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In this paper, we approximate the fixed points of multivalued quasi-nonexpansive mappings via a faster iterative process and
propose a faster fixed-point iterative method for finding the solution of two-point boundary value problems.We prove analytically
and with series of numerical experiments that the Picard–Ishikawa hybrid iterative process has the same rate of convergence as the
CR iterative process.

1. Introduction

If the existence of the solution of a fixed-point equation
involving an operator T is guaranteed, but an exact solution
is not possible, then the requirement of approximating the
solution becomes very pertinent. )is gives rise to the need
of different iterative processes [1–3]. In view of theoretical
and practical significance of fixed-point iterative schemes,
several authors have constructed and applied different fixed-
point iteration schemes in approximating the solution of
equations which model certain physical problems (e.g.,
[2–15]). One of the most important criteria in preferring one
fixed-point iteration scheme over the other is the rate of
convergence of the iteration scheme. Consequently, a faster
fixed-point iteration scheme is always preferred in practice.

In 2018, Bello et al. [16] developed a Mann-type fixed-
point iteration scheme for approximating the solution of
two-point boundary value problems. It is worth mentioning
that the scheme proposed in [16] is a self-correcting, unlike

the variational or weighted residual methods of approxi-
mation which depend on the selection of suitable coordinate
or basis functions (e.g., [16, 17]). )ey established that the
proposed fixed-point iteration method is more suitable to
approximate the exact solution than other existing methods.
Moreover, a noticeable advantage of this method is that it
solves the boundary value problem without constructing
Green’s function which is always difficult to construct for
some problems [16].

)e purpose of this paper is to introduce a new faster
iterative scheme to approximate the solution of a fixed-point
inclusion which involves a multivalued quasi-nonexpansive
mapping. A study of a faster fixed-point iterative method for
finding the solution of two-point boundary value problems
is also carried out. With a series of numerical experiments
and an analytical proof, it is established that the Pic-
ard–Ishikawa hybrid iterative process, recently introduced
by Okeke [3], has the same rate of convergence as the CR
iterative process, introduced by Chugh et al. [8]. Our results
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improve, extend, and generalize several known results in the
literature [18–20].

2. Preliminaries

Let X be a Banach space, x ∈X, and A⊆X. Define d(x, A)�

inf{d(x, y) : y ∈A}.

Definition 1 (see [20]). Suppose X is a real Banach space. A
subset C is called proximinal if for all x ∈X there exists an
element c ∈C such that d(x, c)� inf{‖x− y‖ : y ∈C}� d(x, C).

It is well known that weakly compact convex subsets of a
Banach space X and closed convex subsets of a uniformly
convex Banach space are proximinal. Let N(X), CL(X),
CB(X), K(X), and 2X denote the class of all nonvoid subsets,
nonvoid closed subsets, nonvoid bounded and closed sub-
sets, nonvoid compact subsets, and subsets ofX, respectively.
Let P(A) be the class of all nonvoid proximinal bounded
subsets of A. Suppose that H is the generalized Hausdorff
metric on CB(X) which is defined as follows:

H(A, B) � max sup
x∈A

d(x, B), sup
y∈B

d(y, A)
⎧⎨

⎩

⎫⎬

⎭, (1)

for each A, B ∈CB(X). We say that a point x∗ ∈X is a fixed
point of T :X⟶CL(X) if x∗ ∈Tx∗. We denote by F(T)≔
{x∗ ∈X : x∗ ∈Tx∗} the set of all the fixed points of T and
PT(x)� {y ∈Tx : ‖ x− y‖ � d(x, Tx)} for a multivalued map-
ping T : K⟶ P(K). It is known that multivalued fixed-
point theory has applications in economics, differential
inclusion, optimization, and control theory [20, 21]. )e
theory of multivalued mappings is harder than the corre-
sponding theory of single-valued mappings. For further
studies of multivalued fixed-point theory, interested reader
should see, e.g., [20–25] and the references therein.

)e following definitions will be needed in the sequel.

Definition 2. A multivalued mapping T :A⊆X⟶ 2X is
called

(i) A contraction if there exists a ∈ [0, 1) such that

H(Tx, Ty)≤ a‖x − y‖, (2)

holds for all x, y ∈A. If a> 0, then we say that T is
Lipschitzian.

(ii) Nonexpansive if for all x, y ∈A, we have

H(Tx, Ty)≤ ‖x − y‖. (3)

(iii) Quasi-nonexpansive if for each x ϵA and
x∗ ϵ F(T)≠Ø, we have

H Tx, x
∗

( ≤ x − x
∗����
����. (4)

Definition 3 (see [26]). A Banach space X is said to satisfy
Opial’s condition if for each sequence {un} in X such that
un⇀ u implies that

lim sup
n⟶∞

un − u
����

����< lim sup
n⟶∞

un − v
����

����, (5)

for each v ϵX with v≠ u.

