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We prove Hartman-type and Lyapunov-type inequalities for a class of Riemann–Liouville fractional boundary value problems
with fractional boundary conditions. Some applications including a lower bound for the corresponding eigenvalue problem
are obtained.

1. Introduction

In [1], Lyapunov established the following striking
inequality:

Theorem 1. Let q ∈ C([a, b],R). Assume that the problem

ω″ + q(x)ω � 0, x ∈ (a, b),

ω(a) � ω(b) � 0,

⎧⎨

⎩ (1)

has a solution ω ∈ C([a, b],R) such that ω(x)≠ 0 for
x ∈ (a, b). )en,

(b − a) 􏽚
b

a
|q(z)|dz > 4, (2)

and constant 4 is the best possible largest number.

It has been shown that this result serves as a good tool in
the study of several properties of solutions of differential
equations (such as eigenvalue problems and eigenvalue
inequalities) (see, for example, [2–5] and the references
therein). Many authors have worked on generalizations of
classical inequalities (see, for instance, [4–16] and the ref-
erences therein).

In [11], the authors use the Hahn integral operator to
prove a description of new generalization of Minkowski’s
inequality.

In [5], the authors improve inequality in (2) by proving
the following Hartman–Winter inequality:

􏽚
b

a
(b − z)(z − a)q

+
(z)dz> b − a, (3)

where q+(z) � max(q(z), 0) is the nonnegative part of q(z).
Inequality (3) is also known as the best Lyapunov

inequality.
In [17], Ferreira considered the following fractional

differential problem:

Dα
a+ω + q(x)ω � 0, a<x< b, 1< α≤ 2,

ω(a) � ω(b) � 0,
􏼨 (4)

where q ∈ C([a, b],R) and Dα
a+ denotes the Rie-

mann–Liouville fractional derivative of order α (see Defi-
nition 2 in the following).

%e author established the following Lyapunov-type
inequality for problem (4).

Theorem 2 (see [17]). Assume that problem (4) has a solution
ω ∈ C([a, b],R) such that ω(x)≠ 0 for x ∈ (a, b). )en,

1
Γ(α)

􏽚
b

a
|q(z)|dz >

4
b − a

􏼒 􏼓
α− 1

. (5)
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Remark 1. Note that if we let α � 2 in (5), one obtains
Lyapunov’s classical inequality (2).

For the convenience of the reader, we recall the concept
of fractional integral and derivative of order c≥ 0.

Definition 1 (see [18, 19]).%e Riemann–Liouville fractional
integral of order c≥ 0 for a real-valued function ω is defined
by (I0a+ω)(x) � ω(x) and

I
c
a+ω( 􏼁(x) ≔

1
Γ(c)

􏽚
x

a
(x − z)

c− 1ω(z)dz, c> 0, x ∈ [a, b],

(6)

where Γ(c) is the Euler gamma function.

Definition 2 (see [18, 19]).%e Riemann–Liouville fractional
derivative of order c≥ 0 for function ω is defined by
(D0

a+ω)(x) � ω(x) and

D
c
a+ω( 􏼁(x) ≔

d

dx
􏼠 􏼡

n

I
n− c
a+ ω( 􏼁(x), for c> 0, (7)

where n � [c] + 1 with [c] the integer part of c.
%e new development in fractional calculus has attracted

the attention of researchers of various disciplines. Different
mathematical procedures have been considered by several
authors through different research-oriented aspects of
fractional differential equations (see, for instance, [20–22]
and the references therein).

Our goal in this paper is to establish Hartman-type and
Lyapunov-type inequalities for the following problem:

Dα
a+ω + q(x)ω � 0, x ∈ (a, b),

ω(a) � Dα− 3
a+ ω(a) � Dα− 2

a+ ω(a) � ω″(b) � 0,
􏼨 (8)

where α ∈ (3, 4] and q ∈ C([a, b],R). Some applications are
given to illustrate our result.

%e organization of the paper is as follows. In Section 2,
we derive the explicit expression of the Green function
corresponding to problem (8) and we establish some
properties on it. %is allows us to prove Hartman-type and
Lyapunov-type inequalities for problem (8). In Section 3, we
present some applications including a lower bound for the
corresponding eigenvalue problem.

