Hσ 

t

0
Sα1(t − s)

t

s
 

H− (1/2)

(t − s)
H− (1/2)

h1(s)ds

��������

��������

2

+ 2 H −
1
2

 c
2
Hσ 

t

0
Sα1(t − s)s

H− (3/2)


s

0
u

(1/2)− H
(s − u)

H− (1/2)
h1(u)duds

�������

�������

2

 

≤ 2c
2
Hσ

t(2− v)α1+2H− 2

(2 − v)α1 + 2H − 2


t

0
h1(s)

����
����
2
X
ds + 4(1 − H) H −

1
2

 
2
c
2
Hσβ 2H, (2 − v)αi − 1( 

× β 2 − 2H, (2 − v)αi + 4H + 4( t
(2− v)αi+4H− 3


t

0
h1(u)

����
����
2
X
du

:� C
∗
1 

t

0
h1(s)

����
����
2
X
ds.

(80)

Combining (78)–(80), we have

‖x(s) − x(s)‖
2
X ≤

t(2− v)α1− 1af1

(2 − v)α1 − 1


t

0
sup
τ∈J

‖x(τ) − x(τ)‖
2
Xds

+
t(2− v)α1− 1bf1

(2 − v)α1 − 1


t

0
sup
τ∈J

‖y(τ) − y(τ)‖
2
Xds

+ C
∗
1 

t

0
h1(s)

����
����
2
X
ds.

(81)
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Similarly, we have

‖y(s) − y(s)‖
2
X ≤

t(2− v)α1− 1af2

(2 − v)α2 − 1


t

0
sup
τ∈J

‖x(τ) − x(τ)‖
2
Xds

+
t(2− v)α1− 1bf2

(2 − v)α2 − 1


t

0
sup
τ∈J

‖y(τ) − y(τ)‖
2
Xds

+ C
∗
2 

t

0
h2(s)

����
����
2
X
ds.

(82)

Adding (81) and (82), we obtain

sup
s∈J

‖x(s) − x(s)‖
2
X +‖y(s) − y(s)‖

2
X 

≤ C 
t

0
sup
τ∈[0,s]

‖x(τ) − x(τ)‖
2
X +‖y(τ) − y(τ)‖

2
X ds

+ C
∗


t

0
h1(s)

����
����
2
X

+ h2(s)
����

����
2
X
ds,

(83)

where C � max 2(t(2− v)α1− 1(af1
+ af2

)/(2 − v)α1 − 1),

2(t(2− v)α1− 1(bf1
+ bf2

)/(2 − v)α1 − 1)} and C∗ � max C∗1 ,

C∗2 }. By using the Gronwall inequality, we have

sup
s∈[0,t]

‖x(s) − x(s)‖
2
X +‖y(s) − y(s)‖

2
X 

≤C
∗ exp(CT) 

T

0
h1(s)

����
����
2
X

+ h2(s)
����

����
2
X
ds.

(84)

Hence, it follows that

W
d∞
2 Q1, Ρϕ1  

2
+ W

d∞
2 Q2, Ρϕ2  

2

≤C
∗ exp(CT)EQ1


T

0
h1(s)

����
����
2
X

+ h2(s)
����

����
2
X
ds 

≤ 2C H1 Q1 pϕ1

  + H2 Q2 pϕ2

  ,

(85)

where C � C∗ exp(CT). .e proof is complete. □

Remark 2. In [15], by using the Girsanov theorem for
fractional Brownian motion, the authors established the
transportation inequalities for the law of the mild solution to
stochastic evolution equations driven by the fractional
Brownian motion with the Hurst parameter H ∈ ((1/2), 1).
Besides, Boufoussi and Hajji [16] established the trans-
portation inequalities for the law of the mild solution to
stochastic evolution equations driven by the fractional
Brownian motion with the Hurst parameter H ∈ (0, (1/2)).
However, the transportation inequalities for fractional
stochastic evolution equations driven by the fractional
Brownian motion are more complicated. On the contrary,
for a coupled system, we have to consider the transportation
inequalities for the law of the random vector (X(t), Y(t)),
which is more difficult. So, our results generalize and im-
prove the results in [15, 16].