Definition 4. Amultivalued mapping T :C⟶CB(C) is said
to be demiclosed at y ϵC if for each sequence {xn} inCweakly
converges to x and yn ϵTxn strongly converges to y, we have
y ϵTx.

In 2012, Chugh et al. [8] introduced the so-called CR
iterative scheme and proved that the iterative scheme
converges faster than all of Picard [15], Mann [11], Ishikawa
[9], Agarwal et al. [5], Noor [12], and SP [14] iterative
schemes. )e CR iterative process is given as follows.

Suppose X is a Banach space, T: X⟶X, and u0 ϵX.
Define the sequence un 

∞
n�0 by

zn � 1 − cn( un + cnTun,

yn � 1 − βn( Tun + βnTzn,

un+1 � 1 − αn( yn + αnTyn,

n ∈ N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where {αn}, {βn}, and {cn} are sequences of positive numbers
in [0, 1] satisfying 

∞
n�0 αn �∞. Recently, Okeke [3] in-

troduced the Picard–Ishikawa hybrid iterative process. )e
author proved that this iterative process converges faster
than all of Picard [15], Krasnosel’skii [10], Mann [11],
Ishikawa [9], Noor [12], Picard-Mann [27], and Pic-
ard–Krasnosel’skii [2] iterative processes in the sense of
Berinde [1].

Motivated by the investigation of iterative scheme in [3],
we introduce the following multivalued fixed-point iterative
process. Suppose X is a Banach space, T :X⟶ 2X, and
x0 ϵX. Define the sequence xn 

∞
n�0 by

zn � 1 − βn( xn + βnun,

yn � 1 − αn( xn + αnvn,

xn+1 � wn,

n ∈ N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where {αn} and {βn} are sequences in [0, 1] satisfying ap-
propriate conditions, un ϵ PT(xn), vn ϵ PT(zn), and
wn ϵPT(yn).

Remark 1. We remark that iteration (7) is the multivalued
version of the Picard–Ishikawa hybrid iterative process,
recently introduced by Okeke [3].

)e multivalued version of the CR iterative process (6) is
given as follows:

zn � 1 − cn( un + cngn,

yn � 1 − βn( gn + βnhn,

un+1 � 1 − αn( yn + αnsn,

n ∈ N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)
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where gn ϵPT(un), hn ϵ PT(zn), and sn ϵPT(yn).
)e aim of this paper is to approximate the fixed point of

multivalued quasi-nonexpansive mappings via the newly
introduced fixed-point iteration scheme (7). We prove that
the Picard–Ishikawa hybrid iterative process (7) has the
same rate of convergence as the CR iterative process (6) for a
certain class of quasi-nonexpansive and contraction
mappings.

Suppose that un 
∞
n�0 and vn 

∞
n�0 are two fixed-point

iteration processes that converge to a certain fixed point
x∗F(T) of a mapping T; we say that un 

∞
n�0 converges faster

than vn 
∞
n�0 ([28]) if

un − x
∗����
����≤ vn − x

∗����
����, ∀n ∈ N. (9)

)e following definitions are due to Berinde [1].

Definition 5 (see [1]). Let an 
∞
n�0 and bn 

∞
n�0 be two se-

quences of positive numbers that converge to a and b, re-
spectively. Assume there exists

l � lim
n⟶∞

an − a




bn − b



. (10)

(i) If l� 0, then it is said that the sequence an 
∞
n�0

converges to a faster than the sequence bn 
∞
n�0 to b

(ii) If 0< l<∞, then we say that the sequences an 
∞
n�0

and bn 
∞
n�0 have the same rate of convergence.

Definition 6 (see [1]). Suppose that, for two fixed-point
iterative processes un 

∞
n�0 and vn 

∞
n�0, both converging to

the same fixed point x∗, the error estimates

un − x
∗����
����≤ an, for all n ∈ N,

vn − x
∗����
����≤ bn, for all n ∈ N,

(11)

are available, where an 
∞
n�0 and bn 

∞
n�0 are two sequences of

positive numbers converging to zero. If an 
∞
n�0 converges

faster than bn 
∞
n�0, then un 

∞
n�0 converges faster than vn 

∞
n�0

to x∗.
For the rest of this paper, whenever we make reference to

the rate of convergence of iterative processes, we mean the
rate of convergence in the sense of Berinde [1] as in Defi-
nition 5.

Definition 7 (see [29]). A multivalued nonexpansive map-
ping T :C⟶CB(C) is said to satisfy Condition (I) if there
exists a continuous nondecreasing function f : [0,∞)⟶ [0,
∞) with f(0)� 0 and f(r)> 0 for all r ϵ (0, ∞) such that
d(x, Tx)≥f(d(x, F(T))) for each x ϵC.

)e following lemma will be needed in this study.