2. Main Results

2.1. Green’s Function. First, we recall the following well-
known properties (see, for example, [18, 19]).

Lemma 1. Let α ∈ (3, 4) and ω ∈ C((a, b),R)∩L1((a, b)).
)en,

(i) For 0< c< α,Dc
a+ (Iαa+ω) � I

α− c
a+ ω and Dα

a+ (Iαa+ω) � ω
(ii) Dα

a+ω(x) � 0 if and only if ω(x) � 􏽐
4
i�1 ci(x − a)α− i,

where ci ∈ R, for i ∈ 1, 2, 3, 4{ }

(iii) Assume that Dα
a+ω ∈ C((a, b),R)∩L1((a, b)); then,

I
α
a+ D

α
a+ω( 􏼁(x) � ω(x) + 􏽘

4

i�1
ci(x − a)

α− i
, (9)

where ci ∈ R, for i ∈ 1, 2, 3, 4{ }.

Lemma 2. Let ω ∈ C([a, b]) be a solution of problem (8).
)en,

ω(x) � 􏽚
b

a
Gα(x, y)q(y)ω(y)dy, (10)

where Gα(x, y) is Green’s function of problem (8) given by

Gα(x, y) �
1
Γ(α)

b − y

b − a
􏼠 􏼡

α− 3

(x − a)
α− 1

− (x − y)
α− 1

, a≤y≤x≤ b,

b − y

b − a
􏼠 􏼡

α− 3

(x − a)
α− 1

, a≤ x≤y≤ b.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Proof. Let ω be such solution. By Lemma 1, we have

ω(x) � 􏽘
4

i�1
ci(x − a)

α− i
− I

α
a+ (qω)(x). (12)

Using the fact that ω(a) � Dα− 3
a+ ω(a) �

Dα− 2
a+ ω(a) � ω″(b) � 0, we obtain c2 � c3 � c4 � 0 and

(b − a)α− 3Γ(α)c1 � 􏽒
b

a
(b − y)α− 3q(y)ω(y)dy.

%erefore,

ω(x) �
1
Γ(α)

􏽚
b

a

b − y

b − a
􏼠 􏼡

α− 3

(x − a)
α− 1

q(y)ω(y)dy

−
1
Γ(α)

􏽚
x

a
(x − y)

α− 1
q(y)ω(y)dy

� 􏽚
b

a
Gα(x, y)q(y)ω(y)dy.

(13)
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%is ends the proof. □

To get a quick perspective, in Figure 1, we have the
representation of Green’s function G7/2(x, y) with the
contours and some projections.

One can see from Figure 1 that Green’s function
G7/2(x, y)≥ 0 and it is nondecreasing with respect to the first
variable. %is important observation will be proved for
Gα(x, y) with α ∈ (3, 4].

Definition 3. Let f, g: [a, b] × [a, b]⟶ R with f, g≥ 0.
We say that

f(x, y) ≈ g(x, y) on [a, b] ×[a, b], (14)

if there exists c> 0 such that (1/c)g(x, y)≤
f(x, y)≤ cg(x, y) for all (x, y) ∈ [a, b] × [a, b].

Remark 2. Let τ > 0 and x, z ∈ [0, 1]. %en,

min(1, τ)(1 − zx)≤ 1 − zx
τ ≤max(1, τ)(1 − zx). (15)

Next, we establish some properties on Green’s function
Gα(x, y) given by (11).