5. An Example

In this section, we present an example to illustrate the
usefulness and applicability of our results. We consider the
following fractional stochastic partial differential equation
with delay effects:

cDα1(u(t, x)) �
z2

zx2 u(t, x) + 1 − a1u(t, x(t − τ))(sin t + sin(
�
2

√
t))( 

− b1v(t, x(t − τ)(cos t + cos(
��
2t

√
)) + e− t dBH/dt( ), t ∈ [0, T], 0≤ x≤ π,

cDα1(u(t, x)) �
z2

zx2 u(t, x) + 1 − a2u(t, x(t − τ))(sin t + sin(
�
2

√
t))( 

− b2v((t, x(t − τ))(cos t + cos(
��
2t

√
))) + e− t dBH/dt( ), t ∈ [0, T], 0≤ x≤ π,

u(t, 0) � u(t, π) � 0, t ∈ [0, T],

v(t, 0) � v(t, π) � 0, t ∈ [0, T],

u(t, x) � ϕ1(t, x), t ∈ [− r, 0], 0≤ x≤ π,

v(t, x) � ϕ2(t, x), t ∈ [− r, 0], 0≤ x≤ π,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(86)
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where ai, bi > 0, αi ∈ ((2/3), 1] and τ > 0, BH denotes a frac-
tional Brownian motion. To rewrite this system into the
abstract form (1), we set

f1 t, ϕ1t, ϕ2t( (η) � 1 − a1 ϕ1 ηt( (sin t + sin(
�
2

√
t))( 

− b1 ϕ2 ηt( (cos t + cos(
��
2t

√
))( ,

f2 t, ϕ1t, ϕ2t( (η) � 1 − a2 ϕ1 ηt( (sin t + sin(
�
2

√
t))( 

− b2 ϕ1 ηt( (cos t + cos(
�
2

√
t))( ,

σ1(t) � e
− t

,

σ2(t) � 2e
− t

,

(87)

and K � H � L2([0, π]). We denote the operator A by
Au � u″, with domain D(A) � u ∈H, u″ ∈H and

u(0) � u(π) � 0}.

.en, it is easy to obtain

Az � − 
∞

n�1
e

− n2t〈z, en〉en, z ∈H, (88)

and A is the infinitesimal generator of an analytic semigroup
S(t){ }t≥0 on H, which has following the following formula:

S(t)u � 
∞

n�1
e

− n2t〈u, en〉en, u ∈H, (89)

where en(u) � (2/π)(1/2) sin(nu), n � 1, 2, . . . , is the or-
thogonal set of eigenvectors of A. If the analytic semigroup
S(t){ }, t ∈ J, is compact, then there exists a constant K≥ 1
such that ‖S(t)‖2 ≤K.

In order to define the operator Q: K⟶K, we choose
a sequence Qen � σnen  and assume that

tr(Q) � 
∞

n�1

��
σn

√
<∞. (90)

Define the process BH(s) by

B
H

� 

∞

n�1

��
σn

√
B

H
n (t)en, (91)

where 1/4<H< 1/2 and BH
n n∈N is a sequence of two-sided

one-dimensional mutually independent fractional Brownian
motions. .us, one has

f1(t, x, y) − f2(t, x, y)
����

����
2 ≤ 8a1‖x − x‖D0

+ 8b1‖y − y‖D0
,

f2(t, x, y) − f2(t, x, y)
����

����
2 ≤ 8a2‖x − x‖D0

+ 8b2‖y − y‖D0
.

(92)

On account of the conditions, it is straightforward to
check that (H.1) and (H.2) hold. Let

M � 2
�
2

√

�����������
T(2− v)α1− 1a1

(2 − v)α1 − 1

 �����������
T(2− v)α1− 1b1

(2 − v)α1 − 1



�����������
T(2− v)α2− 1a2

(2 − v)α2 − 1

 �����������
T(2− v)α2− 1b2

(2 − v)α1 − 1



⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (93)

If M converges to zero, then assumptions in .eorem 2
are fulfilled, then we can conclude that the law of the unique
mild solution of system (86) on [0, T] satisfies the property
T2(C).

6. Conclusion

In this paper, by Perov’s fixed-point theorem, some sto-
chastic analysis technique, and the properties of operator
semigroup, we show the existence and uniqueness of the
mild solution for a class of coupled fractional stochastic
evolution equations driven by the fractional Brownian
motion with the Hurst parameter H ∈ (1/4, 1/2). Further-
more, we establish the transportation inequalities for the law
of the mild solution, with respect to the uniform distance. In
our next paper, we will explore the existence, uniqueness,
and the transportation inequalities of the mild solution for a
class of coupled fractional stochastic evolution equations
driven by the fractional Brownian motion with the Hurst
parameter H ∈ (0, 1/4).
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