Lemma 1 (see [30]). Suppose that X is a uniformly convex
Banach space and 0< p≤ tn≤ q< 1 for each n ∈ N. Let {xn}
and {yn} be two sequences of X such that lim supn⟶∞‖xn‖≤ r,
lim supn⟶∞‖yn‖≤ r, and limn⟶∞‖tnxn + (1− tn)yn‖ � r hold
for some r≥ 0. Ben, limn⟶∞‖xn − yn‖ � 0.

Lemma 2 (see [31]). If T : C⟶ P(C) and PT(x)� {y ϵTx:
‖x− y‖ � d(x, Tx)}. Ben, the following are equivalent:

(i) x ϵ F(T)
(ii) PT(x)� {x}
(iii) x ϵ F(PT)

Moreover, F(T)� F(PT).

3. Convergence Analysis of the Multivalued
Picard–Ishikawa Hybrid Iterative Process

We begin with the following convergence results.

Lemma 3. Suppose that X is a normed linear space and C is a
nonvoid closed convex subset of X. Let T : C⟶ P(C) such
that F(T)≠Ø and PT is a quasi-nonexpansive mapping.
Suppose that {xn} is a sequence defined by the iteration scheme
(7). Ben, limn⟶∞‖xn − x∗ ‖ exists for each x∗ ϵ F(T) and
limn⟶∞d(xn, PT(xn))� 0.

Proof. To prove that limn⟶∞‖xn − x∗‖ exists for each
x∗ ϵ F(T)≠Ø, we proceed as follows. Using (4) and (7), we
obtain the following estimates:

xn+1 − x
∗����
���� � wn − x

∗����
����

≤H PT yn( , PT x
∗

( ( 

≤ yn − x
∗����
����.

(12)

Next, by (4) and (7), we have the following estimates:

yn − x
∗����
���� � 1 − αn( xn + αnvn − x

∗����
����

≤ 1 − αn(  xn − x
∗����
���� + αn vn − x

∗����
����

≤ 1 − αn(  xn − x
∗����
���� + αnH PT zn( , PT x

∗
( ( 

≤ 1 − αn(  xn − x
∗����
���� + αn zn − x

∗����
����.

(13)

Next, we obtain that

zn − x
∗����
���� � 1 − βn( xn + βnun − x

∗����
����

≤ 1 − βn(  xn − x
∗����
���� + βn un − x

∗����
����

≤ 1 − βn(  xn − x
∗����
���� + βnH PT xn( , PT x

∗
( ( 

≤ 1 − βn(  xn − x
∗����
���� + βn xn − x

∗����
����

� xn − x
∗����
����.

(14)

Using (14) in (13), we have

yn − x
∗����
����≤ 1 − αn(  xn − x

∗����
���� + αn xn − x

∗����
����

� xn − x
∗����
����.

(15)

Using (14) in (12), we have

xn+1 − x
∗����
����≤ xn − x

∗����
����. (16)

)is implies that {‖xn − x∗‖} is decreasing. )erefore,
limn⟶∞‖xn − x∗‖ exists for each x∗ ϵ F(T).
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Next, we show that

lim
n⟶∞

d xn, PT xn( (  � 0. (17)

Let

lim
n⟶∞

xn − x
∗����
���� � k, (18)

for some constant k≥ 0. If k� 0, then (17) holds trivially.
Suppose that k> 0; because d(xn, PT(xn))≤ ‖xn − un‖, it
suffices to establish that limn⟶∞‖xn − un‖ � 0. Clearly, we
have

un − x
∗����
����≤H PT xn( , PT x

∗
( ( 

≤ xn − x
∗����
����.

(19)

)is implies that

lim sup
n⟶∞

un − x
∗����
����≤ k. (20)

Using (14) and (15), we obtain

lim sup
n⟶∞

zn − x
∗����
����≤ k,

lim sup
n⟶∞

yn − x
∗����
����≤ k.

(21)

Observe that

vn − x
∗����
����≤H PT zn( , PT x

∗
( ( 

≤ zn − x
∗����
����

≤ xn − x
∗����
����.

(22)

Hence, we have

lim sup
n⟶∞

vn − x
∗����
����≤ k. (23)

Similarly, we have

wn − x
∗����
����≤H PT yn( , PT x

∗
( ( 

≤ yn − x
∗����
����

≤ xn − x
∗����
����.

(24)

Hence,

lim sup
n⟶∞

wn − x
∗����
����≤ k. (25)

Clearly,

lim
n⟶∞

xn+1 − x
∗����
���� � lim

n⟶∞
wn − x

∗����
���� � k. (26)

Hence, using (23), (25), (26), and Lemma 1, we obtain

lim
n⟶∞

vn − wn

����
���� � 0. (27)

From (25), we have

lim inf
n⟶∞

xn+1 − x
∗����
����≤ lim inf

n⟶∞
wn − vn

����
���� + vn − x

∗����
���� .