Proposition 1

(i) On [a, b] × [a, b],

Gα(x, y) ≈ (x − a)
α− 2

(b − y)
α− 3 min(x − a, y − a). (16)

(ii) On [a, b] × [a, b],

z

zx
Gα(x, y) ≈ (x − a)

α− 3
(b − y)

α− 3 min(x − a, y − a). (17)

(iii) )e function Gα satisfies the following property:

0≤Gα(x, y)≤Gα(b, y), (x, y) ∈ [a, b] ×[a, b]. (18)

Proof (i) From Lemma 2, for x, y ∈ (a, b), we have

Gα(x, y) �
1
Γ(α)

b − y

b − a
􏼠 􏼡

α− 3

(x − a)
α− 1

· 1 −
b − y

b − a
􏼠 􏼡

2
(b − a)(x − y)+

(x − a)(b − y)
􏼠 􏼡

α− 1
⎡⎣ ⎤⎦,

(19)

where (x − y)+ � max((x − y), 0).
Now, since ((b − a)(x − y)+)/((x − a)(b − y)) ∈ [0, 1],
for x, y ∈ (a, b), then by using Remark 2, with τ � α − 1
and z � ((b − y)2)/((b − a)2) ∈ [0, 1], we obtain

Gα(x, y) ≈ (b − y)
α− 3

(x − a)
α− 2

(b − a)(x − a)[

− (b − y)(x − y)
+
􏼃.

(20)

Hence, inequalities in (16) follow by observing that

(b − a)(x − a) − (b − y)(x − y)
+ ≈ min((x − a), (y − a)).

(21)

(ii) We have

z

zx
Gα(x, y) �

(α − 1)

Γ(α)

b − y

b − a
􏼠 􏼡

α− 3

(x − a)
α− 2

− (x − y)
α− 2

, a≤y≤ x≤ b,

b − y

b − a
􏼠 􏼡

α− 3

(x − a)
α− 2

, a≤x≤y≤ b.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Similar to case (i), by using the fact that

z

zx
Gα(x, y) �

(α − 1)

Γ(α)

b − y

b − a
􏼠 􏼡

α− 3

(x − a)
α− 2 1 −

b − y

b − a
􏼠 􏼡

(b − a)(x − y)+

(x − a)(b − y)
􏼠 􏼡

α− 2
⎡⎣ ⎤⎦ (23)

and applying Remark 2 with τ � α − 2 and
z � (b − y)/(b − a) ∈ [0, 1], we obtain the required
result.

(iii) Let y ∈ [a, b]. Since the function
x⟶ (z/zx)Gα(x, y) is nondecreasing on [a, b],
we deduce that
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0 � Gα(a, y)≤Gα(x, y)≤Gα(b, y). (24)

%is completes the proof. □

2.2. Statements and Proofs of Main Results

Theorem 3 (Hartman–Winter-type inequality)
Let q ∈ C([a, b],R). Assume that problem (8) has a solution

ω ∈ C([a, b],R) such that ω(x)≠ 0 for x ∈ (a, b). )en,

􏽚
b

a
(b − z)

α− 3
(z − a)(2b − a − z)q

+
(z)dz≥ Γ(α), (25)

where q+(z) � max(q(z), 0).

Proof. From Lemma 2, we know that

ω(x) � 􏽚
b

a
Gα(x, z)q(z)ω(z)dz, x ∈ [a, b]. (26)

Without loss of generality, we may assume that ω(x)> 0
for x ∈ (a, b).

Using (26), Proposition 1 (iii) and the fact that
q(z)≤ q+(z), we deduce that

ω(x)≤ 􏽚
b

a
Gα(x, z)q

+
(z)ω(z)dz≤ 􏽚

b

a
Gα(b, z)q

+
(z)ω(z)dz.

(27)

Hence,

‖ω‖≤ 􏽚
b

a
Gα(b, z)q

+
(z)‖ω‖dz, (28)

or equivalently,

1≤ 􏽚
b

a
Gα(b, z)q

+
(z)dz. (29)

%erefore,

1≤
1
Γ(α)

􏽚
b

a
(b − z)

α− 3
(z − a)(2b − a − z)q

+
(z)dz, (30)

from which inequality (25) follows. □
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Figure 1: Gα(x, y) for α � 7/2. (a) Gα (x, y) and contours. (b) Projection on xz. (c) Projection on yz.
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Remark 3. Let q ∈ C([a, b],R). Under the same conditions
as in %eorem 3, we have

􏽚
b

a
(b − z)

α− 3
(z − a)(2b − a − z)|q(z)|dz≥ Γ(α). (31)

By applying the previous theorem with α � 4, we obtain
the following:

Corollary 1. Let q ∈ C([a, b],R). Assume that the problems

ω(4) + q(x)ω � 0, x ∈ (a, b),

ω(a) � ω′(a) � ω″(a) � ω″(b) � 0,

⎧⎨

⎩ (32)

admit a solution ω ∈ C([a, b],R) such that ω(x)≠ 0 for
x ∈ (a, b). )en,

􏽚
b

a
(z − a)(b − z)(2b − a − z)q

+
(z)dz≥ 6. (33)

In particular,

􏽚
b

a
(z − a)(b − z)q

+
(z)dz≥

3
(b − a)

. (34)

Corollary 2 (Lyapunov − type inequality)
Under the same conditions as in )eorem 3, we have

􏽚
b

a
q

+
(z)dz≥

Γ(α)(α − 1)α− 2

2(b − a)α− 1(
�������������
(α − 1)(α − 3)

􏽰
)α− 3. (35)

Proof. By %eorem 3, we have

􏽚
b

a
f(z)q

+
(z)dz≥ Γ(α). (36)

where f(z) ≔ (b − z)α− 3(z − a)(2b − a − z)≥ 0.
For z ∈ (a, b), we have

f′(z) � (b − z)
α− 4 2(b − z)

2
− (α − 3)(z − a)(2b − a − z)􏽨 􏽩.

(37)

Note that

f′(z) � 0 on (a, b) if and only if z � z
∗

≔
1

α − 1
((α − 1)b − (b − a)

������������
(α − 1)(α − 3)

􏽰
).

(38)

Furthermore, f′(z)> 0 on (a, z∗) and f′(z)< 0 on
(z∗, b).

Hence,

sup
z∈[a,b]

f(z) � f z
∗

( 􏼁 � 2
(b − a)α− 1

(α − 1)α− 2(
������������
(α − 1)(α − 3)

􏽰
)
α− 3

.

(39)

So Lyapunov-type inequality (35) follows from (36) and
(39). □

Corollary 3. Let q ∈ C([a, b],R). Assume that the problems

ω(4) + q(x)ω � 0, x ∈ (a, b),

ω(a) � ω′(a) � ω″(a) � ω″(b) � 0,

⎧⎨

⎩ (40)

admit a solution ω ∈ C([a, b],R) such that ω(x)≠ 0 for
x ∈ (a, b). )en,

􏽚
b

a
q

+
(z)dz≥

9
�
3

√

(b − a)3
. (41)

Proof. Inequality (41) follows from (39) with α � 4. □

3. Applications

3.1. Lower Bound for the Eigenvalues. Consider the following
eigenvalue problem:

Dα
0+ω(x) + λω(x) � 0, x ∈ (0, 1), 3< α≤ 4,

ω(0) � Dα− 3
0+ ω(0) � Dα− 2

0+ ω(0) � ω″(1) � 0.
􏼨 (42)

Theorem 4. Assume that eigenvalue problem (42) has a
solution ω ∈ C([a, b],R) such that ω(x)≠ 0 for x ∈ (a, b).
)en,

|λ|≥
(α − 2)Γ(α + 1)

2
. (43)

Proof. By Remark 3 (with a � 0 and b � 1), we have

|λ| 􏽚
1

0
(1 − z)

α− 3
z(2 − z)dz≥Γ(α), (44)

from which inequality (43) follows by observing that

􏽚
1

0
(1 − z)

α− 3
z(2 − z)dz �

2
α(α − 2)

. (45)
□

3.2. Nonexistence Results. Consider the following problem:
Dα

0+ω + q(x)ω � 0, x ∈ (0, 1), 3< α≤ 4,

ω(0) � Dα− 3
0+ ω(0) � Dα− 2

0+ ω(0) � ω″(1) � 0,
􏼨 (46)

where q ∈ C([0, 1],R). %en, we have the following result.

Theorem 5. Assume that

􏽚
1

0
q

+
(z)dz<

Γ(α)(α − 1)α− 2

2(
�������������
(α − 1)(α − 3)

􏽰
)α− 3. (47)

)en, problem (46) has no nontrivial solution.

Proof. %e assertion follows from Corollary 2. □
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