(28)

Hence, we have

k≤ lim inf
n⟶∞

vn − x
∗����
����. (29)

Using (23) and (29), we have

lim
n⟶∞

vn − x
∗����
���� � k. (30)

Similarly, we can show that

lim
n⟶∞

zn − x
∗����
���� � k. (31)

)is means that

limn⟶∞ zn − x
∗����
���� � limn⟶∞ 1 − βn( xn + βnun − x

∗����
����

� limn⟶∞ 1 − βn(  xn − x
∗

( 
����

+ βn un − x
∗

( 
����

� k.

(32)

It follows from (20), (32), and Lemma 1 that

lim
n⟶∞

xn − un

����
���� � 0. (33)

)erefore, we have

lim
n⟶∞

d xn, PT xn( (  � 0. (34)

)e proof of Lemma 3 is completed.
Next, we prove the following strong convergence

theorem. □

Theorem 1. Suppose that C is a nonvoid compact convex
subset of a real Banach space X, T : C⟶ P(C) with F(T)≠
Ø, and PT is a quasi-nonexpansive mapping. Let {xn} be the
iterative sequence defined in (7). Ben, the sequence {xn}
converges strongly to a fixed point of T.

Proof. We have already established in Lemma 3 that
limn⟶∞‖xn − x∗‖ exists for each x∗ ϵ F(T)≠Ø. Because C is

compact, it follows that there exists a subsequence xnj
  of

{xn} such that limn⟶∞‖xnj
− y∗‖ � 0 for some y∗ ϵC.

Hence, by Lemma 3 and the triangle inequality, we have

d y
∗
, PT y

∗
( ( ≤ d xnj

, y
∗

  + d xnj
, PT xnj

  

+ H PT xnj
 , PT y

∗
(  

≤ xnj
− y
∗

�����

����� + xnj
− unj

�����

�����

+ xnj
− y
∗

�����

�����⟶ 0, as n⟶∞.

(35)

)is means that

d y
∗
, PT y

∗
( (  � 0. (36)

)erefore, y∗ is a fixed point of PT. By Lemma 2, the set
of fixed points of PT coincides with the set of fixed points of
T, so the sequence {xn} converges strongly to a fixed point
y∗ ϵ F(T). )e proof of )eorem 1 is completed.

We next prove the following results for multivalued
mappings satisfying Condition (I) of Senter and Dotson
[29]. □
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Theorem 2. Suppose that C is a nonvoid closed and convex
subset of a real Banach space X. Let T : C⟶ P(C) satisfies
Condition (I) such that F(T)≠Ø and PT is a quasi-non-
expansive mapping. Ben, the sequence {xn} defined by (7)
converges strongly to a fixed point x∗ of T.

Proof. By Lemma 3, limn⟶∞‖xn − x∗‖ exists for each
x∗ ϵ F(T)� F(PT)(Lemma 2). If limn⟶∞‖xn − x∗‖ � 0, then
the result trivially holds. We assume that
limn⟶∞‖xn − x∗‖ � k> 0. Using relation (16), we have
‖xn+1 − x∗‖≤ ‖ xn − x∗‖. )erefore, we have

d xn+1, F(T)( ≤ d xn, F(T)( . (37)

)is implies that limn⟶∞d(xn+1, F(T)) exists. Next, we
show that limn⟶∞d(xn+1, F(T))� 0. Assume on contrary
that limn⟶∞d(xn+1, F(T))� μ> 0. )en, for each n ∈ N, we
have

pn �
un − x∗

xn − x∗
����

����
,

qn �
xn − x∗

xn − x∗
����

����
.

(38)

Hence, we have ‖pn‖ � 1 and ‖qn‖≤ 1 because
‖un − x∗‖≤H(PT(xn), PT(x∗))≤ ‖xn − x∗‖. Using the fact that f
satisfies Condition (I), we have

qn − pn

����
���� �

xn − x∗

xn − x∗
����

����
−

un − x∗

xn − x∗
����

����

���������

���������

�
xn − un

����
����

xn − x∗
����

����

≥
d xn, Txn( 

xn − x∗
����

����

≥
f d xn, F(T)( (

xn − x∗
����

����
.

(39)

Because f is continuous, we obtain that lim infn‖qn −

pn‖≥ (f(μ)/k) > 0 for each n ∈ N. It follows from (7), (18),
and (31) that

limn⟶∞ 1 − βn( qn + βnpn

����
���� � limn⟶∞ 1 − βn( 

xn − x∗

xn − x∗
����

����
+ βn

un − x∗

xn − x∗
����

����

���������

���������

� limn⟶∞
1 − βn( xn + βnun − x∗

xn − x∗
����

����

���������

���������

� limn⟶∞
zn − x∗

����
����

xn − x∗
����

����
 

�
k

k

� 1.

(40)

)is implies that

lim
n⟶∞

1 − βn( qn + βnpn

����
���� � 1. (41)

)erefore, by Lemma 1, we have limn⟶∞‖qn − pn‖ � 0, a
contradiction. )erefore, we have limn⟶∞d(xn+1, F(T))� 0,
and hence,

lim
n⟶∞

xn − x
∗����
���� � 0. (42)

)us, the sequence {xn} converges strongly to a fixed
point x∗ ∈ F(T)≠∅. )e proof of )eorem 2 is completed.

Next, we prove the following weak convergence
result. □
Theorem 3. Suppose X is a uniformly convex Banach space
satisfying Opial’s condition and C is a nonvoid closed convex
subset of X. Let T : C⟶ P(C) be a multivalued mapping

such that F(T)≠Ø and PT is a quasi-nonexpansive mapping.
Suppose that {xn} is the sequence defined in (7). If I− PT is
demiclosed at zero. Ben, the sequence {xn} converges weakly
to a fixed point of T.

Proof. Suppose that x∗ ϵ F(T)� F(PT). It follows from
Lemma 3 that limn⟶∞‖xn − x∗‖ exists for each x∗. Next, we
show that the sequence {xn} has a unique weak subsequential
limit in F(T). We proceed as follows: let y∗1 and y∗2 be weak

limits of the subsequences xnk
  and{xnj} of {xn}, respectively.

By (33), we have that limn⟶∞‖xn−un‖�0. Using the fact that
the mapping I−PT is demiclosed at zero, we have
y∗1 ∈F(PT) � F(T). Similarly, we can show that y∗2 ∈F(T).
Next, we prove that the weak limit is unique. Suppose that
y∗1 ≠y∗2 . Because X satisfies Opial’s condition, we have

Discrete Dynamics in Nature and Society 5



lim
n⟶∞

xn − y
∗
1

����
���� � lim

nk⟶∞
xnk

− y
∗
1

�����

�����

< lim
nk⟶∞

xnk
− y
∗
2

�����

�����

� lim
n⟶∞

xn − y
∗
2

����
����

� lim
nj⟶∞

xnj
− y
∗
2

�����

�����

< lim
nj⟶∞

xnj
− y
∗
1

�����

�����

� lim
n⟶∞

xn − y
∗
1

����
����,

(43)

a contradiction. Hence, the sequence {xn} converges weakly
to a point of F(T). )e proof of )eorem 3 is completed.

Next, we prove that the Picard–Ishikawa hybrid iterative
process (7) and the CR iterative process (8) have the same
rate of convergence. □

Proposition 1. Suppose that X is a normed linear space and
C is a nonvoid closed convex subset of X. Let T : C⟶ P(C)

such that F(T)≠Ø and PT is a quasi-nonexpansive mapping.
Suppose x0 � u0 ϵC, {xn} is a sequence defined by the Pic-
ard–Ishikawa hybrid iterative process (7), and {un} is the CR
iterative process (8) converging to the same fixed point
x∗ ϵ F(T), where {αn}, {βn}, and {cn} are sequences in [0, 1].
Ben, the sequences {xn} and {un} have the same rate of
convergence.

Proof. By (16), we have

xn+1 − x
∗����
����≤ xn − x

∗����
����

≤ xn−1 − x
∗����
����

≤ xn−2 − x
∗����
����

⋮

≤ x0 − x
∗����
����.

(44)

Let

an − x
∗
 � x0 − x

∗����
����. (45)

Using (4) and (8), we have

un+1 − x
∗����
���� � 1 − αn( yn + αnsn − x

∗����
����

≤ 1 − αn(  yn − x
∗����
���� + αn sn − x

∗����
����

≤ 1 − αn(  yn − x
∗����
���� + αnH PT yn( , PT x

∗
( ( 

≤ 1 − αn(  yn − x
∗����
���� + αn yn − x

∗����
����

� yn − x
∗����
����.

(46)

Next, we have the following estimate:

yn − x
∗����
���� � 1 − βn( gn + βnhn − x

∗����
����

≤ 1 − βn(  gn − x
∗����
���� + βn hn − x

∗����
����

≤ 1 − βn( H PT un( , PT x
∗

( ( 

+ βnH PT zn( , PT x
∗

( ( 

≤ 1 − βn(  un − x
∗����
���� + βn zn − x

∗����
����,

(47)

zn − x
∗����
���� � 1 − cn( un + cngn − x

∗����
����

≤ 1 − cn(  un − x
∗����
���� + cn gn − x

∗����
����

≤ 1 − cn(  un − x
∗����
���� + cnH PT un( , PT x

∗
( ( 

≤ 1 − cn(  un − x
∗����
���� + cn un − x

∗����
����

� un − x
∗����
����.

(48)

Using (48) in (47), we obtain

yn − x
∗����
����≤ 1 − βn(  un − x

∗����
���� + βn un − x

∗����
����

� un − x
∗����
����.

(49)

Using (49) in (46), we have

un+1 − x
∗����
����≤ un − x

∗����
����

≤ un−1 − x
∗����
����

≤ un−2 − x
∗����
����

⋮

≤ u0 − x
∗����
����.

(50)

Let

bn − x
∗
 � u0 − x

∗����
����. (51)

Hence, using (45), (51), and the condition that
x0 � u0 ϵC, we obtain

lim
n⟶∞

an − x∗




bn − x∗



� lim

n⟶∞

x0 − x∗
����

����

u0 − x∗
����

����
�

x0 − x∗
����

����

u0 − x∗
����

����
�

x0 − x∗
����

����

x0 − x∗
����

����
� 1.

(52)

Because 0< l� 1<∞, it follows that the sequences {xn}
and {un} have the same rate of convergence. □

4. Applications to Solution of Two-point
Boundary Value Problems

In this section, we apply the Picard–Ishikawa hybrid iterative
process recently introduced by Okeke [3] for finding the
solution of two-point boundary value problems for a sec-
ond-order differential equation. Let X be a real Banach space
and x0 ϵX; the Picard–Ishikawa hybrid iterative process {xn}
is defined as follows:
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zn � 1 − βn( xn + βnTxn,

yn � 1 − αn( xn + αnTzn,

xn+1 � Tyn,

n ∈ N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(53)

where {αn} and {βn} are appropriate sequences in [0, 1]. It is
known (see [3]) that this fixed-point iterative process
converges faster than all of Picard [15], Krasnosel’skii [10],
Mann [11], Ishikawa [9], Noor [12], Picard-Mann [27], and
Picard–Krasnosel’skii [2] iterations.

In this section, we propose a Picard–Ishikawa hybrid-
type algorithm for finding the solution of two-point
boundary value problem.

Green’s function is given as follows. Suppose h(t) is
continuous on [a, b] for each t ϵ [a, b]. Functions satisfying
x′′� h(t) are of the following form:

x � K0 + K1t + 
b

a
(t − s)h(s)ds. (54)

)erefore, the unique solution of the following boundary
value problem

x″ � h(t), (55)

x(a) � 0,

x(b) � 0,
 (56)

could be expressed in form of equation (54) with appropriate
values for constants K0 and K1. Once the values of the
constants K0 and K1 are determined, one can easily prove
that the solution x(t) of equations (55) and (56) can be
expressed in form of x(t) � 

b

a
G(t, s)h(s)ds, where G(t, s) is

called Green’s function of the boundary value problem
x′′� 0, x(a)� 0, and x(b)� 0 and it is defined as follows:

G(t, s) �

(t − a)(s − b)

b − a
, for a≤ t≤ s,

(t − b)(s − a)

b − a
, for s≤ t≤ b.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(57)

Similarly, the solution of the following boundary value
problem

x′′ � h(t),

x(a) � ξ0,

x(b) � ξ1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(58)

can be expressed in the following form:

x(t) � 
b

a
G(t, s)h(s)ds + w(t), (59)

where w(t) is the solution of the equation x′′� 0 satisfying
w(a) � ξ0 and w(b) � ξ1.

Assume that the function f(t, x, x′) is continuous on
[a, b] × R2. It follows from (59) that if the function w(t) is
the solution of the equation x′′� 0 with w(a) � ξ0 and

w(b) � ξ1, then the function x(t) ϵC(2)[a, b] is a solution of
the following boundary value problem:

x′′ � f t, x, x′( ,

x(a) � ξ0,

x(b) � ξ1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(60)

if and only if x(t) belongs to C(1)[a, b] and it is a solution of
the following integral equation:

x(t) � 
b

a
G(t, s)f s, x(s), x′(s)( ds + w(t)), on [a, b].

(61)

Hence, suppose T :C(1)[a, b]⟶C(1)[a, b] is defined by

T[x(t)] � 
b

a
G(t, s)f s, x(s), x′(s)( ds + w(t), (62)

for each x ϵC(1)[a, b] with a≤ t≤ b, then a fixed point of the
mapping T is a solution of equation (61). Hence, it is also a
solution of the boundary value problem (60).

Bello et al. [16] considered the following two-point
boundary value problem:

x″ � f t, x, x′( , a≤ t≤ b, (63)

λ0x(a) + ]0x′(a) � ξ0,
λ1x(b) + ]1x′(b) � ξ1,

 (64)

where λi and ]i are real constants such that λ2i + ]2i > 0, i� 0, 1.
In order to solve (63) and (64) using our proposed

Picard–Ishikawa hybrid iterative process (53), we first
transform (63) and (64) to the following relation:

zn
″ � 1 − βn( xn

″ + βnxn
″ � 1 − βn( xn

″ + βnf t, xn, xn
′( ,

yn
″ � 1 − αn( xn

″ + αnzn
″ � 1 − αn( xn

″ + αnf t, zn, zn
′( ,

xn+1″ � yn+1″ � f t, yn, yn
′( ,

λ0xn+1(a) + ]0xn+1′ (a) � ξ0,

λ1xn+1(b) + ]1xn+1′ (b) � ξ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

where {αn} and {βn} are sequences in [0, 1] satisfying

∞
n�0 αn �∞. One can prove that x(t) is a solution of (63)

and (64) if and only if x(t) is a solution of the following
equivalent integral equation:

x(t) � 
b

a
G(t, s)f s, x(s), x′(s)( ds + w(t), on [a, b],

(66)

where G(t, s) is Green’s function of the following associated
boundary value problem:

x″ � 0,

λ0x(a) + ]0x′(a) � ξ0,

λ1x′(b) + ]1x′(b) � ξ1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(67)

and w(t) is the solution of (67).
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Next, suppose T :C(1)[a, b]⟶C(1)[a, b] is defined as
follows:

T[x(t)] � 
b

a
G((t, s)f s, x(s), x′(s)( ds + w(t),

T[z(t)] � 
b

a
G(t, s)f s, z(s), z′(s)( ds + w(t),

T[y(t)] � 
b

a
G(t, s)f s, y(s), y′(s)( ds + w(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)

where T is a mapping such that any solution x(t) of (63) and
(64) is a fixed point of T [32].

We next embark on the derivation of our fixed-point
iterative method for solving the proposed boundary value
problem. Suppose D is a nonvoid convex subset of a real
Banach space X and T: D⟶ P(D) is a multivalued
mapping. For arbitrary x0 ϵD, let {xn} be the iterative se-
quence generated by (53), with sequences {αn} and {βn} in [0,
1] satisfying 

∞
n�0 αn �∞.

Next, we compare our method (65) with (53) to establish
their equivalence. We obtain this by first differentiating (68)
as follows:

Txn( ′ � 
b

a

z

zt
G(t, s)f s, xn(s), xn

′(s)( ds + w′(t),

Tzn( ′ � 
b

a

z

zt
G(t, s)f s, zn(s), zn

′(s)( ds + w′(t),

Tyn( ′ � 
b

a

z

zt
G(t, s)f s, yn(s), yn

′(s)( ds + w′(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

Secondly, differentiating (53), we have

z′
′
n � 1 − βn( x′

′
n + βn Txn( ′′,

y′
′
n � 1 − αn( x′

′
n + αn Tzn( ′′,

x′
′
n+1 � Tyn( ′′,

n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(70)

Our third step is to differentiate (69) as follows:

Txn( ′′ � 
b

a

z

zt
G t, xn(s), xn

′(s)( ds + w′(t),

Tzn( ′′ � 
b

a

z

zt
G t, zn(s), zn

′(s)( ds + w′(t),

Tyn( ′′ � 
b

a

z

zt
G t, yn(s), yn

′(s)( ds + w′(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

Lastly, substituting (71) in (70), we have

z′
′
n � 1 − βn( x′

′
n + βn 

b

a

z

zt
G t, xn(s), xn

′(s)( ds + w′(t) ,

y′
′
n � 1 − αn( x′

′
n + αn 

b

a

z

zt
G t, zn(s), zn

′(s)( ds + w′(t) ,

x′
′
n+1 � 

b

a

z

zt
G t, yn(s), yn

′(s)( ds + w′(t),

n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(72)

Hence, (72) can be written as follows, which is our
proposed fixed-point iteration method:

z′
′
n � 1 − βn( x′

′
n + βnx′

′
n � 1 − βn( x′

′
n + βnf t, xn, xn

′( ,

y′
′
n � 1 − αn( x′

′
n + αnz′

′
n � 1 − αn( x′

′
n + αnf t, zn, zn

′( ,

x′
′
n+1 � y′

′
n � f t, yn, yn

′( ,

n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(73)

Next, we give our main results for this section as follows.

Theorem 4. Let T: C(1)[a, b]⟶C(1)[a, b] be a contraction
mapping defined in (68) with contractive constant a ϵ (0, 1).
Suppose x0 ϵC(1)[a, b] is an affine function. Construct the
sequence {xn} generated by the Picard–Ishikawa hybrid it-
erative process (53) satisfying x′′� 0 and the boundary
condition defined in (64) with {αn} and {βn} sequences in [0, 1]
such that 

∞
n�0 αn �∞. Ben, {xn} converges to a unique

solution x∗ ϵC(1)[a, b] of (63) and (64).

Proof. )e existence and uniqueness of x∗ ϵC(1)[a, b] is
guaranteed by the famous Banach contraction mapping
principle. We now show that xn⟶ x∗ as n⟶∞. Using
(53), we have

xn+1 − x
∗����
���� � Tyn − x

∗����
����

≤ a yn − x
∗����
����.

(74)

Next, we have the following estimates:

yn − x
∗����
���� � 1 − αn( xn + αnTzn − x

∗����
����

≤ 1 − αn(  xn − x
∗����
���� + αn Tzn − x

∗����
����

≤ 1 − αn(  xn − x
∗����
���� + aαn zn − x

∗����
����.

(75)

Next, we have

zn − x
∗����
���� � 1 − βn( xn + βnTxn − x

∗����
����

≤ 1 − βn(  xn − x
∗����
���� + βn Txn − x

∗����
����

≤ 1 − βn(  xn − x
∗����
���� + aβn xn − x

∗����
����

� 1 − βn(1 − a)(  xn − x
∗����
����.

(76)

Using (76) in (75), we have
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yn − x
∗����
����≤ 1 − αn(  xn − x

∗����
���� + aαn 1 − βn(1 − a)(  xn − x

∗����
����

� 1 − αn 1 − a 1 − βn(1 − a)( ( (  xn − x
∗����
����.

(77)

Using (77) in (74), we obtain

xn+1 − x
∗����
����≤ a 1 − αn 1 − a 1 − βn(1 − a)( (   xn − x

∗����
����.

(78)

Continuing this process, we obtain the following
inequalities:

xn+1 − x∗
����

����≤ a 1 − αn 1 − a 1 − βn(1 − a)( (   xn − x∗
����

����

≤ a 1 − αn−1 1 − a 1 − βn−1(1 − a)( (   xn−1 − x∗
����

����

≤ a 1 − αn−2 1 − a 1 − βn−2(1 − a)( (   xn−2 − x∗
����

����

⋮

≤ a 1 − α0 1 − a 1 − β0(1 − a)( (   x0 − x∗
����

����.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(79)

Using the inequalities in (79), we have

xn+1 − x
∗����
����≤ a

(n+1)


n

k�0
1 − αk 1 − a 1 − βk(1 − a)( (   x0 − x

∗����
����.

(80)

Because a ϵ (0, 1) and αn, βn ϵ [0, 1] for each n ∈ N,
[1− αn(1− a(1− βn(1− a)))]< 1. It is well known in analysis
that 1− y≤ e−y for each y ϵ [0, 1]. Hence, using these facts in
(80), we have

xn+1 − x
∗����
����≤ a

(n+1)
x0 − x

∗����
����e

− 1− a 1− βn(1− a)( )( )
n

k�0 αk

⟶ 0, as n⟶∞.

(81)

)is means that xn⟶ x∗ as n⟶∞. )e proof of
)eorem 4 is completed. □

Remark 2. )eorem 4 and the results of this section is an
improvement on the results of Bello et al. [16] because it is
known (see [3]) that the Picard–Ishikawa hybrid iteration
method used in our results converges faster than the Mann-
type method used by Bello et al. [16].

5. Numerical Examples

In this section, we provide some numerical examples to
validate our analytical results. We compare the speed of
convergence between the CR iterative scheme {un} in (6) and
the Picard–Ishikawa hybrid iterative scheme {xn} in (7). In
the following figures, we denote the CR iterative process by
CR and the Picard–Ishikawa hybrid iterative process by PI.
All the codes were written in MATLAB (R2010a) and run on
PC with Intel(R) Core(TM) i3-4030U CPU @ 1.90GHz.

We begin with the following example ([20], Example
2.3).

Example 1. Suppose (R, ‖ · ‖) is a normed linear space with
the usual norm and C� [0, 1]. Define T : C⟶ P(K) by

Tx � [0, (2x + 1/4)]. Khan et al. [20] proved that T is quasi-
nonexpansive with F(T) � [0, (1/2)]. We consider the fol-
lowing cases for our numerical experiments:

Case 1: choose x0 � u0 � 0.1, αn � (n/5n + 1),
βn � (n/10n + 1), and cn � (1/7n + 2), and the number
of iteration for each iterative scheme is n� 100. )e
graph of this case is presented in Figure 1.
Case 2: choose x0 � u0 �1 and αn � βn �

cn � (1/8n + 7), and the number of iteration for each
iterative scheme is n� 100. )e graph of this case is
presented in Figure 2.

Example 2. Let T :X⟶X be a mapping such that
Tx � (x/3), with a � (1/2) and X� [0,∞). Suppose the first
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Figure 1: Errors versus iteration numbers (n): Example 1 (Case 1).
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Figure 2: Errors versus iteration numbers (n): Example 1 (Case 2).
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iteration u0 � x0 �13 and the number of iterations for each
iterative scheme is n� 100. Choose αn � (n/6n + 2),
βn � (n/10n + 1), and cn � (1/3n + 2). )en, Figure 3 shows
the errors versus iteration numbers for this example.

Next, we present the following graphs of errors versus
iteration numbers (n) for each case.

Remark 3. Clearly, from Figures 1 and 2 of Example 1, we
see that the Picard–Ishikawa hybrid iterative process and the
CR iterative process have the same rate of convergence for a
class of multivalued quasi-nonexpansive mappings. Simi-
larly, from Figure 3 of Example 2, we see that the Pic-
ard–Ishikawa hybrid iterative process and the CR iterative
process have the same rate of convergence for a class of
contraction mappings.
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